
 BLAST: Battery Lifetime-constrained Adaptation with
Selected Target in Mobile Devices

Pietro Mercati
Computer Science Department

UC San Diego
San Diego, CA, USA

pimercat@eng.ucsd.edu

Vinay Hanumaiah
Advanced Systems Engineering Lab

Samsung Research America
Mountain View, CA, USA

vinay@samsung.com

Jitendra Kulkarni
Advanced Systems Engineering Lab

Samsung Research America
Mountain View, CA, USA

j.kulkarni@samsung.com

ABSTRACT

Mobile devices today contain many power hungry

subsystems and execute different applications. Standard

power management is not aware of the desired battery

lifetime and has no visibility into which applications are

executing. However, power consumption is strongly

dependent on which applications are executed. In this work,

we propose a novel power characterization strategy for

mobile devices called application-dependent power states

(AP-states). Based on that, we formulate a management

problem to improve performance under battery lifetime

constraints, and we implement the management framework

on a real Android device. We call our framework BLAST:

Battery Lifetime-constrained Adaptation with Selected

Target. The goal of such framework is to maximize

performance while letting the device battery to last at least

for a certain required lifetime, and only requires the user to

select the desired target lifetime. The implementation does

not require OS modifications and can be ported and installed

to any Android device. We experimentally verify that our

strategy can still meets user experience requirements with a

selected target battery lifetime extension of at least 25%.

Keywords

Mobiles, Android, Power Management, Battery, User Experience.

1. INTRODUCTION
Mobile devices such as smartphones and tablets contain

a variety of power hungry subsystems (CPU, GPU, camera,

display, antennas, etc.) and execute applications with

different requirements: from browsing, to multimedia, to

gaming and many more. Power consumption heavily

depends on the application running in foreground (e.g. the

one showing on the display), as it mostly determines the

usage of different parts of the system. Also, it is the

application which attracts user’s attention, thus influencing

user experience the most. Such intense activity contributes

at making the battery lifetime as short as few hours for most

devices [1,2]. Therefore, power management to trade battery

lifetime and user experience is a primary requirement for

mobiles.

In the last decade, the target of mobile designers and

developers has shifted from high performance to high user-

experience. The concept of user-experience depends on a

number of variables, from device specifications and

performance to user personal profile and level of attention.

However, we can define it as the scenario in which device

behavior meets user expectations. Therefore, in the case of

mobiles we can identify two main factors determining user-

experience: (i) application behavior and (ii) battery

lifetime. The first refers to the case in which the user is

satisfied with application execution (for example, a Youtube

video that reproduces smoothly or a 3D game with high

frames per second). The second indicates the case in which

Simon Bloch
Advanced Systems Engineering Lab

Samsung Research America
Mountain View, CA, USA

s.bloch@samsung.com

Tajana Rosing
Computer Science Department

UC San Diego
San Diego, CA, USA

tajana@ucsd.edu

MOBIQUITOUS 2015, July 22-24, Coimbra, Portugal
Copyright © 2015 ICST
DOI 10.4108/eai.22-7-2015.2260051

the achieved battery lifetime is as long as the one expected

by the user. The two targets are contrasting, as there is a

tradeoff between them: if power is optimized for providing

a minimum required level of user experience, this could

mean trading on battery lifetime, if the level of expectation

is high (for example for a user playing 3D games). On the

other hand, if the goal is to reach a predefined battery

lifetime, this could penalize the behavior of some

applications. This means that even if both are factors

affecting user experience, either one of the two can be the

constraint of power management, but not both at the same

time. A comprehensive management solution requires the

possibility of dynamically switching from one strategy to the

other, depending on the user’s main concern at the time:

application behavior or battery lifetime.

Recent publications mainly address the first problem

[1,3,4,20,21]. These approaches all require some description

of user-experience to adapt, which is provided either by the

user’s configuration, or with user experience modeling.

However, no unique model for user-experience depending

on application behavior is widely accepted so far, they all

suffer from inaccuracies due to the heterogeneity and high

complexity of user profiles [16]. To the best of our

knowledge, no work addresses the problem of maximizing

performance while ensuring that a minimum battery lifetime

for mobiles is met. Such scenario is better explained by a

motivational example in the next subsection

The power management of today’s mobile devices is

implemented at the OS level and regards mainly CPU and

GPU. These two are the most power consuming subsystems

[5]. Display is also very power hungry, but it should be

managed independently as it is critical to user-experience

[20]. Therefore, we do not consider it in this work. Other

subsystems either have no power management control (e.g.

antennas) or have proprietary kernel code (e.g. modem,

DSPs), which makes it difficult to modify and evaluate. For

example, the Android operating system, which is based on

the Linux kernel, has modules called Frequency Governors

to implement the power management policy for the CPU and

GPU [6]. The performance governor always sets maximum

frequency, while the powersave governor always sets

minimum frequency. Similarly, the conservative governor

allows for low power consumption, at the cost of potential

performance loss. Today’s standard governor, the

ondemand, scales frequency over time depending on CPU

(or GPU) utilization. Such approach has two main

limitations: (i) it is agnostic of which application is currently

running on the device and (ii) it does not account for battery

lifetime.

In this paper, we propose BLAST: Battery Lifetime-

constrained Adaptation with Selected Target. BLAST is a

novel power management framework for mobile devices,

which dynamically adapts to different applications while

ensuring a predefined (e.g. selected) battery lifetime. Our

contributions are summarized below:

1. We formulate an application and battery lifetime-aware

power management problem for mobiles.

2. We propose the concepts of Application-dependent

Power state (AP-state), battery discharging profile and

energy tank to determine power management decisions.

3. We develop BLAST: a lightweight, ready-to-use, high-

level and portable implementation on a real Android

smartphone, which does not require OS modifications

and thus can be easily extended to any mobile device.

4. The proposed implementation is in the user space and it

is compatible with any frequency governor in the kernel.

With a set of experiments conducted on real devices

executing common Android applications we demonstrate the

effectiveness of our strategy in guaranteeing the predefined

battery lifetime and compare against device native power

management. Also, we show that our strategy can still meets

user experience requirements with a selected target battery

lifetime extension of at least 25%. This claim is

demonstrated by testing the framework with real users. The

average rating of users is within 5% for a battery lifetime

improvement of 25%. The remaining of this paper is

organized as follows: Section 2 reports the related work,

Section 3 describes the management problem formulation

and framework implementation, and Section 4 shows our

experimental results. Finally, Section 5 concludes this paper.

1.1 Motivating Example
Assume that two users X and Y are leaving work to get

back home by train. They both usually use their smartphone

on the way home, but while user X enjoys playing 3D

videogames, user Y prefers to read emails or browse through

news websites. The train takes 1 hour to bring them home,

and during that period of time they absolutely want their

smartphone to not run out of battery, no matter what the

quality of application behavior is. Once home, they are both

going to put the device into charge.

Figure 1. Illustration of motivating example

One obvious solution would be to lower the operating

conditions, for example by setting the powersave or the

conservative governor. However, such approach presents

three downsides. First, it requires the user to be aware of

what a governor is and how it works, and to be able to install

and use an interface application to change it. Second, the use

of the powersave governor is likely to extend the lifetime of

the battery way beyond 1 hour, depending on the initial state

of charge. This is because it is not aware of battery energy.

As a result, the powersave governor may hurt application

behavior more than what is required to meet the constraint

on battery lifetime. Third, the powersave governor is not

aware of which application is executing. However, in the

scenario described, user Y (mail and news) is likely to

consume less energy than user X (3D games). Therefore, the

performance level required to meet the same target lifetime

is different for the two users.

Our solution, on the contrary, only requires the user to

set the desired minimum battery lifetime (1 hour in this

example), that is, the selected target. Then, the framework

automatically detects the battery state of charge and the

executing applications, and regulates energy consumption

thanks to the AP-states by adapting the maximum CPU and

GPU frequency. The result is that both user X and Y will

have a working smartphone for the next hour after leaving

work. The presented example is better shown in the

qualitative plots in Figure 1, which show the energy

consumed over time for user X and Y respectively when

using a powersave or conservative governor and when using

our proposed solution. We also highlight the user experience

achieved in the four cases (either good, average or poor).

Finally, note that the target lifetime for the proposed

solution should be selected in a defined range. This is better

clarified by Figure 2. The lower bound is represented by the

battery lifetime obtained with all cores active executing at

maximum frequency (e.g. with performance governor),

while the upper bound is given by a single core active

executing at minimum frequency (e.g. with powersave

governor).

Figure 2. Range for selected target

2. RELATED WORK
Power management is an extensively investigated area

of research, from server systems, to desktops and laptops, to

mobiles [7]. The characterizing aspect of mobile devices

with respect to other systems is the reduced form factor,

which limits battery size [5]. For this reason, researchers

spent many efforts in the last decade in power analysis,

modeling and management for mobiles.

Publications [1] and [5] analyze phone power

consumption and investigate the impact of different user

activities and different applications. Work in [1] also

demonstrates that CPU, GPU and screen are the most power

consuming subsystems in modern smartphones. Yoon et al.

propose Appscope, a tool for Android energy metering, and

characterize power consumption for different applications in

reference [8]. Paper [9] proposed a framework to estimate

power consumption of different applications from battery

power traces. These publications highlight that energy

consumption for mobiles is highly influenced by different

applications and that CPU and GPU are crucial in

determining battery lifetime.

For this reason, power models for mobile devices have

been proposed recently. Reference [10] develops a power

model based on user activity for an Android-based

smartphone, using regression techniques. Work in [11,12]

estimates power consumption through adaptive modeling

based on monitored performance activity, and integrate it in

the MPower app, which provides the user suggestions to

improve power efficiency. MPower collects measures on the

target device and transmit them to a server for power

estimation. Performing the estimation online would result in

performance overhead. In general power models may not be

practical for runtime power management, due to

computation overhead.

Recent work on power management for mobiles focuses

on user-experience determined by application behavior. For

doing this, some techniques allow the user to configure

personal preferences and application priority levels [13,14].

Other techniques, instead, are based on user-experience

models. The strategy in [4] increases CPU frequency in

response to user interaction, to minimize perceived delay.

Publication [1] presents a model for user typical activity

session duration, and use it to compare various power

management strategies. Work in [15] proposes a scheduling

algorithm for energy-based fair queuing, aiming at

optimizing activity and idle periods for user comfort. Such

techniques achieve better energy efficiency only if user’s

requirements are not too strong, as they target application

behavior. However, they do not give guarantees on battery

lifetime. Moreover, models for user experience may be

inaccurate, due to diversity of user profiles [16]. Our

technique does not require user experience models, as it

targets battery lifetime. Moreover, it only requires the user

to configure the desired battery lifetime. Also, the

implementation of such techniques requires modifying the

operating system, which may affect portability across

devices. Li et al. propose an intelligent and self-adaptive

scheme for mobile power management, called SmartCap

[21]. The objective of SmartCap is to automatically

configure the CPU frequency subject to user experience

requirements. The proposed approach is shown to

significantly outperform the standard ondemand governor.

Our work is fundamentally different as we try to maximize

performance subject to a battery lifetime constraint.

SmartCap, on the other hand, aims at minimizing power

consumption while meeting a user experience (e.g.

performance) constraint. As discussed in the introduction,

these two problems are complementary to each other. Also,

Smartcap focuses on CPU solely, while we include also GPU

frequency control in our implementation.

Other techniques for mobile power management are

developed for specific applications. Reference [17] presents

a joint Dynamic Voltage and Frequency Scaling (DVFS) for

CPU and GPU targeting 3D games. Work in [18] makes

Youtube more energy efficient by intelligently scheduling

download activities. Being specific to certain applications,

such techniques cannot be extended to full phone power

management. Instead, our technique is developed to be

compatible with any application.

A particular case is made for display power

management. As shown in reference [1], display brightness

plays a fundamental role in user experience; therefore it

should be managed independently from CPU, GPU and

other subsystems. For example, the authors of paper [19]

develop a technique to adapt voltage scaling of OLED

displays to video streaming while accounting for user

satisfaction. In this work we do not include display

management, but we show how it can be integrated.

To the best of our knowledge, our work is the first that

formulates a management problem for mobiles considering

battery lifetime as a constraint rather than as an objective

function, and implements a portable and lightweight

framework for managing power consumption on Android

devices executing real applications.

3. MANAGER FORMULATION AND

IMPLEMENTATION
In this section, we first show the assumptions of our

work and key observations. Based on that, we describe the

concepts of AP-states, battery discharging profile and

energy tank, and the management problem formulation.

Finally, we describe the solution strategy and the framework

implementation.

The target platform of our work is a battery-powered

mobile handheld device equipped with DVFS-enabled CPU

and GPU, controllable from the userspace. This is common

in modern devices, for which the operating system exposes

control capabilities at the sysfs interface, like setting the

maximum frequency. Both CPU and GPU have predefined

voltage/frequency operating points. The battery power

consumption and charge level are sampled from the sysfs

interface as well, without the need of external equipment. In

this work we use the ondemand governor, except when

clearly stated. However, note that the proposed solution is

implemented in the userspace thus it is compatible with any

frequency governor. This is better shown in the results

section

The key for formulating and solving a management

problem constrained by battery lifetime is having a model

for battery power consumption. Battery power at a generic

time � can be expressed as in Equation (1).

 �������� = 	∑ ������ (1)

Here �� is the power consumption of the ��
 subsystem.

Unfortunately, commodity mobile devices usually do not

have per-subsystem power information available at runtime.

Moreover, as mentioned in the introduction, not all

subsystems can be controlled at runtime to adjust power

consumption. Therefore we rewrite battery power as in

Equation (2).

 �������� = ����� + ������ (2)

Where �� represents the power contribution that can be

controlled at runtime and ��� is the contribution which

cannot be controlled. In this work, we assume �� to be a

function of CPU and GPU frequency, therefore �� =
�� 	��, ���� , �����. As for the non-controllable contribution

��� , this is heavily determined by the behavior of the

application running in foreground, which determines CPU

and GPU load, number of active CPUs, antennas usage, task

scheduling, and other factors in which we either have no

control or that are already managed by other entities in the

device. For example, in Android the number of active CPUs

is controlled by the userspace daemon called mpdecision.

Deriving a model for ����� at each time � leads to

inaccurate estimations for two reasons: (i) only battery

power consumption can be monitored from userspace in

commodity devices, therefore it is hard to isolate the two

components �� and ��� from observations, and (ii) the

sampling rate at the userspace should be at least 1 second to

avoid excessive overhead. What matters is not instantaneous

battery power consumption, but rather its average over time,

or consumed energy, shown in Equation (3), and

approximated in Equation (4). In this Equation, ���� is the

average battery power consumed over the time period �.

 	����� =	� ����������
�����
����

 (3)

 ����� = ���� ∗ � (4)

The fundamental observation we make is that once the

operating conditions are fixed (in our case ���� and ����),

then the average power consumption tends to stable values

over time for different applications. To motivate this fact, we

show a simple measurement of battery energy in Figure 3. In

this experiment, we measure the battery power consumption

on a Nexus 5 smartphone while executing Chrome

(browsing, scrolling & zooming) and Angrybirds for 150

seconds with CPU frequency fixed at 1.5Ghz and GPU at

390Mhz. Then we calculate the average power consumption

on time windows of different durations. In Figure 3(a) we

report the average power consumption over a time window

of different duration. We notice that the average is almost

the same for a given application, but changes for different

apps. Referring to Equation (2), in this case the difference

between the two applications is determined by ��� , as

frequency is constant in both cases. In Figure 3(b) we

measure the energy consumed over time. For doing this we

sample battery power consumption and battery capacity and

relate that to the total battery energy (derived from

datasheets). We observed that the energy consumed is

almost linear over time, with different slopes for different

applications. This is an example of the simple fact that

playing 3D games for one hour drains battery more than

browsing.

Figure 3. Power & energy consumption of Chrome &

Angrybirds running on Nexus 5

Based on these two observations, we associate a value

of average power consumption to each pair � = �����,�����,
independently for each application. Then, we create a table

for each app such as the one shown in Table I. In this table,

�"��#$�%& is called AP-state, and it is the average battery

power consumed by application � in state ' and ��% is the total

time spent by the device executing application � in state	'.
The values of �"�� and � are updated at runtime based on

the monitored operating conditions, battery power and

application executing in foreground. AP-states are stored in

memory and there is at most one list of AP-states for each

application.

Given this, the energy battery consumption can be

rewritten as in Equation (5).

 ����� = ∑ ∑ �"��#$�%&%� 	∗ ��% (5)

In other words, an application running on the device

Contributes an average value to the total energy

consumption. This depends on the execution frequency and

is weighted with the time spent executing it. At this point,

Equation (5) allows us to formulate the management

problem.

The management problem requires the specification of

a target battery lifetime ��
�(�) and of an energy budget

��*+�)� . Note that the energy budget could be simply set

equal to the remaining battery charge. The final goal of

management is to not consume more than energy ��*+�)�
before time ��
�(�) . The manager activates at a constant time

rate and we indicate with �, the current time step. The time

of manager activation is �- and the initial battery energy is

�.��(� . The problem can be formulated then as in Equation

(6).

 /01��,�2�		3. �.		�����567 < ���(�)�567 (6)

Where �,�2 is the frequency selected for the next time

interval and ���(�)�is the constraint on battery energy

consumption. The value of ���(�)� is calculated at each time

instant based on the concept of battery discharging profile.

This is a function of energy over time, starting from point

��-, �.��(�� and ending at point $��
�(�) , ��*+�)�&. For

practical reasons, in this work we assume the discharging

profile to be linear in time, therefore �9(:;, = <�, + �.��(� .
This is motivated by the result shown in Figure 3(b), for

which battery discharging can be well approximated by a

linear function. Note that the concept is general and different

discharging profile (e.g. piece-wise linear, quadratic, etc.)

may lead to different management behavior.

0

1000

2000

3000

Chrome Angrybirds

P
o

w
e

r
[m

W
]

(a) Chrome Vs. Angrybirds Power Consumption

60s 90s 120s 150s

0

100

200

300

400

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0E
e

n
rg

y
 C

o
n

su
m

e
d

 [
J]

time [sec]

(b) Chrome Vs. Angrybirds Energy Consumption

Chrome Angrybirds

Table 1. AP-states

FREQ. LIST POWER COUNTER

�- =>==?�@A� B?A

�2 =>==?�@C� B?C

… … …

�E =>==?�@F� B?F

If the device consumes less power than what is allocated

for using at a certain time instant �,, the energy left over is

added to the energy tank ����,. On the other hand, if it

consumes more power, the excess energy is subtracted from

����, .	Therefore, in the end the target energy is equal to:

 			���(�)�567 � �9(:;567 � ����,567 (7)

 To solve this management problem we leverage a

heuristic. Depending on which application � is currently

running, the heuristic selects the highest frequency �E and

checks whether the condition in Equation (6) is met for

�"��#��E�. If not, it selects �EG2 and checks again. If no valid

frequency is found for the current time instant, then the

manager selects �-. The heuristic is feasible given the limited

number of CPU and GPU predefined operating frequencies.

3.1 Framework Implementation
We implemented the management framework on a

Nexus 5 smartphone. This device has a Qualcomm

Snapdragon 800 chipset, with a quad-core Krait 400 CPU.

Its maximum battery capacity is 31,257J. The four cores

have a frequency range from 300Mhz to 2.26Ghz in 14 fixed

operating points, with ����7Hbeing the maximum frequency.

It also has an Adreno 330 GPU with frequency range from

200Mhz to 450Mhz, in 4 fixed operating points, being

����H 	the maximum. For simplicity, he CPU and GPU

frequency pairs adopted for our AP-states are associated

with the following rule:

�����7HI7�, ����H�,	�����JIK , ����L�,	�����MIH , ����7�, �����HI� , ������.
Figure 4 presents the block diagram of our

implementation.

The App Monitor is an independent program, which

periodically checks the executing processes and writes on

the file Foreground App the name of the application

currently executing in foreground.

The AP-states Monitor periodically samples the

operating conditions of the multicore platform (CPU and

GPU frequency) and the battery power with a rate of 1

second. Based on this and on the current foreground

application, it updates the values of AP-states and writes it

back to the file AP-states. If N��% is executing, the current

sampled power is ��*((and the current operating conditions

are equal to �,, then the O�
 AP-state of N��% is updated as

in equation (8).

 	
 �"��P��,� � 	�"��P��,� ∗ Q

 P5
 P5�2R �

�STUU
 P5�2 (8)

Also, the value of �%, is increased by 1.

The Power Controller loads the Target Battery

Lifetime and the Initial Energy Budget configured by the

user when starting execution. Then, it periodically applies

operating conditions (CPU and GPU frequency), by solving

the problem shown in Equation (6) based on the values of

energy tank, available energy (left from �.��(�) and

discharging profile. The activation rate of the power

controller is also 1 second.

Figure 4. Block Diagram of implemented framework

Since the framework is implemented in the userspace,

the minimum activation rate to avoid overhead is 1 second.

However, the activation rate of Frequency Governors in the

kernel space is much higher (20ms is the standard for the

ondemand governor [6]). Then, we must guarantee that our

Power Controller is compatible with any governor.

Therefore the output of the Power Controller is not a fixed

frequency value, but it is a maximum operating frequency

for all the four cores. This can be set by writing values to the

appropriate sysfs file. Consequently, we decided to configure

the AP-states Monitor so that it updates AP-states based on

the current maximum value of frequency among the 4 cores.

This choice guarantees that every time a certain maximum

frequency configuration �% is selected, the average

contribution to the total power consumption will not be

higher than �"��#��%�, which is exactly what we require to

meet a certain ��
�(�) .

The two programs that compose this implementation,

e.g. the App monitor and the AP-states Monitor/Power

Controller, are written in C and cross compiled with Android

NDK tools to run on ARM-based platforms. To run the

framework, it is sufficient to load the binaries of the two

programs in the device and execute them. No modification

to the operating system is required.

4. RESULTS
In this section, we describe the experimental results

obtained by measurements on the target platforms. To

perform comparisons on real applications, we wrote a

program that allows to record and replay display touch event

traces. In this way, comparisons are performed on the same

trace of events.

Figure 5. Standard energy consumption and battery stretch

For the first experiment, we recorded two traces on the

Nexus 5 from two popular Android applications: Chrome

and Angrybirds. We chose to show results for these two

applications because they are representative corner cases of

typical mobile usage: browsing and gaming [16]. In the first,

we are browsing through popular webpages. In the second

we are playing the game. The first two plots of Figure 5

report the discharging curves for the two traces when no

control is active. This allows us to fix an initial reference

��
�(�) equal to 400 seconds and energy budgets ��*+�)� of

respectively 750 Joules and 800 Joules for Chrome and

Angrybirds. Considering this we show how to configure the

control for Battery Stretch, that is, for a longer ��
�(�) . The

second two plots of Figure 5 show three cases of battery

stretch for the applications, respectively +12.5% (450s),

+25% (500s) and +37.5% (550s). Reported values are the

real energy consumed over time (bold green line) and the

energy discharging profile �9(:; (black dotted line). For

practical reasons, the x-axis only reports the final section of

the curves. We can notice that in all three cases, the total

final consumed energy is less or equal than the predefined

target, therefore the power management goal is met. The

only exception is the case of +37.5% battery stretch for

Chrome. In this case the final target exceeded. This means

that ��
�(�)for this case was set too long and the controller

cannot meet it even with constant minimum frequency set.

Moreover, a subjective evaluation suggested that while in

the case of +25% stretch the application behavior is still

satisfactory, in the +37.5% stretch both applications become

blurry.

We also conducted an experiment in which we asked 15

students from the university campus to check application

behavior under battery stretch. To illustrate how portable our

framework is, this study has been conducted instead on a

Qualcomm APQ8064 development tablet. We asked people

to play the popular game Temple Run [23] and to browse on

popular websites (CNN and BBC) for one minute under 0%,

25% and 50% battery stretch conditions respectively. In

order to avoid influencing their judgment, users were not

informed about the nature of the control and the goal of the

experiment. In addition, the battery stretch conditions are

applied in a random order. At the end, users were asked to

rate their experience with a number from 1 (bad) to 10

(good). Figure 6 reports the average value of scores for the

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F
ra

m
e

 p
e

r
S

e
co

n
d

time [sec]

Temple run (3D game)

0% 25% 50%

Figure 7. Frame per second (FPS) traces with different target lifetimes

two applications. What we observe is that there is very low

or no negative difference when the 25% stretch is applied,

while there is a more negative effect with 50% stretch. This

means that the user did not observe degradation in the quality

of their experience. Our conclusion is that the control can

still meet a satisfactory experience for the user when the

selected target battery lifetime is extended by 25%.

Figure 6. Quality of experience Rating

To further prove this point we refer to the fact that there

is a well known relation between Frames per Second (FPS)

and user experience in the case of gaming applications [22].

For this reason, we observe the behavior of FPS during the

execution of Temple Run in the three cases of 0%, 25% and

50% target extension in our Qualcomm tablet. FPS can be

monitored in Qualcomm devices thanks to a built-in feature

that enables the system to write values to logcat. Figure 7

reports the FPS traces for 30 seconds of execution. In the

case of 0% extension, the FPS is close to 60, which is the

maximum value allowed by Android, and represent the

highest quality of user experience. In case of 25% extension,

the FPS is around 50, which represent a lower, but still

acceptable user experience (as confirmed by results in Figure

6). Finally, for a 50% extension, the FPS drops even below

40, which starts to represent a source of discomfort for the

user. Note that these results match what already shown in

Figure 6.

To show more into details how the management policy

works, we report in Figure 8 the Nexus 5 execution

frequency of the 4 CPU cores and the maximum frequency

set by the controller for the case of +25% battery stretch in

200 seconds of the Angrybirds trace. Our controller does not

fix the frequency, but only limits the range of the underlying

frequency governor (black dotted line).

To show the tradeoff between ��
�(�) and performance,

we execute a set of experiments on popular Android

benchmarks on the Nexus 5: Antutu, Geekbench3, GFX and

Vellamo Browser. Antutu is a suite of benchmarks

comprising CPU, 2D and 3D evaluation. Geekbench3 is a

CPU evaluation tool which tests both single and multicore

performance (Gb3_single and Gb3_multi). GFX is a suite of

graphics benchmarks from which we selected t-rex

(GFX_trex). Finally Vellamo Browser is a benchmark

testing device performance while using Chrome. All these

benchmarks provide a final score which is an indicator of

performance quality. Figure 9 shows the scores obtained for

the presented benchmarks with varying values of ��
�(�)

(respectively at 15%, 25% and 50% extension), normalized

over the maximum score (which is obtained when the control

is not active).

From the results, we can notice that as battery lifetime

is extended, the score of the benchmark (e.g. the device

performance) decreases. In addition, we can notice that

different applications show different sensitivities, which

motivates further the choice of differentiating AP-states

based on applications.

Finally, in the next experiment we want to demonstrate

the compatibility of our framework with different kernel

Frequency Governors. For doing this we execute the

Vellamo Browser benchmark with a target time ��
�(�) of

300 seconds (corresponding to a 25% extension over the

7.32 7.29
6.57

6.93
6.57

4.64

0

2

4

6

8

10

0% 25% 50%

Q
u

a
li
ty

 o
f

e
xp

e
ri

e
n

ce

Lifetime extension

Quality of Experience Rating

Temple Run Browser

0

500

1000

1500

2000

2500

0 100 200

F
re

q
u

e
n

cy
 [

K
h

z]

Time [seconds]

CPU Operating Frequency

CPU0 CPU1 CPU2 CPU3 Max Freq

Figure 8. CPU operating frequency for Angrybirds +25% battery stretch

non-controlled scenario) and a budget ��*+�)� of 550 Joules.

In Figure 10 we show the curve of consumed energy in three

different cases, in which respectively are active the

ondemand, interactive and conservative governor.

Figure 9. Benchmark evaluation of battery lifetime and

performance tradeoff

This comparison shows that our controller is compatible

with different governors and in all cases the target on battery

lifetime is met. It also shows that in the case of Vellamo

benchmark the conservative governor shows a better energy

efficiency with respect to the other two governors, as it

achieves a higher score with a lower power consumption.

This can be justified assuming that for the conservative

governor, the Vellamo benchmark controllable power

component prevails over the non-controllable one.

Figure 10. Comparison of different frequency governors

5. CONCLUSION
In this work we presented BLAST: Battery Lifetime-

constrained Adaptation with Selected Target. Blast is the

first application-aware power management framework for

mobile devices which controls operating conditions in order

to meet a predefined battery lifetime. We also presented a

lightweight and portable implementation on a real Android

device, compatible with different Frequency Governors. The

experiments show that our solution is effective in

guaranteeing the predefined target battery lifetime and that

it still meets user experience requirements with a selected

battery lifetime extension set to 25%. The average rating of

real users is within 5% for a battery lifetime extension set to

25%.

6. ACKNOWLEDGEMENT
This work was sponsored in part by Samsung Research

America and NSF grant number 1218666.

7. REFERENCES
[1] Shye, A; Scholbrock, B.; Memik, G., "Into the wild: Studying

real user activity patterns to guide power optimizations for
mobile architectures," Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on , vol.,
no., pp.168,178, 12-16 Dec. 2009

[2] Ge Bai; Hansi Mou; Yinhong Hou; Yongqiang Lyu; Weikang
Yang, "Android Power Management and Analyses of Power
Consumption in an Android Smartphone," High Performance
Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing
(HPCC_EUC), 2013 IEEE 10th International Conference on ,
vol., no., pp.2347,2353, 13-15 Nov. 2013

[3] Geunsik Lim; Changwoo Min; Dong Hyun Kang; Young Ik
Eom, "User-aware power management for mobile
devices," Consumer Electronics (GCCE), 2013 IEEE 2nd
Global Conference on , vol., no., pp.151,152, 1-4 Oct. 2013

[4] Sangwook Kim; Hwanju Kim; Jeaho Hwang; Joonwon Lee;
Euiseong Seo, "An event-driven power management scheme
for mobile consumer electronics," Consumer Electronics,
IEEE Transactions on, vol.59, no.1, pp.259,266, February
2013

[5] Aaron Carroll and Gernot Heiser. 2010. An analysis of power
consumption in a smartphone. In Proceedings of the 2010
USENIX conference on USENIX annual technical conference
(USENIXATC'10). USENIX Association, Berkeley, CA,
USA, 21-21.

[6] Pallipadi, V. & Starikovskiy, A. (2006), The ondemand
governor: past, present and future, in 'Proceedings of Linux
Symposium, vol. 2, pp. 223-238' .

[7] Benini, L.; Bogliolo, A; De Micheli, G., "A survey of design
techniques for system-level dynamic power management,"
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on , vol.8, no.3, pp.299,316, June 2000

[8] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo
Kang, and Hojung Cha. 2012. AppScope: application energy
metering framework for android smartphones using kernel
activity monitoring. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference (USENIX
ATC'12). USENIX Association, Berkeley, CA, USA, 36-36.

[9] Chengke Wang; Fengrun Yan; Yao Guo; Xiangqun Chen,
"Power estimation for mobile applications with profile-driven
battery traces," Low Power Electronics and Design (ISLPED),
2013 IEEE International Symposium on , vol., no.,
pp.120,125, 4-6 Sept. 2013

[10] Alawnah, S.; Sagahyroon, A, "Modeling smartphones
power," EUROCON, 2013 IEEE , vol., no., pp.369,374, 1-4
July 2013

[11] Bonetto, A; Ferroni, M.; Matteo, D.; Nacci, AA;
Mazzucchelli, M.; Sciuto, D.; Santambrogio, M.D., "MPower:
Towards an Adaptive Power Management System for Mobile

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 s

co
re

Benchmark

Lifetime-Performance Tradeoff

0

15%

25%

50%

450

460

470

480

490

500

510

520

530

540

550

250 260 270 280 290 300

E
n

e
rg

y
 C

o
n

su
m

e
d

 [
Jo

u
le

s]

Time [seconds]

Governors Comparison

Ondemand Interactive Conservative

VELLAMO FINAL SCORES

- ONDEMAND: 1837

- INTERACTIVE: 2009

- CONSERVATIVE: 2547

��
�(�) � 3003 (+25%) ��*+�)� � 550Y

Devices," Computational Science and Engineering (CSE),
2012 IEEE 15th International Conference on , vol., no.,
pp.318,325, 5-7 Dec. 2012

[12] A. A. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola, D.
Sciuto, and M. D. Santambrogio. 2013. Adaptive and Flexible
Smartphone Power Modeling. Mob. Netw. Appl. 18, 5
(October 2013), 600-609.

[13] Nachi K. Nithi and Adriaan J. de Lind van Wijngaarden. 2011.
Smart power management for mobile handsets. Bell Lab.
Tech. J. 15, 4 (March 2011), 149-168.

[14] Marcelo Martins and Rodrigo Fonseca. 2013. Application
modes: a narrow interface for end-user power management in
mobile devices. In Proceedings of the 14th Workshop on
Mobile Computing Systems and Applications (HotMobile
'13). ACM, New York, NY, USA.

[15] Wei, J.; Juarez, E.; Garrido, M.J.; Pescador, F., "Maximizing
the user experience with energy-based fair sharing in battery
limited mobile systems," Consumer Electronics, IEEE
Transactions on , vol.59, no.3, pp.690,698, August 2013

[16] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios
Lymberopoulos, Ramesh Govindan, and Deborah Estrin.
2010. Diversity in smartphone usage. In Proceedings of the
8th international conference on Mobile systems, applications,
and services (MobiSys '10). ACM, New York, NY, USA, 179-
194.

[17] Pathania, Anuj; Qing Jiao; Prakash, Alok; Mitra, Tulika,
"Integrated CPU-GPU power management for 3D mobile
games," Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE , vol., no., pp.1,6, 1-5 June 2014

[18] Xin Li, Mian Dong, Zhan Ma, and Felix C.A. Fernandes.
2012. GreenTube: power optimization for mobile
videostreaming via dynamic cache management. In
Proceedings of the 20th ACM international conference on
Multimedia (MM '12). ACM, New York, USA, 279-288.

[19] Yiran Chen; Xiang Chen; Mengying Zhao; Xue, C.J., "Mobile
devices user — The subscriber and also the publisher of real-
time OLED display power management plan," Computer-
Aided Design (ICCAD), 2012 IEEE/ACM International
Conference on , vol., no., pp.687,690, 5-8 Nov. 2012

[20] Mercati P, Hanumaiah V., Kulkarni J., Bloch S. and Rosing T.
“User-centric Joint Power and Thermal Management for
Smartphones” MOBICASE 2014, IEEE international
conference, Austin, TX, USA, Nov 2014.

[21] Li, Xueliang; Yan, Guihai; Han, Yinhe; Li, Xiaowei,
"SmartCap: User experience-oriented power adaptation for
smartphone's application processor," Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2013 , vol.,
no., pp.57,60, 18-22 March 2013

[22] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra.
2014. Integrated CPU-GPU Power Management for 3D
Mobile Games. In Proceedings of the 51st Annual Design
Automation Conference (DAC '14). ACM, New York, NY,
USA, , Article 40 , 6 pages.

[23] https://play.google.com/store/apps/details?id=com.imangi.te
mplerun&

