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ABSTRACT 

Mobile devices today contain many power hungry 

subsystems and execute different applications. Standard 

power management is not aware of the desired battery 

lifetime and has no visibility into which applications are 

executing. However, power consumption is strongly 

dependent on which applications are executed. In this work, 

we propose a novel power characterization strategy for 

mobile devices called application-dependent power states 

(AP-states). Based on that, we formulate a management 

problem to improve performance under battery lifetime 

constraints, and we implement the management framework 

on a real Android device. We call our framework BLAST: 

Battery Lifetime-constrained Adaptation with Selected 

Target. The goal of such framework is to maximize 

performance while letting the device battery to last at least 

for a certain required lifetime, and only requires the user to 

select the desired target lifetime. The implementation does 

not require OS modifications and can be ported and installed 

to any Android device. We experimentally verify that our 

strategy can still meets user experience requirements with a 

selected target battery lifetime extension of at least 25%.   
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1. INTRODUCTION 
Mobile devices such as smartphones and tablets contain 

a variety of power hungry subsystems (CPU, GPU, camera, 

display, antennas, etc.) and execute applications with 

different requirements: from browsing, to multimedia, to 

gaming and many more. Power consumption heavily 

depends on the application running in foreground (e.g. the 

one showing on the display), as it mostly determines the 

usage of different parts of the system. Also, it is the 

application which attracts user’s attention, thus influencing 

user experience the most. Such intense activity contributes 

at making the battery lifetime as short as few hours for most 

devices [1,2]. Therefore, power management to trade battery 

lifetime and user experience is a primary requirement for 

mobiles. 

In the last decade, the target of mobile designers and 

developers has shifted from high performance to high user-

experience. The concept of user-experience depends on a 

number of variables, from device specifications and 

performance to user personal profile and level of attention. 

However, we can define it as the scenario in which device 

behavior meets user expectations. Therefore, in the case of 

mobiles we can identify two main factors determining user-

experience: (i) application behavior and (ii) battery 

lifetime. The first refers to the case in which the user is 

satisfied with application execution (for example, a Youtube 

video that reproduces smoothly or a 3D game with high 

frames per second). The second indicates the case in which 
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the achieved battery lifetime is as long as the one expected 

by the user. The two targets are contrasting, as there is a 

tradeoff between them: if power is optimized for providing 

a minimum required level of user experience, this could 

mean trading on battery lifetime, if the level of expectation 

is high (for example for a user playing 3D games). On the 

other hand, if the goal is to reach a predefined battery 

lifetime, this could penalize the behavior of some 

applications. This means that even if both are factors 

affecting user experience, either one of the two can be the 

constraint of power management, but not both at the same 

time. A comprehensive management solution requires the 

possibility of dynamically switching from one strategy to the 

other, depending on the user’s main concern at the time: 

application behavior or battery lifetime. 

Recent publications mainly address the first problem 

[1,3,4,20,21]. These approaches all require some description 

of user-experience to adapt, which is provided either by the 

user’s configuration, or with user experience modeling. 

However, no unique model for user-experience depending 

on application behavior is widely accepted so far, they all 

suffer from inaccuracies due to the heterogeneity and high 

complexity of user profiles [16]. To the best of our 

knowledge, no work addresses the problem of maximizing 

performance while ensuring that a minimum battery lifetime 

for mobiles is met. Such scenario is better explained by a 

motivational example in the next subsection 

The power management of today’s mobile devices is 

implemented at the OS level and regards mainly CPU and 

GPU. These two are the most power consuming subsystems 

[5]. Display is also very power hungry, but it should be 

managed independently as it is critical to user-experience 

[20]. Therefore, we do not consider it in this work. Other 

subsystems either have no power management control (e.g. 

antennas) or have proprietary kernel code (e.g. modem, 

DSPs), which makes it difficult to modify and evaluate. For 

example, the Android operating system, which is based on 

the Linux kernel, has modules called Frequency Governors 

to implement the power management policy for the CPU and 

GPU [6]. The performance governor always sets maximum 

frequency, while the powersave governor always sets 

minimum frequency. Similarly, the conservative governor 

allows for low power consumption, at the cost of potential 

performance loss. Today’s standard governor, the 

ondemand, scales frequency over time depending on CPU 

(or GPU) utilization. Such approach has two main 

limitations: (i) it is agnostic of which application is currently 

running on the device and (ii) it does not account for battery 

lifetime. 

In this paper, we propose BLAST: Battery Lifetime-

constrained Adaptation with Selected Target. BLAST is a 

novel power management framework for mobile devices, 

which dynamically adapts to different applications while 

ensuring a predefined (e.g. selected) battery lifetime. Our 

contributions are summarized below: 

1. We formulate an application and battery lifetime-aware 

power management problem for mobiles. 

2. We propose the concepts of Application-dependent 

Power state (AP-state), battery discharging profile and 

energy tank to determine power management decisions. 

3. We develop BLAST: a lightweight, ready-to-use, high-

level and portable implementation on a real Android 

smartphone, which does not require OS modifications 

and thus can be easily extended to any mobile device. 

4. The proposed implementation is in the user space and it 

is compatible with any frequency governor in the kernel. 

With a set of experiments conducted on real devices 

executing common Android applications we demonstrate the 

effectiveness of our strategy in guaranteeing the predefined 

battery lifetime and compare against device native power 

management. Also, we show that our strategy can still meets 

user experience requirements with a selected target battery 

lifetime extension of at least 25%. This claim is 

demonstrated by testing the framework with real users. The 

average rating of users is within 5% for a battery lifetime 

improvement of 25%. The remaining of this paper is 

organized as follows: Section 2 reports the related work, 

Section 3 describes the management problem formulation 

and framework implementation, and Section 4 shows our 

experimental results. Finally, Section 5 concludes this paper. 

 

1.1 Motivating Example 
Assume that two users X and Y are leaving work to get 

back home by train. They both usually use their smartphone 

on the way home, but while user X enjoys playing 3D 

videogames, user Y prefers to read emails or browse through 

news websites. The train takes 1 hour to bring them home, 

and during that period of time they absolutely want their 

smartphone to not run out of battery, no matter what the 

quality of application behavior is. Once home, they are both 

going to put the device into charge.  

 

 

Figure 1. Illustration of motivating example 

 

One obvious solution would be to lower the operating 

conditions, for example by setting the powersave or the 

conservative governor. However, such approach presents 



three downsides. First, it requires the user to be aware of 

what a governor is and how it works, and to be able to install 

and use an interface application to change it. Second, the use 

of the powersave governor is likely to extend the lifetime of 

the battery way beyond 1 hour, depending on the initial state 

of charge. This is because it is not aware of battery energy. 

As a result, the powersave governor may hurt application 

behavior more than what is required to meet the constraint 

on battery lifetime. Third, the powersave governor is not 

aware of which application is executing. However, in the 

scenario described, user Y (mail and news) is likely to 

consume less energy than user X (3D games). Therefore, the 

performance level required to meet the same target lifetime 

is different for the two users. 

Our solution, on the contrary, only requires the user to 

set the desired minimum battery lifetime (1 hour in this 

example), that is, the selected target. Then, the framework 

automatically detects the battery state of charge and the 

executing applications, and regulates energy consumption 

thanks to the AP-states by adapting the maximum CPU and 

GPU frequency. The result is that both user X and Y will 

have a working smartphone for the next hour after leaving 

work. The presented example is better shown in the 

qualitative plots in Figure 1, which show the energy 

consumed over time for user X and Y respectively when 

using a powersave or conservative governor and when using 

our proposed solution. We also highlight the user experience 

achieved in the four cases (either good, average or poor). 

Finally, note that the target lifetime for the proposed 

solution should be selected in a defined range. This is better 

clarified by Figure 2. The lower bound is represented by the 

battery lifetime obtained with all cores active executing at 

maximum frequency (e.g. with performance governor), 

while the upper bound is given by a single core active 

executing at minimum frequency (e.g. with powersave 

governor). 

 

Figure 2. Range for selected target 

 

2. RELATED WORK 
Power management is an extensively investigated area 

of research, from server systems, to desktops and laptops, to 

mobiles [7]. The characterizing aspect of mobile devices 

with respect to other systems is the reduced form factor, 

which limits battery size [5]. For this reason, researchers 

spent many efforts in the last decade in power analysis, 

modeling and management for mobiles.  

Publications [1] and [5] analyze phone power 

consumption and investigate the impact of different user 

activities and different applications. Work in [1] also 

demonstrates that CPU, GPU and screen are the most power 

consuming subsystems in modern smartphones. Yoon et al. 

propose Appscope, a tool for Android energy metering, and 

characterize power consumption for different applications in 

reference [8]. Paper [9] proposed a framework to estimate 

power consumption of different applications from battery 

power traces. These publications highlight that energy 

consumption for mobiles is highly influenced by different 

applications and that CPU and GPU are crucial in 

determining battery lifetime. 

For this reason, power models for mobile devices have 

been proposed recently. Reference [10] develops a power 

model based on user activity for an Android-based 

smartphone, using regression techniques. Work in [11,12] 

estimates power consumption through adaptive modeling 

based on monitored performance activity, and integrate it in 

the MPower app, which provides the user suggestions to 

improve power efficiency. MPower collects measures on the 

target device and transmit them to a server for power 

estimation. Performing the estimation online would result in 

performance overhead. In general power models may not be 

practical for runtime power management, due to 

computation overhead. 

Recent work on power management for mobiles focuses 

on user-experience determined by application behavior. For 

doing this, some techniques allow the user to configure 

personal preferences and application priority levels [13,14]. 

Other techniques, instead, are based on user-experience 

models. The strategy in [4] increases CPU frequency in 

response to user interaction, to minimize perceived delay. 

Publication [1] presents a model for user typical activity 

session duration, and use it to compare various power 

management strategies. Work in [15] proposes a scheduling 

algorithm for energy-based fair queuing, aiming at 

optimizing activity and idle periods for user comfort. Such 

techniques achieve better energy efficiency only if user’s 

requirements are not too strong, as they target application 

behavior. However, they do not give guarantees on battery 

lifetime. Moreover, models for user experience may be 

inaccurate, due to diversity of user profiles [16]. Our 

technique does not require user experience models, as it 

targets battery lifetime. Moreover, it only requires the user 

to configure the desired battery lifetime. Also, the 

implementation of such techniques requires modifying the 

operating system, which may affect portability across 



devices. Li et al. propose an intelligent and self-adaptive 

scheme for mobile power management, called SmartCap 

[21]. The objective of SmartCap is to automatically 

configure the CPU frequency subject to user experience 

requirements. The proposed approach is shown to 

significantly outperform the standard ondemand governor. 

Our work is fundamentally different as we try to maximize 

performance subject to a battery lifetime constraint. 

SmartCap, on the other hand, aims at minimizing power 

consumption while meeting a user experience (e.g. 

performance) constraint. As discussed in the introduction, 

these two problems are complementary to each other. Also, 

Smartcap focuses on CPU solely, while we include also GPU 

frequency control in our implementation. 

Other techniques for mobile power management are 

developed for specific applications. Reference [17] presents 

a joint Dynamic Voltage and Frequency Scaling (DVFS) for 

CPU and GPU targeting 3D games.  Work in [18] makes 

Youtube more energy efficient by intelligently scheduling 

download activities. Being specific to certain applications, 

such techniques cannot be extended to full phone power 

management. Instead, our technique is developed to be 

compatible with any application. 

A particular case is made for display power 

management. As shown in reference [1], display brightness 

plays a fundamental role in user experience; therefore it 

should be managed independently from CPU, GPU and 

other subsystems. For example, the authors of paper [19] 

develop a technique to adapt voltage scaling of OLED 

displays to video streaming while accounting for user 

satisfaction. In this work we do not include display 

management, but we show how it can be integrated. 

To the best of our knowledge, our work is the first that 

formulates a management problem for mobiles considering 

battery lifetime as a constraint rather than as an objective 

function, and implements a portable and lightweight 

framework for managing power consumption on Android 

devices executing real applications. 

 

3. MANAGER FORMULATION AND 

IMPLEMENTATION 
In this section, we first show the assumptions of our 

work and key observations. Based on that, we describe the 

concepts of AP-states, battery discharging profile and 

energy tank, and the management problem formulation. 

Finally, we describe the solution strategy and the framework 

implementation. 

The target platform of our work is a battery-powered 

mobile handheld device equipped with DVFS-enabled CPU 

and GPU, controllable from the userspace. This is common 

in modern devices, for which the operating system exposes 

control capabilities at the sysfs interface, like setting the 

maximum frequency. Both CPU and GPU have predefined 

voltage/frequency operating points. The battery power 

consumption and charge level are sampled from the sysfs 

interface as well, without the need of external equipment. In 

this work we use the ondemand governor, except when 

clearly stated. However, note that the proposed solution is 

implemented in the userspace thus it is compatible with any 

frequency governor. This is better shown in the results 

section  

The key for formulating and solving a management 

problem constrained by battery lifetime is having a model 

for battery power consumption. Battery power at a generic 

time � can be expressed as in Equation (1). 

 

                       �������� = 	∑ ������                            (1) 

 

Here ��  is the power consumption of the ��
 subsystem. 

Unfortunately, commodity mobile devices usually do not 

have per-subsystem power information available at runtime. 

Moreover, as mentioned in the introduction, not all 

subsystems can be controlled at runtime to adjust power 

consumption. Therefore we rewrite battery power as in 

Equation (2). 

 

                         �������� = ����� + ������                     (2) 

 

Where �� represents the power contribution that can be 

controlled at runtime and ���  is the contribution which 

cannot be controlled. In this work, we assume �� to be a 

function of CPU and GPU frequency, therefore �� =
�� 	��, ���� , �����. As for the non-controllable contribution 

��� , this is heavily determined by the behavior of the 

application running in foreground, which determines CPU 

and GPU load, number of active CPUs, antennas usage, task 

scheduling, and other factors in which we either have no 

control or that are already managed by other entities in the 

device. For example, in Android the number of active CPUs 

is controlled by the userspace daemon called mpdecision. 

Deriving a model for ����� at each time � leads to 

inaccurate estimations for two reasons: (i) only battery 

power consumption can be monitored from userspace in 

commodity devices, therefore it is hard to isolate the two 

components ��  and ���  from observations, and (ii) the 

sampling rate at the userspace should be at least 1 second to 

avoid excessive overhead. What matters is not instantaneous 

battery power consumption, but rather its average over time, 

or consumed energy, shown in Equation (3), and 

approximated in Equation (4). In this Equation, ���� is the 

average battery power consumed over the time period �. 

 

                  	����� =	� ����������
����� 
����

                          (3) 

                              ����� = ���� ∗ �                                 (4) 

 



The fundamental observation we make is that once the 

operating conditions are fixed (in our case ����  and ����), 

then the average power consumption tends to stable values 

over time for different applications. To motivate this fact, we 

show a simple measurement of battery energy in Figure 3. In 

this experiment, we measure the battery power consumption 

on a Nexus 5 smartphone while executing Chrome 

(browsing, scrolling & zooming) and Angrybirds for 150 

seconds with CPU frequency fixed at 1.5Ghz and GPU at 

390Mhz. Then we calculate the average power consumption 

on time windows of different durations. In Figure 3(a) we 

report the average power consumption over a time window 

of different duration. We notice that the average is almost 

the same for a given application, but changes for different 

apps. Referring to Equation (2), in this case the difference 

between the two applications is determined by ��� , as 

frequency is constant in both cases. In Figure 3(b) we 

measure the energy consumed over time. For doing this we 

sample battery power consumption and battery capacity and 

relate that to the total battery energy (derived from 

datasheets). We observed that the energy consumed is 

almost linear over time, with different slopes for different 

applications. This is an example of the simple fact that 

playing 3D games for one hour drains battery more than 

browsing. 

 

 

Figure 3. Power & energy consumption of Chrome & 

Angrybirds running on Nexus 5 

 

Based on these two observations, we associate a value 

of average power consumption to each pair � = �����,�����, 
independently for each application. Then, we create a table 

for each app such as the one shown in Table I. In this table, 

�"��#$�%& is called AP-state, and it is the average battery 

power consumed by application � in state ' and ��%  is the total 

time spent by the device executing application � in state	'. 
The values of �"��  and � are updated at runtime based on 

the monitored operating conditions, battery power and 

application executing in foreground. AP-states are stored in 

memory and there is at most one list of AP-states for each 

application. 

Given this, the energy battery consumption can be 

rewritten as in Equation (5). 

 

                    ����� = ∑ ∑ �"��#$�%&%� 	∗ ��%                   (5) 

 

In other words, an application running on the device 

Contributes an average value to the total energy 

consumption. This depends on the execution frequency and 

is weighted with the time spent executing it. At this point, 

Equation (5) allows us to formulate the management 

problem. 

The management problem requires the specification of 

a target battery lifetime ��
�(�)  and of an energy budget 

��*+�)� . Note that the energy budget could be simply set 

equal to the remaining battery charge. The final goal of 

management is to not consume more than energy ��*+�)�  
before time ��
�(�) . The manager activates at a constant time 

rate and we indicate with �, the current time step. The time 

of manager activation is �- and the initial battery energy is 

�.��(� . The problem can be formulated then as in Equation 

(6). 

 

              /01��,�2�		3. �.		�����567 < ���(�)�567                   (6) 

 

Where �,�2 is the frequency selected for the next time 

interval and ���(�)�is the constraint on battery energy 

consumption. The value of ���(�)� is calculated at each time 

instant based on the concept of battery discharging profile. 

This is a function of energy over time, starting from point 

��-, �.��(�� and ending at point $��
�(�) , ��*+�)�&. For 

practical reasons, in this work we assume the discharging 

profile to be linear in time, therefore �9(:;, = <�, + �.��(� . 
This is motivated by the result shown in Figure 3(b), for 

which battery discharging can be well approximated by a 

linear function. Note that the concept is general and different 

discharging profile (e.g. piece-wise linear, quadratic, etc.) 

may lead to different management behavior. 
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Table 1. AP-states 

FREQ. LIST POWER COUNTER 

�- =>==?�@A� B?A 

�2 =>==?�@C� B?C 

… … … 

�E =>==?�@F� B?F 

 

If the device consumes less power than what is allocated 

for using at a certain time instant �,, the energy left over is 

added to the energy tank ����,. On the other hand, if it 

consumes more power, the excess energy is subtracted from 

����, .	Therefore, in the end the target energy is equal to: 

 

          			���(�)�567 � �9(:;567 � ����,567                        (7) 

 

 To solve this management problem we leverage a 

heuristic. Depending on which application � is currently 

running, the heuristic selects the highest frequency �E and 

checks whether the condition in Equation (6) is met for 

�"��#��E�. If not, it selects �EG2 and checks again. If no valid 

frequency is found for the current time instant, then the 

manager selects �-. The heuristic is feasible given the limited 

number of CPU and GPU predefined operating frequencies. 

3.1 Framework Implementation 
We implemented the management framework on a 

Nexus 5 smartphone. This device has a Qualcomm 

Snapdragon 800 chipset, with a quad-core Krait 400 CPU. 

Its maximum battery capacity is 31,257J. The four cores 

have a frequency range from 300Mhz to 2.26Ghz in 14 fixed 

operating points, with ����7Hbeing the maximum frequency. 

It also has an Adreno 330 GPU with frequency range from 

200Mhz to 450Mhz, in 4 fixed operating points, being 

����H 	the maximum. For simplicity, he CPU and GPU 

frequency pairs adopted for our AP-states are associated 

with the following rule: 

�����7HI7�, ����H�,	�����JIK , ����L�,	�����MIH , ����7�, �����HI� , ������.  
Figure 4 presents the block diagram of our 

implementation. 

The App Monitor is an independent program, which 

periodically checks the executing processes and writes on 

the file Foreground App the name of the application 

currently executing in foreground.  

The AP-states Monitor periodically samples the 

operating conditions of the multicore platform (CPU and 

GPU frequency) and the battery power with a rate of 1 

second. Based on this and on the current foreground 

application, it updates the values of AP-states and writes it 

back to the file AP-states. If N��%   is executing, the current 

sampled power is ��*((  and the current operating conditions 

are equal to �,, then the O�
 AP-state of N��%  is updated as 

in equation (8).  

 	
                 �"��P��,� � 	�"��P��,� ∗ Q

 P5
 P5�2R �

�STUU
 P5�2               (8) 

 

Also, the value of �%, is increased by 1. 

The Power Controller loads the Target Battery 

Lifetime and the Initial Energy Budget configured by the 

user when starting execution. Then, it periodically applies 

operating conditions (CPU and GPU frequency), by solving 

the problem shown in Equation (6) based on the values of 

energy tank, available energy (left from �.��(�) and 

discharging profile. The activation rate of the power 

controller is also 1 second. 

 

Figure 4. Block Diagram of implemented framework 

 

Since the framework is implemented in the userspace, 

the minimum activation rate to avoid overhead is 1 second. 

However, the activation rate of Frequency Governors in the 

kernel space is much higher (20ms is the standard for the 

ondemand governor [6]). Then, we must guarantee that our 

Power Controller is compatible with any governor. 

Therefore the output of the Power Controller is not a fixed 

frequency value, but it is a maximum operating frequency 

for all the four cores. This can be set by writing values to the 

appropriate sysfs file. Consequently, we decided to configure 

the AP-states Monitor so that it updates AP-states based on 

the current maximum value of frequency among the 4 cores. 

This choice guarantees that every time a certain maximum 

frequency configuration �% is selected, the average 

contribution to the total power consumption will not be 

higher than �"��#��%�, which is exactly what we require to 

meet a certain ��
�(�) .  



The two programs that compose this implementation, 

e.g. the App monitor and the AP-states Monitor/Power 

Controller, are written in C and cross compiled with Android 

NDK tools to run on ARM-based platforms. To run the 

framework, it is sufficient to load the binaries of the two 

programs in the device and execute them. No modification 

to the operating system is required.  

  

4. RESULTS 
In this section, we describe the experimental results 

obtained by measurements on the target platforms.  To 

perform comparisons on real applications, we wrote a 

program that allows to record and replay display touch event 

traces. In this way, comparisons are performed on the same 

trace of events.  

 

 

Figure 5. Standard energy consumption and battery stretch  

 

For the first experiment, we recorded two traces on the 

Nexus 5 from two popular Android applications: Chrome 

and Angrybirds. We chose to show results for these two 

applications because they are representative corner cases of 

typical mobile usage: browsing and gaming [16]. In the first, 

we are browsing through popular webpages. In the second 

we are playing the game. The first two plots of Figure 5 

report the discharging curves for the two traces when no 

control is active. This allows us to fix an initial reference 

��
�(�)  equal to 400 seconds and energy budgets ��*+�)�  of 

respectively 750 Joules and 800 Joules for Chrome and 

Angrybirds.  Considering this we show how to configure the 

control for Battery Stretch, that is, for a longer ��
�(�) . The 

second two plots of Figure 5 show three cases of battery 

stretch for the applications, respectively +12.5% (450s), 

+25% (500s) and +37.5% (550s). Reported values are the 

real energy consumed over time (bold green line) and the 

energy discharging profile �9(:;  (black dotted line). For 

practical reasons, the x-axis only reports the final section of 

the curves. We can notice that in all three cases, the total 

final consumed energy is less or equal than the predefined 

target, therefore the power management goal is met. The 

only exception is the case of +37.5% battery stretch for 

Chrome. In this case the final target exceeded. This means 

that ��
�(�)for this case was set too long and the controller 

cannot meet it even with constant minimum frequency set. 

Moreover, a subjective evaluation suggested that while in 

the case of +25% stretch the application behavior is still 

satisfactory, in the +37.5% stretch both applications become 

blurry.  

We also conducted an experiment in which we asked 15 

students from the university campus to check application 

behavior under battery stretch. To illustrate how portable our 

framework is, this study has been conducted instead on a 

Qualcomm APQ8064 development tablet. We asked people 

to play the popular game Temple Run [23] and to browse on 

popular websites (CNN and BBC) for one minute under 0%, 

25% and 50% battery stretch conditions respectively. In 

order to avoid influencing their judgment, users were not 

informed about the nature of the control and the goal of the 

experiment. In addition, the battery stretch conditions are 

applied in a random order. At the end, users were asked to 

rate their experience with a number from 1 (bad) to 10 

(good). Figure 6 reports the average value of scores for the 
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two applications. What we observe is that there is very low 

or no negative difference when the 25% stretch is applied, 

while there is a more negative effect with 50% stretch. This 

means that the user did not observe degradation in the quality 

of their experience. Our conclusion is that the control can 

still meet a satisfactory experience for the user when the 

selected target battery lifetime is extended by 25%. 

 

 

Figure 6. Quality of experience Rating 

 

To further prove this point we refer to the fact that there 

is a well known relation between Frames per Second (FPS) 

and user experience in the case of gaming applications [22]. 

For this reason, we observe the behavior of FPS during the 

execution of Temple Run in the three cases of 0%, 25% and 

50% target extension in our Qualcomm tablet. FPS can be 

monitored in Qualcomm devices thanks to a built-in feature 

that enables the system to write values to logcat. Figure 7 

reports the FPS traces for 30 seconds of execution. In the 

case of 0% extension, the FPS is close to 60, which is the 

maximum value allowed by Android, and represent the 

highest quality of user experience. In case of 25% extension, 

the FPS is around 50, which represent a lower, but still 

acceptable user experience (as confirmed by results in Figure 

6). Finally, for a 50% extension, the FPS drops even below 

40, which starts to represent a source of discomfort for the 

user. Note that these results match what already shown in 

Figure 6. 

To show more into details how the management policy 

works, we report in Figure 8 the Nexus 5 execution 

frequency of the 4 CPU cores and the maximum frequency 

set by the controller for the case of +25% battery stretch in 

200 seconds of the Angrybirds trace. Our controller does not 

fix the frequency, but only limits the range of the underlying 

frequency governor (black dotted line). 

To show the tradeoff between ��
�(�)  and performance, 

we execute a set of experiments on popular Android 

benchmarks on the Nexus 5: Antutu, Geekbench3, GFX and 

Vellamo Browser. Antutu is a suite of benchmarks 

comprising CPU, 2D and 3D evaluation. Geekbench3 is a 

CPU evaluation tool which tests both single and multicore 

performance (Gb3_single and Gb3_multi). GFX is a suite of 

graphics benchmarks from which we selected t-rex 

(GFX_trex). Finally Vellamo Browser is a benchmark 

testing device performance while using Chrome. All these 

benchmarks provide a final score which is an indicator of 

performance quality. Figure 9 shows the scores obtained for 

the presented benchmarks with varying values of ��
�(�)  

(respectively at 15%, 25% and 50% extension), normalized 

over the maximum score (which is obtained when the control 

is not active).  

From the results, we can notice that as battery lifetime 

is extended, the score of the benchmark (e.g. the device 

performance) decreases. In addition, we can notice that 

different applications show different sensitivities, which 

motivates further the choice of differentiating AP-states 

based on applications. 

Finally, in the next experiment we want to demonstrate 

the compatibility of our framework with different kernel 

Frequency Governors. For doing this we execute the 

Vellamo Browser benchmark with a target time ��
�(�)  of 

300 seconds (corresponding to a 25% extension over the 
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non-controlled scenario) and a budget ��*+�)�  of 550 Joules. 

In Figure 10 we show the curve of consumed energy in three 

different cases, in which respectively are active the 

ondemand, interactive and conservative governor. 

 

 

Figure 9. Benchmark evaluation of battery lifetime and 

performance tradeoff 

 

This comparison shows that our controller is compatible 

with different governors and in all cases the target on battery 

lifetime is met. It also shows that in the case of Vellamo 

benchmark the conservative governor shows a better energy 

efficiency with respect to the other two governors, as it 

achieves a higher score with a lower power consumption. 

This can be justified assuming that for the conservative 

governor, the Vellamo benchmark controllable power 

component prevails over the non-controllable one.  

 

 

Figure 10. Comparison of different frequency governors 

 

5. CONCLUSION 
In this work we presented BLAST: Battery Lifetime-

constrained Adaptation with Selected Target. Blast is the 

first application-aware power management framework for 

mobile devices which controls operating conditions in order 

to meet a predefined battery lifetime. We also presented a 

lightweight and portable implementation on a real Android 

device, compatible with different Frequency Governors. The 

experiments show that our solution is effective in 

guaranteeing the predefined target battery lifetime and that 

it still meets user experience requirements with a selected 

battery lifetime extension set to 25%. The average rating of 

real users is within 5% for a battery lifetime extension set to 

25%. 

6. ACKNOWLEDGEMENT 
This work was sponsored in part by Samsung Research 

America and NSF grant number 1218666. 

 

7. REFERENCES 
[1] Shye, A; Scholbrock, B.; Memik, G., "Into the wild: Studying 

real user activity patterns to guide power optimizations for 
mobile architectures," Microarchitecture, 2009. MICRO-42. 
42nd Annual IEEE/ACM International Symposium on , vol., 
no., pp.168,178, 12-16 Dec. 2009  

[2] Ge Bai; Hansi Mou; Yinhong Hou; Yongqiang Lyu; Weikang 
Yang, "Android Power Management and Analyses of Power 
Consumption in an Android Smartphone," High Performance 
Computing and Communications & 2013 IEEE International 
Conference on Embedded and Ubiquitous Computing 
(HPCC_EUC), 2013 IEEE 10th International Conference on , 
vol., no., pp.2347,2353, 13-15 Nov. 2013  

[3] Geunsik Lim; Changwoo Min; Dong Hyun Kang; Young Ik 
Eom, "User-aware power management for mobile 
devices," Consumer Electronics (GCCE), 2013 IEEE 2nd 
Global Conference on , vol., no., pp.151,152, 1-4 Oct. 2013  

[4] Sangwook Kim; Hwanju Kim; Jeaho Hwang; Joonwon Lee; 
Euiseong Seo, "An event-driven power management scheme 
for mobile consumer electronics," Consumer Electronics, 
IEEE Transactions on, vol.59, no.1, pp.259,266, February 
2013 

[5] Aaron Carroll and Gernot Heiser. 2010. An analysis of power 
consumption in a smartphone. In Proceedings of the 2010 
USENIX conference on USENIX annual technical conference 
(USENIXATC'10). USENIX Association, Berkeley, CA, 
USA, 21-21. 

[6] Pallipadi, V. & Starikovskiy, A. (2006), The ondemand 
governor: past, present and future, in 'Proceedings of Linux 
Symposium, vol. 2, pp. 223-238' . 

[7] Benini, L.; Bogliolo, A; De Micheli, G., "A survey of design 
techniques for system-level dynamic power management," 
Very Large Scale Integration (VLSI) Systems, IEEE 
Transactions on , vol.8, no.3, pp.299,316, June 2000 

[8] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo 
Kang, and Hojung Cha. 2012. AppScope: application energy 
metering framework for android smartphones using kernel 
activity monitoring. In Proceedings of the 2012 USENIX 
conference on Annual Technical Conference (USENIX 
ATC'12). USENIX Association, Berkeley, CA, USA, 36-36. 

[9] Chengke Wang; Fengrun Yan; Yao Guo; Xiangqun Chen, 
"Power estimation for mobile applications with profile-driven 
battery traces," Low Power Electronics and Design (ISLPED), 
2013 IEEE International Symposium on , vol., no., 
pp.120,125, 4-6 Sept. 2013 

[10] Alawnah, S.; Sagahyroon, A, "Modeling smartphones 
power," EUROCON, 2013 IEEE , vol., no., pp.369,374, 1-4 
July 2013 

[11] Bonetto, A; Ferroni, M.; Matteo, D.; Nacci, AA; 
Mazzucchelli, M.; Sciuto, D.; Santambrogio, M.D., "MPower: 
Towards an Adaptive Power Management System for Mobile 

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 s

co
re

Benchmark

Lifetime-Performance Tradeoff

0

15%

25%

50%

450

460

470

480

490

500

510

520

530

540

550

250 260 270 280 290 300

E
n

e
rg

y
 C

o
n

su
m

e
d

 [
Jo

u
le

s]

Time [seconds]

Governors Comparison

Ondemand Interactive Conservative

VELLAMO FINAL SCORES

- ONDEMAND:  1837

- INTERACTIVE: 2009

- CONSERVATIVE: 2547

��
�(�) � 3003 (+25%) ��*+�)� � 550Y



Devices," Computational Science and Engineering (CSE), 
2012 IEEE 15th International Conference on , vol., no., 
pp.318,325, 5-7 Dec. 2012 

[12] A. A. Nacci, F. Trovò, F. Maggi, M. Ferroni, A. Cazzola, D. 
Sciuto, and M. D. Santambrogio. 2013. Adaptive and Flexible 
Smartphone Power Modeling. Mob. Netw. Appl. 18, 5 
(October 2013), 600-609. 

[13] Nachi K. Nithi and Adriaan J. de Lind van Wijngaarden. 2011. 
Smart power management for mobile handsets. Bell Lab. 
Tech. J. 15, 4 (March 2011), 149-168. 

[14] Marcelo Martins and Rodrigo Fonseca. 2013. Application 
modes: a narrow interface for end-user power management in 
mobile devices. In Proceedings of the 14th Workshop on 
Mobile Computing Systems and Applications (HotMobile 
'13). ACM, New York, NY, USA. 

[15] Wei, J.; Juarez, E.; Garrido, M.J.; Pescador, F., "Maximizing 
the user experience with energy-based fair sharing in battery 
limited mobile systems," Consumer Electronics, IEEE 
Transactions on , vol.59, no.3, pp.690,698, August 2013 

[16] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios 
Lymberopoulos, Ramesh Govindan, and Deborah Estrin. 
2010. Diversity in smartphone usage. In Proceedings of the 
8th international conference on Mobile systems, applications, 
and services (MobiSys '10). ACM, New York, NY, USA, 179-
194. 

[17] Pathania, Anuj; Qing Jiao; Prakash, Alok; Mitra, Tulika, 
"Integrated CPU-GPU power management for 3D mobile 
games," Design Automation Conference (DAC), 2014 51st 
ACM/EDAC/IEEE , vol., no., pp.1,6, 1-5 June 2014 

[18] Xin Li, Mian Dong, Zhan Ma, and Felix C.A. Fernandes. 
2012. GreenTube: power optimization for mobile 
videostreaming via dynamic cache management. In 
Proceedings of the 20th ACM international conference on 
Multimedia (MM '12). ACM, New York, USA, 279-288. 

[19] Yiran Chen; Xiang Chen; Mengying Zhao; Xue, C.J., "Mobile 
devices user — The subscriber and also the publisher of real-
time OLED display power management plan," Computer-
Aided Design (ICCAD), 2012 IEEE/ACM International 
Conference on , vol., no., pp.687,690, 5-8 Nov. 2012 

[20] Mercati P, Hanumaiah V., Kulkarni J., Bloch S. and Rosing T. 
“User-centric Joint Power and Thermal Management for 
Smartphones”  MOBICASE 2014, IEEE international 
conference, Austin, TX, USA, Nov 2014. 

[21] Li, Xueliang; Yan, Guihai; Han, Yinhe; Li, Xiaowei, 
"SmartCap: User experience-oriented power adaptation for 
smartphone's application processor," Design, Automation & 
Test in Europe Conference & Exhibition (DATE), 2013 , vol., 
no., pp.57,60, 18-22 March 2013 

[22] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. 
2014. Integrated CPU-GPU Power Management for 3D 
Mobile Games. In Proceedings of the 51st Annual Design 
Automation Conference (DAC '14). ACM, New York, NY, 
USA, , Article 40 , 6 pages. 

[23] https://play.google.com/store/apps/details?id=com.imangi.te
mplerun&  

 


