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ABSTRACT
The capability to anticipate a contact with another device
can greatly improve the performance and user satisfaction
not only of mobile social network applications but of any
other relying on some form of data harvesting or hoarding.
One of the most promising approaches for contact predic-
tion is to extrapolate from past experiences. This paper in-
vestigates the recurring contact patterns observed between
groups of devices using an 8-year dataset of wireless access
logs produced by more than 70000 devices. This effort per-
mitted to model the probabilities of occurrence of a contact
at a predefined date between groups of devices using a power
law distribution that varies according to neighbourhood size
and recurrence period.

In the general case, the model can be used by applications
that need to disseminate large datasets by groups of devices.
As an example, the paper presents and evaluates an algo-
rithm that provides daily contact predictions, based on the
history of past pairwise contacts and their duration.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Development; C.2.1
[Network Architecture and Design]: Wireless Commu-
nication

Keywords
Mobility, Wireless, Communities, Temporal Communities,
Contact Prediction

General Terms
Measurement, Performance, Algorithms

1. INTRODUCTION
The knowledge on human mobility is used on pervasive com-
puting environments to model applications [18] and routing
protocols [12], to harvest computing resources [6] or pro-
vide network connectivity [20] to a group of mobile devices.

Groups of devices facilitate for example the creation of dis-
tributed data stores [16], message passing in delay tolerant
networks [20] and leverage middleware to efficiently find use-
ful devices for resource sharing [6].

Contact patterns are usually estimated from observations of
multiple metrics on a population of individuals by applying
a statistical fitting on the data. The goal is to find a distri-
bution that provides a good approximation to the metrics
of interest and that can be evaluated in run-time. One of
the most frequently cited metrics is the inter-contact time
(ICT), which represents the time interval between two con-
secutive contacts of the same two peers. ICT is used in mul-
tiple applications and modelled by several mobility models
using a power law distribution [2, 13,15].

However, considering only ICTs limits optimization strate-
gies for some classes of applications. A new metric is needed
to effectively model the neighbourhood size and the recur-
rence of contacts of group members. Such a metric would
pave the way to optimize applications that require cooper-
ation of multiple devices, for example to distribute a large
dataset while minimizing data redundancy and increasing
data availability.

Unfortunately, the design of such a metric is severely con-
strained by the large amounts of mobility data required to
give statistical relevance to any modelling effort. This paper
gives a step in this direction by analysing a dataset of the
eduroam wireless network site on the Polytechnic Institute
of Lisbon, originally presented in [9]. The dataset contains
all the records produced between 2005 and 2013 by the 76479
devices that accessed at least one of the network’s 239 access
points (APs).

The paper evaluates the dimension and the patterns of repe-
tition of meetings between groups of devices of any size and
presents statistical distributions that can be used to model
the group contact probabilities. It shows that the extracted
statistical distribution fits a Pareto distribution for most of
the data, with different parameters according to neighbour
size and recurrence period.

The paper also presents a ranking algorithm that uses the
knowledge obtained to predict future contacts between pairs
of devices. We applied the algorithm to a mobility scenario
extracted from the same data but with a different method-
ology and year, and also to a trace of GPS positions of Taxis
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in Rome, and found that the different environments share
the same statistical properties, allowing the ranking algo-
rithm to improve the odds of knowing which devices will be
in range in a future day.

The paper is organised as follows. Section 2 makes a brief
survey of the related work and discusses possible applica-
tions of this effort. The characterisation of the dataset and
the methodology used for extracting and analysing the data
is presented in Sec. 3 and 4. Section 5 addresses our efforts in
modelling contacts recurrence into statistical distributions.
Experiments on predicting contacts using data from the pre-
vious sections is detailed in Sec. 6. The conclusions and the
directions of the future work are the focus of Sec. 7.

2. RELATED WORK
Applications of research on human mobility for mobile com-
puting have been mostly evolving around the opportuni-
ties for data dissemination and opportunistic routing. Hag-
gle [23] is a good example of a project that addressed ap-
plications for an opportunistic environment supported on
the study of human mobility. The Haggle project character-
ized human mobility on two dimensions: inter-contact time
(ICT) and contact duration and showed that ICTs tend to
follow a Power Law with a Exponential Decay, something
also supported by other studies (e.g. [14]). Bubble Rap [12]
is a socially influenced routing protocol that leveraged on
the mobility traces of the Haggle project to infer communi-
ties using K-Clique [19] and weighted network analysis al-
gorithms [17].

The work described in [4] studies ICTs in two distinct datasets.
One is based on records produced by an external observer.
In particular, data collected from the access logs of WiFi net-
works. The second, named direct contact, contains records
captured directly by the devices. These are either produced
by devices designed specifically to be carried by users or
by exploiting the Bluetooth connectivity of mobile devices.
Authors observed that, in contrast with previous works, the
distribution of inter-contact times follows a power law but
only until 1 day of duration. As a follow up, the paper shows
how this result impacts current forwarding algorithms and
makes suggestions for improvements.

In contrast with the proposals above, which follow the limit-
ing approach of using ICTs as the preferred metric, [21] ad-
dresses temporal communities and their relations. Authors
extracted temporal communities from four distinct datasets,
the largest of which considering the observation of 97 nodes
over 9 months. In spite of the small scale and duration of
the study, authors presented two interesting conclusions. On
one side, that the establishment of social communities has
direct implications on temporal communities. On the other,
authors identified one particular class of devices, those with
a high contact rate that are rarely seen in temporal commu-
nities, and show that they contribute significantly for the
efficient content dissemination in opportunistic social net-
works. Social communities are equally the focus of Social-
Cast [7], which exploits the knowledge that humans tend to
share interests and locations to develop an efficient routing
protocol for publish-subscribe on Delay-Tolerant Networks.
The authors use Kalman filters for forecasting future con-
tacts, based on previous observations of being co-located

Figure 1: Location of IPL sites

with a subscriber. SocialCast was one of the firsts proto-
cols supporting one-to-many communication for the Haggle
framework.

An innovative approach for detecting communities is pre-
sented in [18]. Authors added a duration variable to com-
munities detection, thus creating spatio-temporal communi-
ties. The community relevance is increased proportionally
to its duration. It was shown that spatio-temporal commu-
nities can contribute to improve the efficiency of information
dissemination in opportunistic networks. Simulation exper-
iments were conducted in the same datasets used in Bubble
Rap.

PreKR [11] is a framework that improves the forwarding on
opportunistic networks by using a kernel regression based
estimation for link pattern prediction. Using historical ob-
servations of network maps on three datasets, one of which
being Bubble Rap, PreKR determines what is the probabil-
ity of a recurrence of a link between two devices. Authors
show that PreKR outperforms all other prediction methods,
including Prophet. The distinguishing factor was the use of
kernel regression, that allowed PreKR to achieve an accu-
racy of more than 90%.

3. METHODOLOGY
The dataset used in this study aggregates the log records
produced by all Access Points (APs) of the eduroam Wi-Fi
network of the Lisbon Polytechnic Institute (IPL) generated
between January 1, 2005 and December 31, 2013.

IPL is the 7th largest high education institution in Portugal
with approximately 1300 teachers and 15000 students, dis-
tributed by 10 distinct sites around the Lisbon metropolitan
area (see Fig. 1). The Eduroam Wi-Fi network results from
an international effort aiming to transparently provide wire-
less Internet connectivity to its members in the campus of
all adhering institutions. The IPL’s site of the eduroam
network is supported by approximately 200 Cisco Systems
APs, covering a total of 26 buildings and inter-building ar-
eas. Records are originated from all the users accessing the
network, including visitors.

Figure 2 shows a continuous growth of the number of users
and devices although at distinct rates, specially since 2010.
This is coincidental with an increase in the sales of smart-
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Figure 2: Evolution of devices, users and access points
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Figure 3: Proportion of Laptops to Small Mobile Devices
observed

phones observed at the national level and suggests that the
number of users accessing the network with more than one
device has been increasing. Figure 3 compares the propor-
tion of Small Mobile Devices and Laptops accessing the net-
work in each year, determined from the vendor, parameter
request list and hostname fields of the DHCP messages ex-
changed between the devices and the supporting infrastruc-
ture. The distinction is relevant mostly due to the obser-
vation that small mobile devices tend to reproduce more
accurately the users’ movement patterns [9].

Contacts data evaluated in this paper are extracted from
the RADIUS protocol [22] session logs, which considers the
association of each user to a single AP. Records contain the
device MAC address, AP id, user name, session start and
stop dates. Prior to the analysis, logs have been purged from
inconsistencies that can be attributed to problems with the
wireless network card drivers:

• Consecutive sessions between the same device and AP
with an interval of less than 5 seconds have been merged
in a single session;

• Overlapping sessions S1 and S2 of the same device to
distinct APs have been serialized by setting the stop
time of S1 to occur at the moment immediately before
the start time of S2. Given that network cards cannot
be concurrently associated to more than one AP, this
impossibility can only be explained if the device did
not disassociate correctly from one AP before associat-
ing to the next with the former artificially establishing
the session stop time by timeout;

• Sessions with the same start and stop time were re-
moved. Sessions with these characteristics are created
when a user has some issue while connecting to the
network, although the network considers the user au-
thenticated (thus creating the RADIUS record).
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Figure 4: Max Community Size Per Day

The interested reader is referred to [9] for a more in depth
analysis of the dataset and to [8] for its applications on the
generation of mobility scenarios.

3.1 Temporal Communities
In this paper, a temporal community (TC) is defined as the
set of devices connected simultaneously to the same AP. A
TC exists as long as its membership does not change. The
addition and/or removal of any member results in the cre-
ation of a new temporal community. The approach is obliv-
ious to associations of devices to distinct APs with overlap-
ping coverage and to the repetition of TCs. TCs with the
same membership are considered distinct if: i) they occur
in a distinct AP; or ii) there is some interval between the
two occurrences where an exactly equal TC did not exist.
Table 1 summarizes the TCs counted using this approach.

Each TC with size n implicitly defines
∑n

i=1

(
n
i

)
Tempo-

ral Sub-Communities (TSCs), that result from the combi-
nations of the members of the TC. It should be noted that
TSCs include the special case where all the members of the
TC are represented (i.e., the TC itself). Relevant for this
paper is the evaluation of the repetitive occurrence of groups
of devices, independently of its members being or not part
of larger groups. Therefore, the paper will focus mostly on
the study of TSCs.

A multi-year analysis shows a non-negligible variation of the
number and size of the communities. Part of this variation
can be attributed to the addition of Access Points (APs)
to the network (cf. Fig 2), mostly motivated by the need
to resolve localised network performance issues. Such addi-
tion contributes to a decrease in the dimension of temporal
communities as devices have more alternative APs for asso-
ciation on the most frequently accessed locations.

Figure 4, which depicts the size of the biggest TC observed
each day, clearly shows the impact of the academic environ-
ment on the network. In the figure it is possible to observe
the reduced activity during the Winter (end of December),
Summer (August) and Easter (March) breaks. The irregu-
larity of the plots can also be attributed to weekends and to
the organization of conferences.

3.2 Temporal Patterns
In addition to presenting the number and size of all TSCs,
the paper evaluates the probability of recurrence of two and
three consecutive hits of the same TSCs on 4 distinct tem-
poral patterns. The Consecutive Days (CD) and the



Table 1: Temporal communities observed in the dataset

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013

Max. TC Size 33 43 44 66 69 74 159 121 108
TCs 370245 1113630 1309098 1682684 1700471 1935039 2775835 5633825 11366159

Average TC Size 6.45 8.16 8.32 9.37 9.96 11.08 10.77 10.08 11.5
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Figure 5: TSCs per day

Consecutive Week Day (CWD) patterns use intervals
of respectively 1 and 7 days. These patterns serve to investi-
gate repetitions inspired by common student activities, like
the daily attendance to school and the weekly attendance to
classes.

The Consecutive Month Day (CMD) and Consecutive
Week (CW) use more irregular patterns. CMD seeks for
repetitions in the same day number of consecutive months.
CW in turns seeks repetitions in any weekday of consecutive
weeks.

For clarity, and as an example, consider the observation of
a TSC on July 18th, 2012 (Wed). A hit will be found if the
same TSC is observed on July 19th for CD, July 25th for
CWD, August 18th for CMD and on any day between the
22nd and the 28th of July (Sun-Sat) for CW.

These temporal patterns are negativelly affected by calendar
irregularities. No attempt to attenuate the effects of public
holidays, weekends or school breaks has been made. This
option was chosen to approximate the results from those
found by some application using past experiences to estimate
the probability of contact repetition.

4. GENERIC DATA ANALYSIS
The accumulated number of Temporal Sub-Communities (TSCs)
found in every day of 2012 is depicted in Fig. 5 as a Com-
plementary Cumulative Distribution Function (CCDF). For
clarity, the figure presents TSC sizes in steps of 6. It was
observed that the lines of the TSC sizes that were omitted
evolve similarly to those that are represented.

A first surprising effect observed in Fig. 5 is the peak of
the number of TSCs at size 38. However, this is due to
the methodology used for determining TSCs. Recall from
Sec. 3, that the paper considers all possible combinations
of elements of any TC as TSCs. In this case, each of the
observed TCs of size 74 produces, by itself,

(
74
38

)
≈ 1.7×1021

TSCs with size 38. Still, the figure is illustrative of the
potential number and size of the groups of devices within
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Figure 6: TSCs per week

transmission range that can be found in academia. Notice
for example that in 5% or more of the days of 2012 it is
possible to find at least 1010 communities of size 62 and that
80% of the days had more than 100 TSCs with 14 devices.

Figure 6 revisits these results after grouping the TSCs in
weeks, what removes the spurious effects of occasional TCs
of very large size. Still, the plot denotes an interesting reg-
ularity, suggesting that TSCs of sizes up to 23 tend to occur
in a large proportion of more than 90% of the weeks.

5. RECURRENCE OF CONTACTS
Consider some TSC t observed in some instant i. The study
on t’s recurrence will proceed in two steps. First, it will mea-
sure the frequency with which t is observed a second time,
respecting one of the temporal patterns defined in Sec 3.
I.e., we will look for occurrences of t in instant i′, knowing
that the relationship between i and i′ must necessarily re-
spect one of the temporal patterns. The second step will
evaluate the persistence of these occurrences. It estimates
the probability of observing t in a third instant i′′, with the
time interval between i′ and i′′ respecting the same tempo-
ral pattern that was found between i and i′. The analysis
will focus in 2012, which presents a good trade-off between
the manageability of the size of the dataset and its recency.

Figure 7 depicts the CCDF of the TSCs that were observed a
second time satisfying each of the Temporal Patterns defined
above. The figure clearly demonstrates that the selection of
the temporal pattern has a strong impact on the results. The
Consecutive Month Days (CMD) is the temporal pattern
that performs poorly. This should be expected as it is hard
to find any routines depending on the day of the month in
the academic environment. In contrast, the CD and CWD
temporal patterns, which reflect better the typical student
schedule, perform reasonably well, specially for TSCs of size
of 6 or less. In these cases, more than 90% of the days
presented 100 or more TSCs which were equally observed in
the previous instant of the temporal pattern.

The best results are presented by the CW temporal pattern,
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(b) TSCs on two consecutive week days (CWDs)
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(c) TSCs on two consecutive month days (CMDs)
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Figure 7: Temporal patterns for two consecutive periods

where it was not hard to find 10000 communities of sizes 6
or less in 90% of the days. This is not a surprising result
considering the great flexibility of the constraints imposed
by CW in comparison with CD and CWD.

5.1 Predictability of Multiple Contacts
Fig. 8 shows the average and standard deviation of the pro-
portion of TSCs that repeated in a third consecutive instant
from those that were observed twice. Results contribute to
decrease the relevance of the observations of large TSCs in
two consecutive periods. Although it is frequent to find large
TSCs, their membership tends to vary with time. Therefore,
the occurrence of large TSCs can only be used by applica-
tions depending on ad hoc concentrations of users.

Concerning TSCs with small number of members, the results
permit to separate the CD and CWD temporal patterns,
with the daily one showing to be more predictable. CD and
the more relaxed CW temporal patterns are the only able to
obtain probabilities of repetition above 10% for TSCs of up
to 4 members and to show a surprisingly 30% for TSCs of
size 2. This can be considered as a non-negligible probability
of finding the same device on, respectively, the next two
days and weeks. CW outperforms CD in the stability of the
predictions, as it presents a smaller standard variation of the
sample.

Figure 9 depicts these results using CCDFs of the absolute
number of occurrences observed. As suggested by Fig. 8,
TSCs with significant results are those with small member-
ship sizes. It is also interesting to notice the distinct pattern
exhibited by each temporal pattern. Still, it should be no-
ticed that it is not hard to find a considerable number of
TSCs satisfying the CD and CW criteria for 3 consecutive
intervals. In the case of CW, in 90% of the days of 2012 it is
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Figure 10: Distribution Fitting

possible to find 100 TSCs of 6 members that were observed
on 3 consecutive weeks. In line with what was observed
before, the CWD and CMD temporal patterns show disap-
pointing results, in both the number of TSCs found and on
the probability of their recurrence.

5.2 Probabilistic Model
To model the temporal patterns observed in TSCs, the re-
sults discussed in Sec. 5 were fitted to statistical distribu-
tions using the Akaike information criterion on Matlab. Fig-
ure 10, which aggregates TSC sizes by distributions, shows
that the Generalized Pareto distribution is the most ade-
quate to model the behaviours observed in the paper. The
use of the Pareto distribution is consistent with results found
for modelling other aspects of human mobility, for example
those detailed in [5, 10,14].

Interestingly, the CD, CWD and CMD temporal patterns
exhibit an exception where only a single size of the TSCs
is better represented by Generalized Extreme Value. As
shown in Table 2, the sizes of the TSCs with an abnormal
behaviour are distinct for each temporal pattern and no re-
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(b) Probability of finding the same TSC on three CWDs
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Figure 8: Probabilities for three consecutive periods

Table 2: TSC size with exceptional distribution

Temporal Pattern TSC Size

CD 6
CWD 3
CMD 2

Table 3: Probability Function Parameters

Temporal Probability Std. dev.
Pattern (tp) a b a b

CD 0.7167 -0.4204 0.3335 -0.205
CWD 0.6081 -0.4971 0.2375 -0.2216
CMD 0.5947 -0.601 0.4295 -0.357

CW 0.7701 -0.4431 0.1499 -0.1391

lation between the values could be found. Therefore, these
cases are considered as an anomaly and the reminder of the
text handles them indifferently from the remaining.

A practical application of these results can be obtained by
reproducing the approach discussed in Sec. 5.1 to create a
fitted function that returns the probability of occurrence of
a group of size n. Results are approximated by a function
PC given by Eq. 1. Values for constants a and b depend of
the temporal pattern and are given in Tab. 3.

PCtp(n) = atp × ebtpn (1)

Standard deviation can be approximated by a function SCtp(n) =
atp × ebtpn, which is similar to function PC although with a
distinct set of constants a and b, equally depicted in Tab. 3.

6. CONTACT PREDICTION ALGORITHM
The capability to anticipate user contacts is valuable to a
multitude of applications, which can be arranged according

to the observer, in 3 distinct categories. In the omniscient
observer category, a centralised server has access to the list
of all contacts that have occurred in the past. An exam-
ple is a reputation server that combines the contacts of all
the service members to anticipate those that will occur in
the future. The omniscient observer perspective is the one
supporting the theoretical analysis of the previous section.
In the localised server category, some external observer, for
example an access point, creates a local perspective, that re-
sults from his limited observation point. Finally, in the peer
view category, each device anticipates future contacts exclu-
sively from those where he has participated in the past. The
peer view is the one where the information is more limited
and therefore, where predictions are more challenging. This
section reports on our efforts to create an algorithm capable
to anticipate future contacts with a reasonable accuracy in
the peer view perspective.

The algorithm was designed to integrate with any applica-
tion. It accepts a target date and a list of the contacts
observed in the past. Each contact is tagged with the date
and duration of the contact and the peer ID. The algorithm
outputs a list of peers, ordered by the likelihood of finding
it on the target day. Members of the output list are all the
peers from the input contact list that satisfy any of the CD,
CWD or CMD temporal patterns (described in Sec. 3.2)
for the two previous consecutive instances and which, if ob-
served on the target date, will result in a third consecutive
occurrence of the pattern.

Peers are ranked according to the scoring function score,
depicted in Eq. 2.

score = fCD(dCD) + fCWD(dCWD) + fCMD(dCMD) (2)

where dCD, dCWD, dCMD are the duration (in seconds) of
the contact between the two nodes in the last event of the
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(a) TSCs on three CDs
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(b) TSCs on three CWDs
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(c) TSCs on three CMDs
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(d) TSCs on any day of three CWs

Figure 9: Temporal patterns for three consecutive periods

corresponding pattern. The score for each node is therefore
dictated by an accumulation of partials from each temporal
pattern where it was observed and given by:

ftp(d) = wtp×PCtp(2)×CDtp(d), ∀tp ∈ {CD,CWD,CMD}
(3)

where wtp is the weight attributed to the temporal pattern,
PCtp is the probability function presented in Eq. 1.

The role of the CDtp function is to convert the duration of
the last contact in a weight. The function privileges longer
contacts, mapping them on proportionally heavier weights.
The two classes of functions experimented are depicted in
Eq. 4 and 5. Both assume that the contact duration is
bounded between 60s and 86400s (one day), considered to be
the interval representing social interactions between peers.

CD(d) =
kd

86400 + (k − 1)d
, k ≥ 1, d ≥ 60 (4)

CD(d) =

(
d

86400

)2

, d ≥ 60 (5)

Functions differentiate by the direction of their curve. The
family of functions of Eq. 4 increases the weight linearly with
the duration when k = 1, increasing the weight of shorter
contacts as k increases. In contrast, Eq. 5 tends to decrease
the relevance of shorter contacts, increasing the weight more
rapidly as the duration approaches 86400.

Overall, the algorithm leverages from the probabilities of
occurrence of a third repetition of a contact between a pair
of nodes, which were found in the analytic study presented
in the previous section, to derive a ranking algorithm. The
algorithm uses the duration of the contacts and multiple
temporal patterns between the same pair of nodes as tie
breakers. Expectations are that these tie breakers correctly
identify the contacts that are more likely to occur, provid-

ing to applications accurate estimates of upcoming contacts
with other nodes.

Evaluation was performed by running contact datasets against
the algorithm and comparing its ordering with the contacts
that have been actually observed. The capability of the al-
gorithm to correctly order the expectations of contacts was
evaluated using two metrics. Both metrics measure the num-
ber of hits (defined as a prediction of contact that has effec-
tively occurred), although using different perspectives:

The Rank of the First Miss (RFM) returns the rank in the
list of the first failed prediction. RFM is useful for appli-
cation programmers as it indicates the number of highly
reliable predictions of the list.

The second metric compares the proportion of hits across
the percentiles 10, 25, 50, 75 and 100 of the list. Percentiles
permit to evaluate the quality of the ranking. Expectations
are that the 100 percentile mirrors the analytic results dis-
cussed in Sec. 5. Therefore, the quality of the ranking will
be evaluated by the increase in the proportion of hits in the
lowest percentiles, which will confirm the capability of the
algorithm to put hits at higher ranks.

6.1 Evaluation in MobIPLity
The ranking algorithm was experimented using a mobility
scenario generated by MobIPLity [8] with all devices that
connected to the eduroam network on IPL during the year
of 2013. MobIPLity is a framework that produces mobil-
ity scenarios in bonnmotion [1] format. Contact data was
produced by configuring the LinkDump application of bonn-
motion to extract the periods in which two peers were within
a 50m range from each other for a minimum of 60s. To pre-
vent disturbance on the results due to the distinct patterns



Table 4: Evaluation of contact duration functions

CDCD CDCWD rfm p10

k = 4 k = 5 3.61 0.40
k = 4 k = 6 3.60 0.40
k = 2 k = 2 3.58 0.40
k = 3 k = 6 3.57 0.40
Eq. 5 Eq. 5 3.16 0.39

found on weekends, the original dataset was purged from the
events occurring on Saturdays and Sundays.

It should be noted that the dataset used in the evaluation of
the ranking algorithm is considerably distinct from the one
used in Sec. 5 for the analytic evaluation of contacts. The
later evaluated the 2012 dataset and defined a contact as
the simultaneous association of two or more devices to the
same access point, using RADIUS records. In this section,
the 2013 dataset and a distinct methodology for defining
contacts are used. In addition to exposing the ranking algo-
rithm to a considerably distinct dataset from the one that
inspired it, this approach permits to verify if the properties
observed during the year 2012 are reproducible on a different
year.

Parameters for the algorithm where experimentally tuned in
order to obtain the best metrics. Table 4 depicts the exper-
imental results for multiple variations of the CD functions
with equal weights for wCD and wCWD. Results evidence a
minimal impact of the k constant when the function of Eq. 4
is used, in contrast with the results exhibited by Eq. 5. In
practice, this result evidences a preference of the algorithm
for a fast growing of the weight of the contact duration in
the ranking. As a result, the reminder of the text presents
results using Eq. 4 with k = 4 for all the CDtp functions.

Table 5 shows the average and standard deviation of the
metrics when different weights are used. These results aver-
age the rankings produced for all devices and days, provided
that the ranking contained 20 or more devices. The table
shows some encouraging results. In particular, that the al-
gorithm can correctly rank on average the first 3.6 devices
and that 40% of the highest 10% ranked devices have been
found as predicted. The contribution of the algorithm be-
comes more evident by noticing that a random sort of the list
would equally distribute the 31% of the devices on the list
that were effectively observed (p100) by all the percentiles.

Figure 11 further emphasis this result by evidencing the 28%
performance gain of p10 over p100. A combined analysis of
the figure and of the Table 5 highlights the distinct contribu-
tion of each of the temporal patterns to the algorithm, with
the participation of the CMD or the use of individual pat-
terns consistently presenting worst results than a 50%,50%
combination of weights of CD and CWD.

In the elaboration of the results above, a ranking list is al-
ways prepared, independently of the connectivity of the de-
vice. However, a large number of cases were found where
some devices did not connected to any another device in one
complete day, although the algorithm predicted some con-
nections. As can be confirmed by Table 6, this cannot be
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Figure 11: Improvement observed

considered a negligible aspect. The table presents the same
metrics after excluding these lists. Not surprisingly, lists
become much more accurate, with 100 percentile approach-
ing an average of 50%. I.e., on average 50% of the devices
predicted by the algorithm are effectively found. More de-
manding metrics, in particular RFM and p10 are in line with
the improvement of p100: on average, the first 5 devices of
each list are effectively found as predicted as well as more
than 63% of the percentile 10 of each ranking list.

Table 7 discloses a final analysis of these results by present-
ing the metrics per day of the week. It is interesting to
notice that the performance of the algorithm is not uniform
across all the weekdays. The ranking algorithm presents
better results for Tuesday, Wednesday and Thursday. The
worst results of Mondays can be attributed to the weekend
discontinuity impact on the CD temporal pattern. Surpris-
ingly, Fridays present the worst performing results, although
no evident explanation could be found.

6.2 Evaluation with Taxi Traces
To understand the applicability of the algorithm in a broad
range of scenarios, the algorithm was experimented in a
dataset containing 1 month GPS traces of 320 taxis in Rome [3].
The dataset was sanitized to include only positions in the
metropolitan area of Rome, and to mark as off-line the taxis
not reporting their position for an interval above 120s.

Table 8 shows the metrics presented by the algorithm. Un-
fortunately, the smaller and shorter trace prevented experi-
ments with the CMD temporal pattern and forced to a re-
duction of the minimum size of the rankings from 20 to
5. Surprisingly, p10 metric shows values comparable to the
ones obtained from MobIPLity, for the same configuration
parameters. The differences in the RFM can be attributed
to the smaller dimension of the dataset, which necessarily
reduces the ranking list and, proportionally impacts RFM.
The difference between p10 and p100 loses significance, with
a gain of 11%.

Table 9 show the outcome of the per day of the week anal-
ysis. One can observe that in this dataset, Monday is the
worst performing day of the ranking algorithm. This re-
sult is attributed to the discarding of weekends that was
kept from the MobIPLity analysis in an attempt to keep the
comparison fair. However, the social constraints that en-
couraged the introduction of the exception for MobIPLity
have no significance in a taxis scenario, where devices are
expected to operate on all days of the week. To the extent
of our knowledge, this was the unique characteristic of the



Table 5: Results (Average per day and Standard Deviation)

wCD wCWD wCMD Rank Totals rfm (σ) p10 (σ) p25 (σ) p50 (σ) p75 (σ) p100 (σ)

50 50 0 56892626 3.609 (6.75) 0.402 (0.38) 0.377 (0.35) 0.352 (0.32) 0.333 (0.30) 0.313 (0.29)
50 0 50 38423918 3.352 (7.13) 0.361 (0.37) 0.340 (0.34) 0.317 (0.32) 0.301 (0.30) 0.283 (0.28)
33 33 33 65604286 3.326 (6.30) 0.363 (0.37) 0.340 (0.34) 0.316 (0.32) 0.297 (0.30) 0.279 (0.28)
0 50 50 40827514 2.690 (3.81) 0.360 (0.37) 0.342 (0.35) 0.322 (0.33) 0.306 (0.31) 0.288 (0.29)

Table 6: Results excluding not connected days (Average per day and Standard Deviation)

wCD wCWD wCMD Rank Totals rfm (σ) p10 (σ) p25 (σ) p50 (σ) p75 (σ) p100 (σ)

50 50 0 39620508 5.122 (8.11) 0.635 (0.28) 0.596 (0.24) 0.557 (0.22) 0.526 (0.21) 0.495 (0.20)
33 33 33 43290708 4.967 (7.82) 0.620 (0.28) 0.579 (0.25) 0.538 (0.23) 0.507 (0.21) 0.476 (0.20)
50 0 50 25271814 4.871 (8.82) 0.593 (0.29) 0.559 (0.26) 0.522 (0.24) 0.495 (0.23) 0.466 (0.21)
0 50 50 25861694 3.917 (4.64) 0.621 (0.28) 0.591 (0.25) 0.556 (0.23) 0.528 (0.22) 0.498 (0.21)

Table 7: Per day of the week metrics for setup with the highest improvement (wCD=50,wCWD=50)

rfm p10 p25 p50 p75 p100

Monday 3.15 (4.62) 0.4 (0.38) 0.38 (0.35) 0.35 (0.32) 0.34 (0.31) 0.32 (0.29)
Tuesday 4.13 (7.57) 0.45 (0.38) 0.42 (0.35) 0.39 (0.33) 0.37 (0.31) 0.35 (0.3)

Wednesday 3.97 (8.26) 0.41 (0.38) 0.39 (0.34) 0.36 (0.32) 0.34 (0.3) 0.32 (0.28)
Thursday 3.67 (6.65) 0.41 (0.38) 0.38 (0.35) 0.36 (0.32) 0.34 (0.31) 0.32 (0.29)

Friday 3.04 (5.65) 0.34 (0.36) 0.32 (0.33) 0.29 (0.3) 0.27 (0.28) 0.26 (0.26)

Table 8: Taxis in Rome trace results

wCD wCWD Rank Totals rfm (σ) p10 (σ) p25 (σ) p50 (σ) p75 (σ) p100 (σ)

50 50 3487 1.884 (1.39) 0.426 (0.49) 0.409 (0.43) 0.380 (0.33) 0.340 (0.28) 0.312 (0.25)

Table 9: Per day of the week metrics for Taxis in Rome, setup with the highest improvement (wCD=50,wCWD=50)

rfm p10 p25 p50 p75 p100

Monday 1.27 (0.61) 0.19 (0.39) 0.2 (0.33) 0.18 (0.21) 0.16 (0.17) 0.15 (0.16)
Tuesday 1.87 (1.18) 0.48 (0.5) 0.42 (0.42) 0.41 (0.3) 0.39 (0.28) 0.35 (0.21)

Wednesday 1.95 (1.41) 0.44 (0.5) 0.41 (0.45) 0.4 (0.33) 0.34 (0.28) 0.31 (0.25)
Thursday 2.03 (1.5) 0.45 (0.5) 0.43 (0.45) 0.4 (0.35) 0.35 (0.3) 0.32 (0.25)

Friday 2.16 (1.58) 0.57 (0.5) 0.54 (0.41) 0.49 (0.3) 0.46 (0.27) 0.42 (0.24)

algorithm which did not adapt to both scenarios.

6.3 Discussion
In contrast with our expectations, differences in results be-
tween CD and CWD temporal patterns tend to be orthogo-
nal to the environment. As an example, one could consider
that the CD temporal pattern better represents faculty (with
a daily schedule), and CWD would better represent students
that meet in classrooms following a weekly schedule. And,
that this would be tightly connected to the environment
where the data was gathered. However, the results obtained
using the data from MobIPLity present similar outcomes to
the ones obtained in Sec. 5.2, using the same data but on
different years. Furthermore, and considering that the Taxis
in Rome trace also present the same results, to an extent, we
can consider that this supports the usage of our algorithm
and probability modelling on multiple environments.

Results suggest that performance could be improved by con-
sidering weekdays in the definition of the ranking algorithm.
However, this claim must be supported by additional exper-
iments in other traces, and therefore, is left as future work.

7. CONCLUSIONS
Developers of mobile applications can be faced with the need
of anticipating the number or the affiliation of the groups of
devices to be found in the future. This paper leverages on
a large dataset of accesses to a number of eduroam network
sites at an academic institution to extract the complete set
of temporal communities observed between 2005 and 2013.
The paper derives a statistical model that characterizes the
different temporal community sizes assuming four distinct
recurrence patterns that mirror likely schedules of the users.

The fitting of the observations showed that the recurrence
of three temporal patterns can be modelled by generalized
pareto distributions, confirming the results already observed
for the Inter-Contact Times.

The paper presents an algorithm to predict contacts with
peer devices on a nearby future using the knowledge of the
previous observed contacts and temporal patterns. The al-
gorithm was evaluated against two datasets: one prepared
by extracting data from a different year of the same dataset
that inspired this research and another prepared from a pub-



licly available trace of taxis in Rome. Evaluation results
showed that the algorithm presents good prediction capa-
bility and that its performance is comparable in both sce-
narios, what raises our expectations of its applicability as a
generic prediction tool.

Analysis of the data continues. As future work, authors plan
to apply the lessons learnt in the modulation of recurrence
of temporal communities on real world applications. In ad-
dition, work will continue in the analysis and expansion of
the dataset and on the verification if the results presented
in the paper are reproducible in other datasets.

8. REFERENCES
[1] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and

M. Schwamborn. Bonnmotion: A mobility scenario
generation and analysis tool. In Procs. of the 3rd Int’l
ICST Conf. on Simulation Tools and Techniques, 2010.

[2] C. Boldrini and A. Passarella. Hcmm: Modelling
spatial and temporal properties of human mobility
driven by users’ social relationships. Computer
Communications, 2010.

[3] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi,
R. Amici, and A. Rabuffi. CRAWDAD data set
roma/taxi (v. 2014-07-17). Downloaded from
http://crawdad.org/roma/taxi/, July 2014.

[4] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott. Impact of human mobility on
opportunistic forwarding algorithms. Mobile
Computing, IEEE Trans. on, 6(6):606–620, 2007.

[5] A. Clauset, C. Shalizi, and M. Newman. Power-law
distributions in empirical data. SIAM Review,
51(4):661–703, 2009.

[6] M. Conti, S. Giordano, M. May, and A. Passarella.
From opportunistic networks to opportunistic
computing. Communications Magazine, IEEE,
48(9):126–139, Sept 2010.

[7] P. Costa, C. Mascolo, M. Musolesi, and G. Picco.
Socially-aware routing for publish-subscribe in
delay-tolerant mobile ad hoc networks. Selected Areas
in Communications, IEEE Journal on, 26(5):748–760,
June 2008.

[8] N. Cruz and H. Miranda. MobIPLity: A trace-based
mobility scenario generator for mobile applications. In
Proceedings of the 11th International Conference on
Mobile and Ubiquitous Systems: Computing,
Networking and Services (Mobiquitous’14), London,
UK, Dec. 2–5 2014. EAI.

[9] N. Cruz, H. Miranda, and P. Ribeiro. The evolution of
user mobility on the eduroam network. In Proceedings
of the 2014 IEEE International Conference on
Pervasive Computing and Communications Workshops
(PERCOM Workshops), pages 249–253, Mar. 24 2014.

[10] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi.
Understanding individual human mobility patterns.
Nature, 453(7196):779–782, Jun 2008.

[11] D. Huang, S. Zhang, P. Hui, and Z. Chen. Link
pattern prediction in opportunistic networks with
kernel regression. In Proceedings of The 7th

International Conference on COMmunication Systems
and NETworkS, COMSNETS 2015, Jan. 2015.

[12] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap:

Social-based forwarding in delay-tolerant networks.
Mobile Computing, IEEE Transactions on,
10(11):1576–1589, Nov 2011.

[13] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnovic.
Power law and exponential decay of intercontact times
between mobile devices. Mobile Computing, IEEE
Transactions on, 9(10):1377–1390, Oct 2010.

[14] T. Karagiannis, J. Y. Le Boudec, and M. Vojnovic.
Power law and exponential decay of intercontact times
between mobile devices. Mobile Computing, IEEE
Transactions on, 2010.

[15] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong.
Slaw: A new mobility model for human walks. In
INFOCOM 2009, IEEE, 2009.

[16] H. Miranda, S. Leggio, L. Rodrigues, and
K. Raatikainen. An algorithm for dissemination and
retrieval of information in wireless ad hoc networks. In
A.-M. Kermarrec, L. Bougé, and T. Priol, editors,
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