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ABSTRACT
Online route planning services compute routes from any
given location to a desired destination address. Unlike off-
line implementations, they do so in a traffic-aware fashion
by taking into consideration up-to-date map data and real-
time traffic information. In return, users have to provide
precise location information about a route’s endpoints to a
not necessarily trusted service provider. As suchlike leak-
age of personal information threatens a user’s privacy and
anonymity, this paper presents PrOSPR, a comprehensive
approach for using current online route planning services in
a privacy-preserving way, and introduces the concept of k-
immune route requests to avert inference attacks based on
restricted space information. Using a map-based approach
for creating cloaked regions for the start and destination
addresses, our solution queries the online service for routes
between subsets of points from these regions. This, how-
ever, might result in the returned path deviating from the
optimal route. By means of empirical evaluation on a real
road network, we demonstrate the feasibility of our approach
regarding quality of service and communication overhead.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy

General Terms
Algorithms, Experimentation, Security
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1. INTRODUCTION
The proliferation of mobile devices with built-in GPS re-
ceivers has recently led to a widespread adoption of so-called
location-based services (LBS). These kind of services allow
for a better user experience by adapting their behavior to
a user’s whereabouts, such as ordering query results by dis-
tance to her location. Some of the most popular applications
of LBS today are online route planning services (RPS), such
as Google Maps or OpenRouteService, which have super-
seded printed maps in everyday usage almost completely.
Using such a service allows for retrieving the shortest or
fastest route from a given start to a destination address on a
road network. In contrast to offline implementations, which
used to constitute the first generation of route planning ap-
plications, online RPS benefit from the availability of always
up-to-date map data and real-time traffic information, e.g,
about blocked roads, driving conditions, congestions or road
works and can hence provide a better service to its users. Fa-
cilitated by the ubiquity and connectivity of smartphones,
online RPS can also be used spontaneously by mobile users,
i.e., the source of a requested route coincides with the user’s
current location provided by the sensors of her device.

Just as with any other LBS, however, receiving this kind
of information enables a curious service provider and any
eavesdroppers to track users and can hence be considered a
threat to the latter’s location privacy and anonymity: By us-
ing inference attacks, e.g., based on spatio-temporal cluster-
ing techniques, a service provider is likely to be able to find
out about a user’s important places, i.e., restricted spaces
such as her home and workplace [9]. In the case of online
route planning, the RPS provider typically is not only sup-
plied with noisy location measurements, but exact addresses
typed in by the user, rendering the realization of a reliable
reverse lookup of an address in a white-pages database a
trivial task. Having acquired such information, the RPS
might succeed in identifying, i.e., de-anonymizing its users
[4]. By recording and analyzing all of a user’s route queries,
the RPS provider can easily gain additional private informa-
tion about its users. Being able to track a user’s movements
on an address level, one might not only be able to pinpoint
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(a) normal (b) PrOSPR (k = 7)

Figure 1: The different levels of information leakage using
standard online route retrieval and our PrOSPR approach.

a user’s current location, but also find out about her health
status, personal and political interests, etc. as well as a com-
pany’s clients, business partners or a doctor’s patients [20].

Motivated by these observations, we aim at providing a
privacy-preserving solution for the retrieval of nearly opti-
mal routes from existing online RPS. In order to protect a
user’s location privacy, the RPS provider should not learn
the actual source and destination of a query, as these might
be restricted spaces that leak sensitive information about a
user. As exemplified in Figure 1, we propose an approach
relying on map-based location obfuscation [19] that lets the
RPS provider at most learn two cloaked regions, which are
guaranteed to contain at least k restricted spaces. With cur-
rent online RPS not supporting such region-to-region route
queries, our algorithm lets the client issue route requests for
several pairs of points from the cloaked regions’ road net-
works to the RPS. As this procedure is not guaranteed to
produce complete routes from the user’s actual start to des-
tination address, any missing subpaths are computed locally.

This paper hence presents a comprehensive approach for per-
forming route queries using existing online RPS in a privacy-
preserving way, making the following contributions: Firstly,
we propose a map-based solution for the creation of mean-
ingfully cloaked regions around a user’s actual source and
destination addresses, comprising all necessary steps such as
geocoding and acquisition of map data. Secondly, we base
our obfuscation approach on the means of k-immune route
requests, which guarantees an adjustable level of ambiguity
and works without the need of a trusted third party (TTP).
Thirdly, we propose and evaluate different heuristics for the
selection of nodes within the cloaked regions’ road networks
used as inputs for the point-to-point route queries to the
RPS in order to find a suitable balance between the optimal-
ity of routes and minimization of communication overhead.

The remainder of this paper is structured as follows: Section
2 discusses related work in the field of location privacy. In
Section 3, we define the problem statement and attacker
model for this work. Our approach for the realization of
Private Online Shortest Path Retrieval (PrOSPR) will be
described in Section 4. In Section 5, we present the results
of the empirical evaluation. In Section 6, we conclude.

2. RELATED WORK
Our work pertains to the fields of location privacy and pri-
vacy in LBS. Typically, identity, position and time are the
primary information items [18]. Depending on the scenario
and the user’s requirements, different elements of this tuple

are considered sensitive and thus have to be protected. An
approach to hide a user’s position is to present the service
with position dummies [8] that detract the LBS provider
from the user’s actual position. However, the challenge is to
create position dummies which cannot easily be recognized
as fake positions using other sources of information such as
map semantics or a user’s location history [15]. One can also
resort to spatial obfuscation techniques which intentionally
reduce the accuracy of the user’s position, e.g., by sending
a circular area instead of a precise location to the LBS [1].

To prevent inference about individuals in a set of users, the
concepts of k-anonymity [16] and l-diversity [12] have been
adapted for location privacy: k-anonymity is tried to be
achieved by cloaking a user’s location, i.e., only reporting
the user’s position as a coarse-grained area containing at
least k − 1 other users [3, 5]. However, k-anonymity fails to
preserve a user’s privacy with regard to location semantics
in case all k users are within a semantically similar area,
e.g., all of them are in a hospital. This can be solved by re-
quiring that the positions of the users within a cloaking area
are different to such an extent that the location semantics
are l-diverse, i.e., there are at least l semantically different
locations which are occupied by users in the cloaking area
[2]. Gruteser at al. propose a single-user approach using a
building-based k-area algorithm [7], which prevents position
updates within a predefined zone from being sent to an LBS
in case a user has entered one of k sensitive areas in that
zone. All of these approaches are yet not directly applicable
to the problem of online route planning.

Specifically dedicated to this exact domain, Mouratidis in-
troduces privacy-preserving shortest path queries based on
private information retrieval (PIR) [14]. By using a tamper
resistant, fully trusted secure co-processor (SCP) installed at
the LBS and a thoroughly designed PIR protocol, the author
provides two different PIR schemes for retrieving complete
route information from an RPS in a privacy-preserving man-
ner. This is the only approach promising full location pri-
vacy, i.e., the LBS will not even learn obfuscated information
about the requested route. In return, however, this approach
requires full cooperation of the RPS provider, i.e., having a
SCP module installed. Also, the desired start and destina-
tion locations must be given as Euclidean coordinates, and
this data cannot be expected to be generally available.

Lee et al. present OPAQUE [10], which relies on a TTP act-
ing as a Path Obfuscation Server. The TTP receives route
queries from clients, generates a user-defined number of po-
sition dummies, and sends an obfuscated path query to an
RPS. To handle such queries, the LBS has to cooperate by
providing a special module which has also been devised by
the authors using a modified A* algorithm. A drawback
of the system is the näıve randomized selection of the posi-
tion dummies, which are points located in the vicinity of the
actual start and destination locations [11]. Since the actual
route is always contained in the obfuscated query, OPAQUE
still delivers the optimal result. Also, no overhead is intro-
duced at the client as it only sends one request to the TTP.
The RPS yet inevitably gets to know the actual route, which
might be identifiable from the dummy ones by means of fre-
quency analysis or map knowledge. Moreover, the TTP is a
single-point-of-attack, which we try to omit in our approach.



Vicente et al. describe an approach to be used with existing
online RPS [17]. To enable privacy-preserving route queries,
suitable map extracts of the start and destination regions
are determined by a trusted location obfuscator and can be
downloaded from a map provider. For each node in the
start region then routes to each node in the destination re-
gion are requested from the RPS. In order to reduce the
number of requests, the authors propose various heuristics
which deliver good, albeit not always optimal results while
drastically reducing the number of queries. The authors em-
ploy a grid-based partitioning of the map and analyze both
to which extent the system is able to find the optimal route
and the amount of communication overhead. They find that
their system retrieves the optimal route more than 80% of
the time, and only 3% of the routes deviate more than 500m
from the optimal one. Using their default settings, roughly
50 calls to the RPS are generated for a single route query.
The authors show that these settings result in only 3% fewer
correct routes than when using the most precise settings,
while needing only half of the otherwise required requests.

Only the last approach aims at off-the-shelf functionality
without explicit cooperation of an unmodified online RPS.
However, it produces considerable communication overhead
and requires a TTP for location obfuscation. None of these
approaches takes into consideration map information when
calculating dummy positions or cloaked regions. Xue et al.
introduce the concept of location-diversity [20], which de-
ploys the concept of semantic locations for obfuscating the
source location of a route request. However, their approach
also depends on the existence of a trusted anonymizer and
misses to protect the destination of a route request.

3. PROBLEM STATEMENT, ATTACKER
MODEL AND DESIGN GOALS

We aim at preventing online RPS providers from being able
to track its pseudonymously known users on an address level,
which is problematic with regard to privacy as it allows for
de-anonymization and inference about a user’s personal life.
Inference attacks are primarily based on restricted space in-
formation [6], which an attacker can misuse to gain knowl-
edge about a user’s lifestyle and interests by matching re-
ported locations to places that are either inhabited by a lim-
ited number of people, such as family homes or sites with
clear semantics, e.g., an office or medical practice [20].

Definition 1. A restricted space is any spatial area that
exclusively belongs to one subject or can unambiguously be
linked to a clear semantical meaning.

We hence base our work on an understanding of location pri-
vacy similar to the k-area approach [7], which tries to hide
from a continuous LBS provider which of k distinct sensitive
areas a user has visited. W.l.o.g., in the following we con-
sider every building having its own address to be a restricted
space, even though one address might actually house several
distinct restricted spaces at once and vice versa.

We seek to avoid the possibility of restricted space infer-
ence based on online shortest path queries by hiding a re-
quest’s true source and destination location in a confusion

set. The latter is created using an obfuscation approach
derived from the concept of k-anonymity [16], which is com-
monly used for protecting mobile users’ location and com-
munication privacy in LBS. In contrast to the majority of
existing works, which typically deploy a TTP for calculat-
ing spatio-temporarily-cloaked areas around k of its users’
actual positions [6][13], we aim at obfuscating the endpoints
of a route request so that at least k restricted spaces are
equally likely to be the user’s true source and destination
address, respectively. We hence consider a route request to
comply with a user’s privacy requirements, if it is k-immune.

Definition 2. An online shortest path query is k-immune
against location inference, if both the request’s true source
and destination locations are indistinguishable from at least
k − 1 other restricted spaces.

We believe this to be a viable approach for the field of on-
line route planning, as requests can be issued individually
for each user and do not depend on the availability of and
synchronization with peers in the user’s vicinity.

3.1 Attacker Model
Just as in [14] and [20], we expect the online RPS and map
provider to be a semi-honest adversary curious about its
users’ current, visited and searched locations, but not be-
having maliciously, i.e., working correctly and not providing
forged results in order to gain knowlegde. In contrast to [20],
however, we expect the RPS provider to be able to link all
of a user’s route requests, i.e., we expect pseudonymous us-
age of the routing service. By simply logging a user’s route
queries, the RPS provider can hence create lists of visited
locations for each user and use these information for fur-
ther analysis. Moreover, apart from full map knowledge,
we expect the adversary to have some kind of white-pages
database available, allowing him to perform reverse address
lookups. On the other hand, the adversary does not have
any additional background knowledge about its users, such
as personal preferences. Additionally, with the RPS provider
being a passive adversary only, he does not perform any ac-
tive attacks such as observation identification [6].

3.2 Further Assumptions & Design Goals
We expect a user to request a route P[S,D] on a road network
G from a source S to a destination D from a standard online
RPS. The user is either on a mobile phone with a built-in
GPS receiver that provides her current position in terms of
longitude and latitude or copies her desired source and des-
tination addresses manually into the RPS’ query interface,
with a full address consisting of street, house number, postal
code and city. However, we do not expect the client initially
to be in possession of any offline map information.

Our approach shall re-use existing RPS functionality as-is,
hence we do not expect any form of cooperation from the
RPS provider apart from responding to route queries, which
rules out any changes on the LBS side. Furthermore, our
approach should not rely on a TTP or any other trusted
component apart from the user’s device. Given the compu-
tational power of today’s mobile devices, a part of the whole
workload can yet be offloaded to the client. Apart from that,
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Figure 2: The basic steps of the PrOSPR algorithm.

we aim at providing an intuitive means for setting an indi-
vidual level of privacy for each user. Finally, we are seeking
to balance the trade-off between performance, i.e., the com-
munication overhead produced by our approach and quality
of service, i.e., being able to quickly answer each of a user’s
queries with a route that does not deviate much from the
optimal one she would normally have retrieved.

4. PrOSPR SYSTEM OVERVIEW
Our approach for Private Online Shortest Path Retrieval
(PrOSPR) aims at avoiding the possibility of inference at-
tacks based on restricted space information on behalf of an
online RPS provider by means of map-aware location obfus-
cation. As there is no TTP involved in our system, a user’s
exact location information will at no time leave her device,
which is thus the only component deemed trusted.

For privacy-preserving route retrieval from an online RPS,
our PrOSPR system takes the steps depicted in Figure 2:
(1) Upon initiation of a route request, coarse location obfus-
cation is applied to the endpoints in order to create corre-
sponding obfuscated areas. (2) Information about restricted
spaces, i.e., addresses within these coarse areas are fetched
from a map provider. (3) The client then checks if any of
the two endpoints falls into a zone already stored in a local
database LZones. If not, the algorithm refines the cloaked re-
gions to enclose the request’s endpoints less coarsely, yet still
matching the user’s privacy requirements. (4) Now the road
networks for the refined zones are downloaded from the map
provider. (5) According to different heuristics, variable sub-
sets of nodes within these networks are selected, (6) which
serve as inputs for the route queries to the RPS. (7) Finally,
the returned results are locally completed by the client and
the most appropriate one is presented to the user. In the
following, these different steps will be described in detail.

4.1 Initial Obfuscation of Route Endpoints
As no precise information about the actual endpoints of a
route request, S andD, should leave the user’s device, coarse
location obfuscation has to be applied locally for obtaining
two obfuscated areas Ai, i ∈ {S,D}. In order to not reveal
a user’s current or future locations, each obfuscated area
has to contain at least k restricted spaces. Given that the
source or destination location of a request is provided as an
address, such as Oettingenstrasse 67, 80538 Munich, some
kind of client-side geocoding is needed in order to be able to

specify a corresponding map section. Such initial location
obfuscation can be achieved by relying on the hierarchical
postal code system, which allows for a trivial mapping of an
address to a coarse surrounding region. Using postal codes
for location obfuscation naturally sets the upper limit for the
maximum value of k. However, each postal code refers to
several hundreds to thousands of addresses, which we believe
to be an acceptable level of privacy. To enable corresponding
region queries to a map provider, the PrOSPR client locally
stores a precomputed list LZIP containing the convex hulls
of the geographic boundaries of all postal code areas. In case
the user’s location is given in the form of GPS coordinates,
spatial obfuscation techniques such as described by Ardagna
et al. [1] could be applied. However, similar to using a grid-
based approach for location obfuscation [17], simple spatial
obfuscation is not guaranteed to prevent the possibility of
restricted space inference as it does not take into consid-
eration map information. In both cases, it might happen
that either an obfuscated area or a grid cell contains less
than the required number of k buildings and thereby vio-
lates a user’s privacy expectations. PrOSPR therefore again
relies on LZIP for locally looking up the postal code area
Ai containing the user’s current position, as this approach
intrinsically warrants the existence of an uncritically high
number of restricted spaces within the cloaked region. Ei-
ther way, the client now is in possession of the geographical
boundaries of two coarsely obfuscated areas, AS , AD, which
both excel the user’s privacy requirements.

4.2 Retrieval of Restricted Space Information
In line with [18], we argue that sensible location obfuscation
requires consideration of relevant map information. In the
context of restricted space inference, it is hence important
that the obfuscated region contains at least k such spaces,
i.e., buildings the user is equally likely to be in or heading
to. To be able to create such meaningfully cloaked areas,
once the coarsely obfuscated map sections for the source
and destination addresses have been found, our algorithm
queries an online map provider for restricted space informa-
tion BAi , i.e., the GPS coordinates of all buildings within
an obfuscated area Ai and their addresses in terms of street
name and house number to enable both geocoding and map-
ping addresses to nodes on the road network. With Ai being
chosen to contain at least k restricted spaces each, this does
not interfere with a user’s requirement for location privacy.
As soon as these information have been acquired, PrOSPR
continues with a refinement step of the obfuscated areas.

4.3 Silent Zone-based Region Refinement
In order to minimize the overall communication overhead,
the coarsely obfuscated areas are refined to match the user’s
privacy requirements more closely before issuing requests
to the RPS. Reducing the size of the cloaked areas is also
beneficial for having the online RPS compute as much of
the requested route in a traffic-aware fashion as possible.
PrOSPR deploys a mechanism for map-aware location ob-
fuscation called Silent Zones (SZ) presented by Wiesner et
al. [19]. A SZ is defined as a privacy zone around a user’s
important places relying on the concept of building-based k-
anonymity [16], i.e., a SZ contains at least k buildings. Rel-
ative position and extent of a SZ are selected to not provide
any hints towards which of the k buildings the SZ was cre-
ated for. To balance the trade-off between location privacy



and quality of service, the SZ approach constructs a nearly
minimal bounding box around a restricted space which still
matches a user’s privacy requirements in terms of k.

The PrOSPR client first checks whether S or D are spatially
contained in a SZ already stored in LZones. If so,the corre-
sponding zone will be re-used in order to avoid the possibil-
ity of the RPS provider being able to narrow down a user’s
important places over time, e.g., by means of frequency anal-
ysis of several zones covering her home address. Otherwise,
a new SZ for the given endpoint will be created. As a de-
terministic creation of the smallest possible zone might be
reversible, the SZ approach seeks to find zones that are only
nearly optimal in terms of the zones’ size, but in return can
be created more randomly. In order to create such meaning-
fully cloaked areas around a route’s source and destination,
a variant of the RandomRect (RR) algorithm proposed in
[19] is deployed. In case S or D are given as addresses,
restricted space information contained in BAi is used to re-
trieve the geographic coordinates required for SZ creation.
RR iteratively creates random square candidate zones SZ′i,
i ∈ {S,D}, containing the source (destination) as follows:

SZ′i(li, aj) = (li.x− α ∗ aj , li.y − β ∗ aj ,
li.x+ (1− α) ∗ aj , li.y + (1− β) ∗ aj) (1)

with li.x, li.y being the location’s longitude and latitude,
and aj defining the side length of the cloaked region in the
j-th round. α, β ∈ [0; 1[ are randoms used for shifting the
zone’s center off the actual location li. The initial side length
a0 can be chosen freely. When a candidate SZ′i is found, the
algorithm proceeds by counting the number of buildings cj
within this zone. While cj is smaller than the user specified
value of k, the algorithm iteratively doubles the size of the
area covered by the zone. Once the required value of k is
reached by cj , the algorithm returns the boundaries of the
j-th SZ′i. In order to cater for cases where S or D is lo-
cated near the border of the created zone, we expand these
boundaries by adding a constant value S BORDER and re-
turn that extended zone as SZi. The extra area does yet
not contribute to the user’s location privacy, as an attacker
can simply remove this border. SZS and SZD are stored in
LZones for future queries for the same regions.

As soon as the exact SZs for both the source and destination
regions of a request are known, PrOSPR queries the map
provider for the zones’ drivable road networks Gi, including
all road segments that lead out of or into one of the zones.
As both SZS and SZD are guaranteed to contain at least
k restricted spaces, this does not interfere with the user’s
privacy requirements. After downloading GS and GD, S
and D are mapped to the geographically closest nodes in
the corresponding graph to enable later route completion.

4.4 Selection of Query Points
Our algorithm then heuristically selects a subset of nodes
Vi within each of the zones’ road networks as inputs for the
point-to-point route queries. This step is taken in order to
further limit the number of queries that have to be sent to
the RPS. Hence, neither will the actual endpoints of the re-
quest be communicated to the RPS provider [10][11], nor will
routes from all nodes in SZS to all those in SZD be searched
[17]. Instead, our approach is based on the concatenation of

subroutes, with missing paths being computed locally by the
client. In return, however, our algorithm is not guaranteed
to find the optimal route and might instead produce differ-
ing results or even no result at all. The resulting quality of
service will be evaluated in Section 5. For the selection of
query point sets Vi, we propose the following heuristics:

• Random node (R1): Randomly choose one node on the
respective zone’s road network.

• Center (C1): Find the node on the road network closest
to the geographic center of SZi.

• Random nodes (RN): Randomly choose N nodes on the
zone’s road network, if present.

• All Entry/Exit-Points (EEP): Find all nodes that lead
out of (into) the request’s source (destination) SZ, i.e.,
nodes with a neighbor outside the respective zone.

• Random Entry/Exit-Points (EEPN): Randomly choose
N exit (entry) nodes, if present.

• Random nodes, one reachable (RNr): Randomly choose
N nodes and test if at least one of them is reachable
from the request’s source or has a route to the desti-
nation within the respective road network. Otherwise,
replace one of the selected nodes by a new randomly
chosen node until a reachable one is found.

• Random Entry/Exit-Points, one reachable (EEPNr): Ran-
domly select N exit (entry) nodes and test if at least
one of them is reachable from S (has a route to D)
within GS (GD). Else, replace one of the selected
nodes by another randomly chosen entry (exit) node
until a reachable one is found.

In order to not betray the exact location of the endpoints
within SZi, the latter are not used in any of the first five
approaches, i.e., each node in Gi is equally likely to be se-
lected. The one reachable heuristic increases the chance that
our algorithm is able to obtain a correct result, as it pre-
vents situations where no query point can be reached from
an endpoint within the locally known road network. The EEP
methods are based on the fact that all routes from source to
destination must cross one of the SZ’s entry or exit points.
These strategies automatically adapt to small numbers of
exit (entry) nodes and thus help to avoid waste requests.

4.5 Route Queries & Local Path Completion
For each pair of nodes in V = VS × VD one route query
will be issued. With the user’s real source and destination
addresses not being communicated to the service provider,
the result set is not guaranteed to contain a complete route
from source to destination. As it might by chance, though,
PrOSPR checks each result P[A,B], A ∈ VS , B ∈ VD whether
P[S,D] is a sub-route of the returned route. If so, our algo-
rithm cuts the extra steps from P[A,B], as this necessarily
is the shortest route from start to destination. In order to
not impair the user’s location privacy, however, PrOSPR
proceeds until all pairs in V have been processed. If the de-
sired route is not contained in P[A,B], our algorithm tries to
construct a complete path as follows: To avoid local path re-
dundancies within GS , PrOSPR searches the retrieved path
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for the first node Xm ∈ P[A,B] that is an exit node from SZS ,
i.e., Xm ∈ GS . If no such node can be found, Xm = B. Us-
ing A* respecting one-way streets and turn bans, then the
shortest path P[S,Xm] is computed. If, due to the former,
P[S,Xm] must not be concatenated with P[Xm,B], the proce-
dure is repeated with the predecessor Xm−1 ∈ P[A,B] of Xm

until in the n-th round a valid route is found or no such
node exists. In the former case, our algorithm then removes
P[A,Xm−n] from P[A,B] and appends the resulting subpath
to P[S,Xm−n], leading to P[S,B]. The same procedure is then
applied reversely to the last entry node Ym ∈ P[S,B] to SZD

and its successor nodes from P[S,B] to find the missing path
P[Ym+n,D]. The final outcome of this procedure is depicted
in Figure 3. When a correct route has been created or in
case local route completion fails, e.g., because no valid route
can be found, our algorithm continues with the next pair of
nodes in V until all pairs have been processed this way.

4.6 Optimizing Communication Cost
The number of requests that have to be issued to the RPS
on average can be reduced without sacrificing privacy sim-
ply by avoiding any redundant queries, i.e., route requests
that have implicitly been answered by previous requests. As
shown in Figure 4, this is the case when a still scheduled
query for a shortest path from A1 to B1 is the subroute of
an earlier result P[A0,B0]. Similar to [17], hence, upon re-
ceiving a result from the RPS we discard any pairs from V
that are found to be subpaths of the retrieved route.

In this section, we presented PrOSPR, a holistic and map-
aware approach for the retrieval of nearly optimal paths from
standard online RPS in a privacy-preserving way. Any ex-
ternal party involved in this process will at most learn the
geographic boundaries of two meaningfully cloaked areas,
which adapt to restricted space density and are hence guar-
anteed to contain at least k distinct addresses each. Route
requests using PrOSPR can thus be considered k-immune

against location inference, as both the source and destina-
tion cannot be identified from at least k restricted spaces.
Not using a TTP, this requires additional data acquisition
from a map provider and the RPS. Our approach hence also
incorporates several steps aiming at limiting its communica-
tion overhead, which will be evaluated in the next section.

5. EVALUATION
We will now present the results of our empirical evaluation
studying the feasibility of our approach in terms of quality
of service, cost and privacy. Concerning quality of service,
we evaluate to what extent the route results produced by
PrOSPR deviate from the optimal results retrieved by using
current route planning services as-is. Additionally, the num-
ber of requests that have to be sent to the RPS as well as the
resulting overall communication overhead will be analyzed.

5.1 Experimental Setup
We base our experiments on map information for Upper
Bavaria acquired from OpenStreetMap (OSM) as well as the
YOURS routing server1. For the download of map material,
we are making usage of the Overpass API2. LZIP is created
by extracting information about the convex hulls of all the
postal code areas contained in the OSM material, too. For
the region tested, this file used 394kB of disk space, or 620B
per postal code area on average.

Map information available in OSM is not complete, i.e.,
buildings or addresses might be missing. In order to pro-
duce authentic results, we visually identified three differ-
ently populated regions with a high coverage of buildings,
i.e., the cities of Munich (metropolis), Rosenheim (medium)
and Erding (small). Our experiments are conducted using
the settings from Table 1, performing 100 route requests for
random addresses for each combination of parameters.

Parameter Values
k 25, 50, 100, 150, 200
a0 50m
S BORDER 20m
Query point heuristic C1, R1, R5, R5r, EEP, EEP5, EEP5r

Routing scenario
withinMunich, withinRosenheim,
withinErding, MunichToErding,
MunichToRosenheim

Table 1: Parameter Settings

5.2 Quality of Service
In a first step, we analyze the accuracy of routes found by our
PrOSPR approach. We consider a route result to be optimal,
only if its length deviates less than 1m from the original
path’s length, which can be attributed to rounding errors
made when calculating distances between GPS coordinates.

Figure 5 shows the error distribution for the different se-
lection heuristics, combined for all routing scenarios using
k = 100, i.e., both the start and destination zones are guar-
anteed to contain at least 100 addresses each. The different
heuristics are able to produce the optimal route with varying

1http://wiki.openstreetmap.org/wiki/YOURS
2http://wiki.openstreetmap.org/wiki/Overpass API
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Figure 5: Error distribution of retrieved routes averaged over
all scenarios using k = 100.

success rates, ranging from 30.4% using R1 to 77.4% using
R5r, and 100% using EEP. EEP is the only strategy guaran-
teed to find the shortest path from S to D, as it necessarily
provides the optimal entry and exit nodes of the correspond-
ing SZs. All other heuristics may result in minor or major
detours compared to the optimal route. C1 is able to pro-
duce the optimal result in 44.6% of situations, and 54.4%
when accepting short detours of less than 100m. On the
other hand, both C1 and R1 are not able to find a complete
route from S to D at all in 11.2% and 15% of situations,
respectively. This happens when S or D are located in an-
other component of the locally known road network than the
chosen query point, which seems less likely when choosing a
node in the zone’s center. The RPS has no means for distin-
guishing such requests from normal ones, yet users will not
be keen on accepting such failure rates. The same problem
partly applies to R5 and EEP5, too. However, with five nodes
being randomly selected here, the possibility of at least one
query point being located in the same component as S or D
increases, leading to failure rates of only 2.4% and 3.0%.

The heuristics which are allowed to choose query points from
the whole of a zone’s road network, i.e., R5 and R5r, out-
perform the EEP-based strategies in the numbers of optimal
routes found. Also, the positive effects of the one reachable
strategy can be seen, as this ensures at least one correct
route from S to D to be found, even though not necessar-
ily the shortest one. Moreover, R5r and EEP5r also produce
more optimal results than their pure counterparts and can
hence be considered better fit for actual deployment, with
R5r offering the best results throughout almost all of our ex-
periments. Additionally, using R5r and k = 100, more than
97% of route requests result in a detour of less than 500m.

Figures 6 and 7 depict the relation between different values
of k and the number of correctly found optimal routes for
different map extracts. In Figure 6, one can clearly see how a
larger value of k negatively influences the accuracy of our al-
gorithm for all heuristics when applied to the tightly meshed
road network of the withinMunich scenario. As a larger k
implies the creation of larger zones, the chance of choosing
query points that leave or enter a zone using exit or entry
nodes other than the ones belonging to the optimal route
also increases. For small values of k, the random and entry-
point-based strategies almost perform equally well. How-
ever, for larger values of k, the EEP-based heuristics degen-
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Figure 6: Optimal routes found withinMunich, varying k.
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Figure 7: Optimal routes withinRosenheim, varying k.

erate at a much faster rate than R5 and R5r. This is caused
by growing sets of exit (entry) points EEP can choose from,
so the likelihood of selecting the optimal nodes decreases.
In contrast, query points selected by R5 and R5r can be lo-
cated all over the SZ, which increases the chance of a route
retrieved from the RPS to contain the best exit/entry node.

From Figure 7, it can be observed that for the withinRosen-
heim scenario using k ≤ 100, the EEP-based heuristics per-
form even better than the random ones. We attribute this
to the fact that there are only few suboptimal exit or en-
try nodes our algorithm can select, caused by a less tightly
meshed road network. In such situations, R5 and R5r may
choose several query points that produce routes leading out
of a zone using the same suboptimal exit point, which is
less likely to occur using EEP5/r. For k ≥ 150, however, R5
and R5r perform considerably better than the entry-point-
based heuristics also in the withinRosenheim scenario. Sur-
prisingly, using R5 or R5r with k ≥ 150 here produces even
more optimal results than with lower values of k, apparently
caused by the the underlying road network having more dis-
tinct clusters than in Munich. Overall, we hence conclude,
that if there is a high number of exit and entry points – which
commonly is the case for large values of k and within tightly
meshed road networks – the strategies based on random se-
lection of several query points such as R5r are preferable, as
they are the ones most likely to find the optimal route.
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Another interesting observation can be made from Figure
8, which indicates that in the withinMunich scenario, EEP5
results in fewer failures than R5. The graph suggests that
while EEP5 is less likely to produce the optimal route within-
Munich, it is better able to find at least one route from S to
D than R5. We attribute this effect to the existence of sev-
eral distinct components within a SZ’s road network: If the
zone’s exit (entry) nodes are evenly distributed among the
components, each of them is equally likely to house a query
point using EEP5, thereby increasing the chance that a route
can be found. With R5, however, the biggest component –
which is not necessarily the one containing S or D – is likely
to contribute a majority of query points, which will all lead
to failure. Part of our ongoing research is hence to design
more sophisticated heuristics for query point selection based
on suchlike characteristics of the local road network.

scenario k mean error max error
25 15.6m 427.0m

withinMunich 100 48.5m 917.5m
200 64.1m 958.3m
25 22.0m 548.6m

MunichToErding 100 47.2m 1,168.4m
200 48.3m 1,097.7m
25 21.9m 898.4m

combined 100 47.2m 1,168.4m
200 59.9m 2,047.8m

Table 2: Mean and maximum errors using R5r.

Table 2 has the errors in meters that can be observed for
different scenarios and varying values of k using R5r. Again,
one can clearly see how a growing value of k negatively in-
fluences the accuracy of our approach. Using k = 100, a
maximum detour of more than 1.1km occurs. On average,
however, our approach is able to produce a mean detour of
only 47.2m per request, which we believe to be an accept-
able tradeoff for privacy. Additionally, our results suggest
that the accuracy of our approach is independent from the
actual distance from S to D, as the values for the different
routing scenarios indicate almost no noticeable differences.

5.3 Number of Requests to the RPS
Apart from quality of service characteristics, also the num-
ber of requests that have to be sent to the online RPS should
be optimized. Figure 9 depicts the average number of re-
quests combined over all routing scenarios using the stan-
dard procedure and the optimization described in Section
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4.6. In contrast to the trivial cases of R1 and C1, which
always only send a single query to the RPS, the methods
based on selecting N query points require up to N2 queries,
given that enough nodes can be found in a zone. As one can
see, for small k the EEP-based heuristics automatically adapt
to the required minimum of requests also in normal mode.
By using the proposed optimization, however, the number
of requests that have to be sent to the RPS on average can
be considerably lowered, e.g., from 25 to 18.6 using R5r with
k = 100. It can also be seen, that for smaller values of k
a higher number of requests can be avoided. Additionally,
the EEP strategy, which is the only one guaranteed to pro-
duce the optimal result, requires up to several hundreds of
requests, increasing with larger values of k.

5.4 Combined Communication Cost
PrOSPR also needs to query restricted space information for
the source and target postal code areas from the map server.
The latter returns a list of all addresses and their GPS coor-
dinates within the bounds of the requested region. Imperfect
OSM information potentially lead to a smaller download size
and to the creation of larger SZs. For the regions we chose
for testing, however, address information seems to be quite
complete. Figure 10 shows the mean amount of data com-
bined for S and D that has to be downloaded to acquire
complete address information for a route request, averag-
ing at 174kB for the withinMunich scenario, and 437kB for
withinRosenheim. Maximum individual file size is 400kB for
a postal code area in Rosenheim. In a second step, map in-
formation has to be downloaded for the created SZs, which
produces considerably less overhead. Figure 10 also depicts
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varying side length in Munich and Erding.

the communication overhead caused by different values of
k and routing scenarios using R5r, if not stated otherwise.
Comparing the withinMunich scenario with toRosenheim,
one can see how the query overhead increases with growing
distance between source and destination, even though the
numbers of requests remain exactly the same. Finally, EEP
produces an overhead of 2.8MB only for the route requests.

5.5 Privacy Evaluation
Relying on the principle of location obfuscation, both our ap-
proach and the one in [17] do not directly betray the user’s
endpoints to the RPS. In contrast, OPAQUE [10][11] hides a
user’s true source and destination by injecting an arbitrary
number of route requests for dummy locations in the user’s
vicinity. The level of location privacy hence only relies on
the number of requests sent to the RPS, leading to massive
communication overhead for high levels of anonymity. Ad-
ditionally, here the actual source and destination addresses
are communicated to the RPS, which in combination with
inappropriately chosen dummy positions might lead to an
easy identification of a user’s actual locations. Vicente et al.
[17] propose to facilitate fixed-size grid cells in order to con-
ceal the user’s true start and destination. In Figure 11, we
analyze the resulting privacy level using grid cells with a side
length s of 300, 500 and 1000m. We generated 50 different
randomly positioned grids for each setting, using the same
addresses for the SZ approach. The grid cells contain a good
amount of buildings on average, e.g., when applying a 300m
grid in the Erding area, about 82.64 buildings are contained
on average. However, in each of the tested scenarios it hap-
pens that there are almost no buildings contained within the
corresponding cell. For instance, when applying a 500m grid
in the Munich area, there is a case where only four buildings
are contained. And even with a side length of 1000m, there
are cells that only contain six buildings. The same problem
can be expected to apply to more rural regions as well.

In contrast, PrOSPR utilizes map information in order to
dynamically construct cloaked areas around a user’s source
and destination addresses, which guarantees a minimum num-
ber of k restricted spaces being contained. Table 3 shows the
average number of buildings within a SZ as well as the cor-
responding side length of the created zones. It can be seen
that the required number of k is easily reached in each of the
tested scenarios, with a minimum amount of 100 buildings
for k = 100 and a mean count of 170, which clearly over-

scenario k min c ∅ c max c ∅ size
25 25 45.30 179 276.79m

withinMunich 100 100 163.54 1,180 680.54m
200 200 347.64 1,383 1,161.03m
25 25 48.39 218 365.87m

withinErding 100 100 179.25 797 957.31m
200 200 303.78 797 1,359.00m
25 25 45.80 290 283.64m

combined 100 100 170.39 1,241 715.34m
200 200 326.98 1,756 1,118.74m

Table 3: Number of buildings and SZ side length.

shoots the desired mark. One can also observe that the mean
side length increases for larger values of k. Finally, it can
also be seen how the side lengths behave differently for the
withinMunich and withinErding scenario. In the latter, less
densely populated area, the side length needed for reaching
the same building count as in Munich is considerably longer.
We hence argue that such an adaptive, map-aware approach
for location obfuscation is indeed better suited for the field of
private shortest path retrieval than the grid-based approach.

5.6 Discussion
In case a correct route from S to D cannot be found – which
might happen using C1, R1, R5, and EEP5 – a practical im-
plementation would have to start over and send additional
route request to the RPS. By analyzing the set of seen route
requests, however, a RPS provider can narrow down a user’s
actual locations by extracting all addresses that are mapped
to those segments of Gi, that did not yet contain a node in
Vi of the original request. For this reason, we argue that
also from a privacy perspective, the one reachable heuristic
should be used, as it prevents the need to start over the
whole process and the leakage of valuable information. On
the other hand, if the RPS provider is aware of the deploy-
ment of the one reachable strategy, he may try to remove
those addresses from BAi(SZi) which map to components of
Gi, that did not contribute a node to Vi. An analysis of how
likely this might affect a user’s location privacy by reducing
the effective value of k will be examined in our future work.

In this section, feasibility, quality-of-service and overhead
of our approach have been evaluated. The results indicate
that PrOSPR is able to effectively perform k-immune online
shortest path retrieval at the cost of slightly decreased mean
accuracy and noticeable communication overhead. For k =
100, however, the latter has been shown to be smaller than
750kB on average, which we consider to be acceptable.

6. CONCLUSION
This paper introduced PrOSPR, a novel approach for per-
forming shortest path retrieval from an online RPS in a
privacy-preserving way. Our system aims at preventing lo-
cation tracking and de-anonymization of a pseudonymously
known mobile user based on precise address information by
the means of k-immune shortest path requests. Our ap-
proach neither requires collaboration from the RPS provider,
nor is it based on the existence of a TTP. Instead, it can
be used with standard online route planning services. Re-
stricted space inference is counteracted by deploying a k-
anonymity-based means for map-aware location obfuscation.
Based on empirical evaluation, we analyzed the feasibility of



our approach in terms of accuracy, privacy and communica-
tion overhead. We have shown that different heuristics can
be used to balance the trade-off between quality of service
and cost, e.g., allowing us to retrieve the optimal route in
up to 77% of situations with less than 19 requests to the
RPS on average using R5r and k = 100, and a mean detour
of only 47.2m. Moreover, we have shown that our system is
able to effectively protect its users against attacks based on
restricted space inference by constantly providing k-immune
online shortest path queries.

We see this as a first step only. Directions for future work on
this topic can be seen in finding techniques able to further
reduce the communication overhead of our approach, such
as optimizing the number of query points, and increasing
quality-of-service by eliminating detours of more than 100m
length. Additionally, privacy implications of using the one
reachable heuristics deserve further attention. Another in-
teresting question concerns the types of additional contex-
tual information about restricted spaces, such as opening
hours, which have to be considered for effectively creating
k-immune route requests against an attacker who also uses
such information in order to infer a user’s possible locations.

7. REFERENCES
[1] C. Ardagna, M. Cremonini, E. Damiani,

S. De Capitani di Vimercati, and P. Samarati.
Location privacy protection through obfuscation-based
techniques. In S. Barker and G.-J. Ahn, editors, Data
and Applications Security XXI, volume 4602 of
Lecture Notes in Computer Science, pages 47–60.
Springer Berlin Heidelberg, 2007.

[2] B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting
anonymous location queries in mobile environments
with privacygrid. In Proceedings of the 17th
International Conference on World Wide Web, WWW
’08, pages 237–246, New York, NY, USA, 2008. ACM.

[3] C. Chow, M. Mokbel, and X. Liu. A peer-to-peer
spatial cloaking algorithm for anonymous
location-based services. GIS ’06 Proceedings of the
14th annual ACM international symposium on
Advances in geographic information systems, 2006.

[4] P. Golle and K. Partridge. On the anonymity of
home/work location pairs. In Proceedings of the 7th
International Conference on Pervasive Computing,
Pervasive ’09, pages 390–397, Berlin, Heidelberg, 2009.
Springer-Verlag.

[5] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and
Services, MobiSys ’03, pages 31–42, New York, NY,
USA, 2003. ACM.

[6] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and
Services, MobiSys ’03, pages 31–42, New York, NY,
USA, 2003. ACM.

[7] M. Gruteser and X. Liu. Protecting privacy, in
continuous location-tracking applications. Security
Privacy, IEEE, 2(2):28–34, Mar 2004.

[8] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous
communication technique using dummies for
location-based services. In Pervasive Services, 2005.
ICPS ’05. Proceedings. International Conference on,
pages 88–97, July 2005.

[9] J. Krumm. Inference attacks on location tracks. In
Proceedings of the 5th International Conference on
Pervasive Computing, PERVASIVE’07, pages 127–143,
Berlin, Heidelberg, 2007. Springer-Verlag.

[10] K. Lee, W.-C. Lee, H. Leong, and B. Zheng. Opaque:
Protecting path privacy in directions search. In Data
Engineering, 2009. ICDE ’09. IEEE 25th International
Conference on, pages 1271–1274, March 2009.

[11] K. C. Lee, W.-C. Lee, H. V. Leong, and B. Zheng.
Navigational path privacy protection. In Proceedings
of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, pages 691–700,
New York, NY, USA, 2009. ACM.

[12] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1),
Mar. 2007.

[13] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new
casper: A privacy-aware location-based database
server. In Data Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on, pages 1499–1500.
IEEE, 2007.

[14] K. Mouratidis. Strong location privacy: A case study
on shortest path queries. In Data Engineering
Workshops (ICDEW), 2013 IEEE 29th International
Conference on, pages 136–143, April 2013.

[15] P. Shankar, V. Ganapathy, and L. Iftode. Privately
querying location-based services with sybilquery. In
Proceedings of the 11th International Conference on
Ubiquitous Computing, Ubicomp ’09, pages 31–40,
New York, NY, USA, 2009. ACM.

[16] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[17] C. Vicente, I. Assent, and C. S. Jensen. Effective
privacy-preserving online route planning. In Mobile
Data Management (MDM), 2011 12th IEEE
International Conference on, volume 1, pages 119–128,
June 2011.

[18] M. Wernke, P. Skvortsov, F. Dürr, and K. Rothermel.
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