
1

Malware Detection Based on Opcode Dynamic Analysis
Jing Zhang* and Yu Wen

Abstract
Malware detection is an important problem in the field of information security. Opcodes are the most direct information
reflecting the execution behavior of malware, The malware based on the dynamic analysis of opcodes also faces some
challenges: the acquisition of the operating code information in the execution process of the malware; the high false alarm
rate in the detection process and the large system overhead caused by the malware detection in the application layer. In
order to deal with the above problems, this paper proposes a new scheme for dynamic opcode acquisition, the opcode
information obtained from the software runtime is used for offline analysis. The detection accuracy of off-line malware
can reach 99.85%, which is superior to the traditional technology. Moreover, this paper proposes an online detection
scheme: CPU built-in malware monitoring model (CBMM), which can solve the problem that it is difficult to accurately
identify the execution trajectory of malware in the current malware detection process, at the same time, this model can
monitor malware in real time. Finally, we implement our model by VerilogHDL, functional simulation was carried out in
modelsim simulation software and its implementation cost was analyzed.

Keywords: Malware Detection, Opcodes, Dynamic Detection.

Received on 16 July 2020, accepted on 15 October 2020, published on 20 October 2020

Copyright © 2020 Jing Zhang et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.22-6-2021.170239

* Corresponding author. Email: zjj7ucas@163.com

1 Introduction

With the development of the Internet technology in recent
years, it is also used by criminals to carry out malicious
activities due to the openness of the Internet. So
information security is becoming more and more
important. An important problem in the field of
information security is malware detection. Most antivirus
software use a combination of signatures and heuristics
method to detect malware. The problem with this
approach is that it is susceptible to malware obfuscation
mechanisms, making it difficult to accurately identify the
trajectory of malware execution.

Because the malware will eventually execute the code
with malicious behavior in the execution process, the
malware can be detected by analyzing the behavior
information of the malware. Since opcodes are the most
direct information reflecting the execution behavior of
malware, this paper analyzes the information of opcodes
in the execution process of malware for malware
detection. However, the malware based on the dynamic
analysis of the operating code also faces some challenges:
the acquisition of the operating code information in the
execution process of the malware; the high false alarm
rate in the detection process and the large system

overhead caused by the malware detection in the
application layer. In order to deal with the above
problems, this paper firstly analyzes the progress and
existing problems of existing malware detection
technology based on dynamic opcode analysis, then
proposes a new scheme for dynamic opcode acquisition,
the opcode information obtained from the software
runtime is used for offline analysis. In the off-line
analysis, this paper uses a variety of feature selection
algorithms to extract features of the operating code
information when the software is running, we use the
extracted feature subset combined with a variety of
machine learning algorithms to conduct cross-comparison
experiments. Finally, the detection accuracy of off-line
malware can reach 99.85% and the false alarm rate can
reach 0.5%. Based on the above research results, this
paper proposes an online detection scheme: CPU built-in
malware monitoring model (CBMM), which can solve the
problem that it is difficult to accurately identify the
execution trajectory of malware in the current malware
detection process, at the same time, this model can
monitor malware in real time. Finally, we implement our
model by VerilogHDL, functional simulation was carried
out in modelsim simulation software and its
implementation cost was analyzed.

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Jing Zhang and Yu Wen

2

2 Related Work

Malware detection can be divided into dynamic malware
detection and static malware detection according to the
way of obtaining malware information. Dynamic malware
detection is a way to expand malware detection by
running malware and obtaining behavior information
(including opcode, register, API call, etc.) during its
operation.

In order to deal with the problem that the signature-
based malware detection method is susceptible to the
confusion mechanism, the current malware detection
research begins to focus on how to detect malware by
analyzing the behavior information of software runtime.
The opcode information at the time of software execution
reflects the operation performed by the processor. By
analyzing the opcode information at the time of software
running, the existence of malware can be detected, it is
not affected by the confusion mechanism [2].

Ozsoy et al. [3] used Intel Pin tools to insert
instructions into malware, they collected instructions
during program operation and analyzed the information of
instruction type, frequency of access operation, and they
used neural network and logical regression to construct
classifier. The sensitivity of classifier to malware reached
100% and the false alarm rate was 9%. [4] [5] also
proposed to use opcode for malware detection Testing. In
[6], the author proposed to use the instruction sequence
with variable length as the feature. After obtaining the
feature, the malware detection was carried out using
bagging integrated learning algorithm, finally a better
detection effect was obtained. There are also scholars who
directly use hexadecimal opcode data for malware
detection. The advantage of this approach is that the
complexity of opcode types can be reduced because one
hexadecimal data may correspond to multiple opcode [8].

It can be seen that opcode can be used as a good
feature in malware detection, due to the use of opcode
information in dynamic analysis, we can solve the
problem of malware detection caused by code confusion.
But most of the previously proposed methods have a high
false alarm rate, high performance overhead and resource
requirements. On-line detection of malware and accuracy
and false alarm rate need to be further improved.

In terms of dynamic opcode acquisition, there are two
main ways: using application layer tools to obtain (e.g.
Intel Pin tool [52], valgrind [53]); using system level
tools to obtain (mainly sandbox) [55]. During the use of
application level tools, there is a problem that kernel-
space information cannot be obtained, when using
sandbox tools, there is the problem of low monitoring
efficiency. We propose a new opcode dynamic acquisition
scheme in Section 3.

3 Proposed Methodology

The malware detection model determines malware as
malware or benign software according to the input
characteristic data. The malware detection model M can
be understood as a function whose domain is a set of all
programs P, and the range is {Y, N}:

The detection model M scans the program p, determine
whether the program contains malicious behavior. The
desired result is: if the M returns Y, the program is
detected to contain malicious behavior; otherwise,
malicious behavior is not detected. In this paper, the
detector is the malware detection technology of opcode
dynamic analysis, and the domain of definition is the set
of programs.

The traditional dynamic analysis method is difficult to
obtain the complete sequence of malware opcode. In this
paper, a method of obtaining the operation-time opcode
information is proposed, and this method uses the
complete opcode information. We use different feature
extraction algorithms and classification algorithms to
extract and classify them, then we analyze the effects of
different feature selection algorithms, N-gram length and
classification algorithms on malware detection.
Experiments show that the detection accuracy of malware
is 99.85%, which is superior to traditional technology.

We divides the current malware detection based on
opcode dynamic analysis into three parts and two stages
(see Fig. 1). Three parts refer to dynamic opcode
acquisition part, feature extraction part and decision
classification part. Two stages refer to offline data
analysis stage and online detection stage. The relationship
between the three parts and the two stages is as follows: in
the off-line data analysis stage, the required dynamic
opcode information is obtained by the dynamic opcode
acquisition part, a feature subset is obtained by the feature
extraction part, the decision and classification of the third
part is expanded by the acquired feature subset. At the end
of the off-line data analysis stage, we can get a malware
detection classifier which is input into the dynamic
opcode information feature. The online detection stage
mainly uses the results obtained after offline analysis to
detect malicious code online. The next step is to introduce
the offline opcode dynamic acquisition scheme in Section
3.1. Section 3.2 introduces the feature algorithm and
decision algorithm used in the off-line analysis stage, and
section 3.3 presents the online malware detection scheme
in this paper.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

3

Fig. 1. Dynamic analysis of malware detection based on opcodes

3.1 Opcode Acquisition Scheme

The current dynamic opcode acquisition method still has
some problems, such as incomplete information and low
monitoring efficiency, so we propose a dynamic opcode
acquisition scheme. This scheme is mainly based on the
QEMU [58] binary translation mechanism, as shown in
Fig. 2, in the process of translating guest opcode into host
operation, the data saving module is inserted to save the
required information. A sandbox system based on QEMU
is designed through the above ideas. This sandbox system
can provide instruction level monitoring granularity. A
QEMU sandbox system will be implemented in section 4.

Fig. 2. QEMU binary translation technology

Fig. 3 shows the dynamic opcode acquisition scheme
of this paper based on QEMU sandbox system, which
includes three parts: data source, data filtering, and
QEMU sandbox system. The sections are described
below.

• Data source: software to be analyzed. Malicious
software is downloaded from Virus share website in
this paper. It is a website dedicated to providing
malware analysis samples for researchers. The

benign software obtains from the Linux system
software, mainly from the system software under the
/usr/bin and /bin directory.

• Data filtering: To ensure the reliability of malicious
samples, filter them before analyzing them. This
paper uses the virustotal [59] for sample filtering, by
writing an interface program, we use virustotal to
analyze malware. Virusshare provide nearly 10
mainstream antivirus engines including McAfee,
Symantec, 360 and so on, which can ensure the
reliability of malware.

• QEMU based sandbox system: this part is the core
part of this scheme, the main work is to run the
software to be analyzed and obtain its dynamic
opcode data. This system will be described in detail
in section 4.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

Jing Zhang and Yu Wen

4

Fig. 3. Dynamic opcode acquisition scheme

3.2 Feature Selection And Decision
Classification

Feature Selection:
The feature selection algorithms adopted in this paper are
as follows.

• Correlation-based Feature Selection (CFS) Algorithm.
• Chi party Test Feature Selection Algorithm.
• Information Gain and Information Gain Rate.
• Symmetric Uncertainty Feature Selection Algorithm.
• N-gram Algorithms.

In section 4, we will use these feature selection
algorithms for feature extraction, and analyze the effect of
feature selection algorithms on the final detection effect.

Table 1. Examples of n-gram

Operand sequence Mov cmp push jmp add

1-gram Mov,cmp,push,jmp,add
2-gram Mov cmp ,cmp push, push jmp, jmp

add
3-gram Mov cmp push, cmp push jmp, push

jmp add

Decision Classification:
The decision classification algorithms used in offline
analysis are decision tree, SVM, Bayesian network,
ensemble learning algorithm and the neural network.

3.3 Online Malware Detection Scheme

We propose an online malware detection scheme. As
shown in the following figure, this scheme mainly
includes three parts: data separation module, feature
extraction module and decision module.

Fig. 4. Schematic diagram of malware detection
scheme

Data separation module works to split the opcode
according to the CR3 value. The data source of the data
separation module is the decoder of the processor. The
feature extraction module and the decision module will be
designed by using the detection module obtained after

offline analysis. So this part will be explained in detail
after section 4 offline data analysis.

4 System Implementation And
Experiment

Analytical experiments will be carried out in this section.
The acquisition mode will use the scheme proposed in
section 3 to obtain dynamic opcode. After the dynamic
opcodes information is obtained, the opcodes will be
analyzed by empirical and computational methods. The
computationally based analysis method will be applied to
the feature selection algorithm and classification
algorithm introduced in section 3. In the process of
analyzing the experimental results, the analysis method of
control variables is mainly used to analyze the factors that
affect the detection accuracy of malware. We further
design online malware detection scheme: CPU built-in
malware monitoring module (CBMM), the model can
detect malware online during CPU operation. We realize
the CBMM through Verilog HDL, use modelsim
simulation software for functional simulation and analyze
the actual modern price.

4.1 Data Collection Environment

The environment in which the data collection system
operates is shown in Table 2.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

5

Table 2. Data collection environment

operating system architecture processor memory

host Windows10 64bit Intel i7-8750H 16G DDR4

client Ubuntu16.4 32bit Qemu core 4G

As shown in Fig. 5, the QEMU based sandbox system
consists of three modules: microarchitecture information
preservation module, software scheduling module and
system operation anomaly monitoring module.

Fig. 5. QEMU based sandbox system

The three modules described above are described below:

• Opcode information saving module. According to the
principle of QEMU binary translation, we modify the
source code in the process of QEMU intermediate
translation, add the data saving program and design the
trigger point where the software needs to save the data
at run time, so that the information such as opcode can
be saved under the specified scenario. Through
analyzing the x86 instruction set, the instructions 0 xf1
and 0 xd6 which do not exist in the x86 instruction set
are selected as the trigger points for the preservation of
microarchitecture information.

• Use two long integer variables ϕ and φ to represent the
number of times 0 xf1 and 0 xd6 two instructions are
executed.

Start flag： start recording opcode information. Stop
flag： stop recording opc in formation.

• Software scheduling module. The microarchitecture
information saving trigger point and information
saving program designed according to step 1 enables
the user to trigger the microarchitecture saving
program of the simulator under the condition that the
microarchitecture information needs to be saved. At the
same time, the scheduling software also needs to keep
the initial state of each simulator running platform
consistent, so it needs to be restored to the initial state
before each system running, and the function flow of
the scheduling module is shown in Fig. 6.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

Jing Zhang and Yu Wen

6

Fig. 6. Software scheduling module

• Abnormal monitoring module. Scheduling software
automatically triggers and stops the system's ability to
hold processor microarchitecture information under
certain conditions. But in some situations, such as
running, some malware can cause unrecoverable
damage to the system. For improving the robustness of
the whole system, the abnormal monitoring module is
designed, and the analysis is carried out according to
the existence time PID the second dispatching
subprocess of the module. If the abnormal time is set,
the abnormal monitoring software will deal with the
current system scheduling software call subprocess.

Through the above opcode collection scheme, we can get
the opcode information that needs to be analyzed in the
offline analysis stage in this paper.

4.2 Datasets

Datasets: Malware gets system software from virusshare
[69], benign software gets from 32-bit Ubuntu 16.04.
Table 3 shows the number of malware and benign
software in the text.

Table 3. Datasets

Number

benign Software 1166
malicious software 2189

Evaluation criterion: accuracy, recall, ROC curve.
Malware is defined as a positive class sample and

benign software as a negative class sample.
Accuracy:

Recall:

ROC curve: ROC curve is a curve with false positive rate
and true rate as axes. The area under the ROC curve is
called AUC. Briefly, the greater the AUC, the better the
classification effect.

4.3 Data Processing

Experimental result:
A total of 168 different opcodes appeared in this paper,
and the top18 number of opcodes appeared in malware
accounted for 93.6% of all opcodes (Fig. 7). We also
counted opcodes that only appear in malware (Fig. 8).The
main functions of the most frequent opcodes are listed in
Appendices Table 7, Data of N-gram N=2, 3 were also
extracted in this experiment (Appendices Fig. 14~Fig.
19). There are 3064 different sequences in the 2- gram
and 20,387 in the 3- gram.

We use feature selection algorithm to process opcode
data, first construct arff format file to meet weka data
format, which contains data feature name and feature
data. The frequency characteristic information of different
opcodes is mainly considered in this paper. Feature
selection can reduce the dimension of feature data and
reduce the computational complexity of classifier. Then
we will choose different classification algorithms to
experiment, and compare the experimental results under
the combination of different feature algorithms and
different classification algorithms. Feature selection

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

7

algorithms as well as classifier algorithms will act in the
case of Ngram N=1, 2, 3 (Fig. 7).

Fig. 7. 1-gram opcode feature selection

Experiment of Classification Algorithm.
When the feature selection algorithm is CFS, the random
forest classifier has the best performance for a single

opcode feature, and its accuracy is 99.85%, followed by
Bayes Net, accuracy of 99.79% (Table 4).

Table 4. Results of classifier test (accuracy)

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Jing Zhang and Yu Wen

8

Fig. 8. Bayes Net and random forest ROC curve

Table 5. Bayes Net and random Forest recall rate

According to the figure above, the CFS feature
selection algorithm is the best one. Remove the
information gain rate feature selection algorithm at N=1.
In other cases, the accuracy rate is above 99%. Except for
the CFS feature selection algorithm, the accuracy of
classification algorithm increases with the N of N-gram
under other feature selection algorithms.

4.4 Design and Implementation of On-line
Malware Detection Scheme

This section will design the online malware detection
module in this article: CPU built-in malware monitoring
module (CBMM).

Bayes Net Random forest

False alarm rate 0.9% 0.5%

Recall rate 0.993 0.997

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

9

The data separation module is responsible for diverting
the received opcode data stream according to the CR3
value, obtaining the opcode data after the processing data
preprocessing module is shunted by multiple channel;
feature extraction modules associated with the CR3 value
to generate the feature vector; the decision module detects
the indicated by the current CR3 according to the feature
vector generated by the feature extraction module. The
advantages of the CPU built-in malware monitoring
model are hardware implementation, the response speed is
fast, it can be monitored in real time without the influence
of malware confusion mechanism. As shown in Figure 9.
The diagram shows where the security module is built in
Schematic architecture. The input of the CBMM in this
architecture is the opcode section in the instruction, as
well as the value of the cr3register (Fig. 10). The model

determine whether the current running program or
software has malicious behavior through the detection of
the input data stream. During on-line monitoring, the
module generates feature vectors and judges malware
when the CR3 changes and the input opcode reaches the
preset threshold. Before the decision condition is reached,
the whole module will only use the register to record the
number of times that the specific opcode is executed, the
decision module will only be used in the decision stage,
because the data separation module the multiple channel
obtained by the block (set to 64 channel in this paper) is
running in parallel, the expected value of the data
received by each channel is 1/64 of the processor
processing data, which can greatly alleviate the problem
of high processor processing speed.

Fig. 9. Schematic diagram of secure processor structure embedded in CBMM module

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Jing Zhang and Yu Wen

10

Fig. 10. Typical use of CR3 in address translation

Hardware Implementation Cost Analysis.
Implementation and simulation environment: Quartus
Prime Standard Edition 16Modelsim. The functional
modules are simulated at RTL level using modelsim and
power consumption prediction using PowerPlay power
Analyzertool.

Feature extraction module will produce feature vectors
when the current CR3 value changes or the recorded
opcode reaches a certain threshold. Decision module uses
the decision tree algorithm. This algorithm is a C4.5
algorithm. The information gain rate is used to construct
the decision tree, pruning is carried out in the process of
constructing the tree.

CBMM module is a complete functional module after
integrating data separation module, feature extraction
module and decision module. This paper uses modelsim
to verify it. The required input data will be constructed in

the simulation experiment. By writing the testbench to
satisfy all the excitation of the module, we analyze its
accuracy according to its simulation output. In the
experiment, all opcode data are from offline collected
data, CR3 data are added for themselves. In the
experiment, the CR3 data range is 0-99. In the online
simulation experiment, 50 benign samples and 50 evil
samples were used Italian software to test.

4.5 Experimental Results Of Algorithm
Simulation

As shown below, the input is CR3 and the opcode and the
output is the decision result of the decision module, 01
means the decision is malware and 10 means the decision
is benign software. During the experiment of CBMM
module, the module can detect the malicious software
accurately, and accord with the expected effect of offline.

Fig. 11. Simulation results of feature extraction module

Fig. 12. Decision Tree Algorithm Simulation

Fig. 13. CBMM simulation waveform

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

11

Thermal power consumption analysis is carried out
after functional simulation. The following table shows the
estimated thermal power consumption and resource usage

of each module. LE logic unit in the FPGA development
board. According to Table 9, the whole on-line detection
scheme can be completed with few logical units.

Table 9. Analysis of resources and estimated power consumption

resource Feature extraction
module

Decision module Complete module

LU LE 163 39 172

Power heat dissipation 138.14mW 129.86mW 141.86mW

5 Conclusion

A CPU built-in malware monitoring model is proposed in
this paper to complete the design and simulation of the
module, but this module does not take into account the
performance factors in hardware implementation. In the
future work, the implementation of this module will be
optimized and built into the real processor to achieve the
effect of its practical application.

References
[1] Mcafee, “McAfee Labs Threat Report,” no. December, p.

50, 2016.
[2] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static

Analyzer of Vicious Executables (SAVE),” Proc. - Annu.
Comput. Secur. Appl. Conf. ACSAC, no. January, pp.
326–334, 2004.

[3] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data
mining methods for detection of new malicious
executables,” no. February 2001, pp. 38–49, 2002.

[4] J. Kolter, “Learning to detect and classify malicious
executables in the wild,” J. Mach. Learn. Res., vol. 7, pp.
2721–2744, 2006.

[5] A. Pfeffer et al., “Malware analysis and attribution using
genetic information,” Proc. 2012 7th Int. Conf. Malicious
Unwanted Software, Malware 2012, pp. 39–45, 2012.

[6] G. Bonfante, “Control flow graphs as malware signatures,”
Int. Work. Theory Comput. Viruses, no. May 2007, pp. 1–
6, 2007.

[7] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith,
“Detecting Malicious Code by Model Checking,” pp. 174–
187, 2010.

[8] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A
semantics-based approach to malware detection,” ACM
Trans. Program. Lang. Syst., vol. 30, no. 5, pp. 1–54, 2008.

[9] S. Wehner, “Analyzing worms and network traffic using
compression,” J. Comput. Secure. vol. 15, no. 3, pp. 303–
320, 2007.

[10] C. Liangboonprakong and O. Sornil, “Classification of
malware families based on Ngrams sequential pattern
features,” Proc. 2013 IEEE 8th Conf. Ind. Electron. Appl.
ICIEA 2013, pp. 777–782, 2013.

[11] P. Venu, D. Vaman, and R. Prasad, “N-Gram Analysis in
SVM Training Phase Reduction Using Dataset Feature

Filtering for Malware Detection,” Int. J. Sci. Res., vol. 3,
no. 9, pp. 550–554, 2014.

[12] K.-H.-T. Dam and T. Touili, “Malware Detection based on
Graph Classification,” no. Icissp, pp. 455–463, 2017.

[13] C. K. Patanaik, F. A. Barbhuiya, and S. Nandi,
“Obfuscated malware detection using API call
dependency,” no. June 2014, pp. 185–193, 2013.

[14] A. A. E. Elhadi, M. A. Maarof, and B. I. A. Barry,
“Improving the detection of malware behaviour using
simplified data dependent API call graph,” Int. J. Secur.
It’s Appl., vol. 7, no. 5, pp. 29–42, 2013.

[15] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N.
Abu-Ghazaleh, and D. Ponomarev, “Hardware-Based
Malware Detection Using Low-Level Architectural
Features,” IEEE Trans. Comput., vol. 65, no. 11, pp. 3332–
3344, 2016.

[16] S. Dolev, Y. Elovici, A. Shabtai, R. Moskovitch, and C.
Feher, “Detecting unknown malicious code by applying
classification techniques on OpCode patterns,” Secur.
Inform. vol. 1, no. 1, 2012.

[17] I. Santos, B. Sanz, C. Laorden, F. Brezo, and P. G.
Bringas, “Opcode-sequence-based semi-supervSantos, I.,
Sanz, B., Laorden, C., Brezo, F., & Bringas, P. G. (2011).
Opcodesequence-based semi-supervised unknown malware
detection. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial ,” in
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2011, vol. 6694 LNCS, pp. 50–57.

[18] S. R. Bragen, “Malware detection through opcode
sequence analysis using machine learning,” 2015.

[19] P. Agarwal and K. Bansal, “Malware Classification
Challenge.”

[20] K. N. Khasawneh, M. Ozsoy, C. Donovick, N.
Abu-Ghazaleh, and D. Ponomarev,

“Ensemble learning for Low-Level Hardware-Supported
malware detection,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 9404, pp. 3–25, 2015.

[21] I. T. Supplement, N. Crime, and V. Survey, “Types of
Malware and Malware Distribution Strategies,” no.
November 2013, pp. 33–47, 2015.

[22] V. Bontchev, “Current status of the caro malware naming
scheme,” Proc. 15th Int. Virus Bull. …, 2005.

[23] F. Cohen, “Computer Viruses Theory and Experiments
Fred,” vol. 21A, pp. 22–35, 1978.

[24] R. Fox and W. Hao, “An Introduction to Networks,”
Internet Infrastruct., no. November, pp. 1–41, 2018.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

Jing Zhang and Yu Wen

12

[25] W. Stallings et al., Computer SeCurity PrinciPles and
Practice Third Edition. 2015.

[26] C. L. and A. Lakhotia, Malware and Machine Learning,
vol. 563. 2015.

[27] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham,
“A taxonomy of computer worms,” no. January 2003, p.
11, 2005.

[28] Spencer Smith, “Rootkits what are Rootkits ?” Symantec
Secur., no. Rootkits, pp. 1–9, 2012.

[29] S. Rizvi, G. Labrador, M. Guyan, and J. Savan,
“Advocating for Hybrid Intrusion Detection Prevention
System and Framework Improvement,” Procedia Comput.
Sci., vol. 95, pp. 369–374, 2016.

[30] L. McLaughlin, “Bot software spreads, causes new
worries,” IEEE Distrib. Syst. Online, vol. 5, no. 6, p. 1,
2007.

[31] J. Goebel and T. Holz, “Rishi: identify bot contaminated
hosts by IRC nickname evaluation,” HotBots, 7, no. June,
2007.

[32] Wiley, Pratical Reverse enginering. 2014.
[33] I. You and K. Yim, “Malware obfuscation techniques: A

brief survey,” Proc. - 2010 Int. Conf. Broadband, Wirel.
Comput. Commun. Appl. BWCCA 2010, no. October, pp.
297– 300, 2010.

[34] K. M. PhiliP O’Kane, SaKir Sezer, “Obfuscation: The
Hidden Malware,” pp. 41–47, 2009.

[35] T. Schmidt, “Evaluating Techniques for Full System
Memory Tracing,” 2017.

[36] M. S. Artem Dinaburg∗†, Paul Royal†∗ and Wenke
Lee†∗, “Ether: Malware Analysis via Hardware
Virtualization Extensions,” J. Neuroradiol., vol. 30, no. 5,
pp. 283–285, 2003.

[37] F. Bellard, “QEMU, a Fast and Portable Dynamic
Translator,” Eur. J. Pharmacol., vol.

394, no. 1, pp. 85–90, 2000.
[38] Https://www.virustotal.com/#/home/search, “virustotal.”.
[39] M. Hall, “Correlation-based feature selection for machine

learning ,” Diss. Univ. Waikato, vol. 21i195-i20, no. April,
pp. 1–5, 1999.

[40] M. A. Hall, “Feature Selection for Discrete and Numeric
Class Machine Learning,” pp. 1– 135, 2013.

[41] E. H. Jr., “Information Gain versus Gain Ratio: A Study of
Split Method Biases,” pp. 1– 20, 2001.

[42] L. Yu and H. Liu, “Feature selection for high-dimensional
data: a fast correlation-based filter solution. Proceedings of
the twentieth international conference on machine
learning,” 2003.

[43] W. T. V. B. P. Flannery, S. A. Teukolsky, Numerical
recipes: the art of scientific computing. 1385.

[44] B. HSSINA, A. MERBOUHA, H. EZZIKOURI, and M.
ERRITALI, “A comparative study of decision tree ID3 and
C4.5,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 2, pp.
13– 19, 2014.

[45] M. Ettaouil, E. Abdelatifi, F. Belhabib, and K. El
Moutaouakil, “Learning algorithm of kohonen network
with selection phase,” WSEAS Trans. Comput., vol. 11,
no. 11, pp. 387– 396, 2012.

[46] J. V. Tu, “Advantages and disadvantages of using artificial
neural networks versus logistic regression for predicting
medical outcomes,” J. Clin. Epidemiol. vol. 49, no. 11, pp.
1225– 1231, 1996.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

13

Appendices

Fig. 14. Benign and malware top18 opcode (left: benign software, same below)

Fig. 15. Opcodes that only appear in malware

Fig. 16. Benign Software and malware 2-gram top18

Fig. 17. Malware-specific sequence

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

Jing Zhang and Yu Wen

14

Fig. 18. 3-gram benign software and malware sequence top18

Fig. 19. 3-gram sequence top10 only in malware

Table 6. Operation code description

Operation code description

MOV Move

CMP Compare Two operands

TEST Logical compare

CALL Call Procedure

JZ Jump near if zero/equal (ZF=1)

PUSH Push Word, Doubleword or Quadword Onto the Stack

LEA Load Effective Address

ADD add

JNZ Jump near if not zero/not equal (ZF=0)

JMP Jump

RETN Return from procedure

Table 7. Contribution of single opcodes to classification top10

opcodes description

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

15

JECXZ Jump short if rCX register is 0

JP Jump short if parity/parity even
(PF=1)

PUNPCKLBW Unpack Low Data

REX.WB REX.W and REX.B combination

PMOVMSKB Move Byte Mask

BSR Bit Scan Reverse

REX.WRX REX.W, REX.R and REX.X
combination

REX.WX REX.W and REX.X combination

SUB Subtract

TEST Logical Compare

Table 8. Under different feature selection algorithms, N-gram N=1, 2, 3 feature top10

Metho
d top10

CFS infogain chisquare GainRatio symmetrical

1-gram MOV JECXZ JECXZ JP JECXZ

2-gram Test jz Movzx
jecxz

Movzx
jecxz

Sub rol SUB ROL

3-gram
mov mov
mov

Retn lea
sub

Ret lea sub
retn lea
sub

Retn lea
sub

1-gram CMP REX.RXB REX.RXB CPUID JP

2-gram Jz mov Rol jnz Rol jnz Jecxz rol Movzx
jecxz

3-gram Mov test jz Sub rol test Sub rol test
Sub rol
test

Sub rol test

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Jing Zhang and Yu Wen

16

1-gram TEST JPS JP JECXZ PUNPCKL
BW

2-gram Lea mov Sub rol Sub rol
movzxjec
xz

Rol jnz

3-gram Test jz mov Jbe lea rol Jbe lea rol Jbe lea rol Jbe lea rol

1-gram CALL SUB JNBE SETBE CMOVL

2-gram Jnz mov Lea rol Jmp rol Nop inc Jecxz rol

3-gram
Mov mov
cmp

Lea rol
cmp

Neg mov
jmp

jbe sub
cmp

Jbe sub cmp

1-gram ADD ROL MOVZX STOS REX.WB

Method
top10

CFS infogain chisquare GainRatio symmetrical

2-gram Push push Jbe lea Lea rol Sub or Jbe lea

3-gram Mov mov lea Jz sub mov Jz sub mov
Rol jnz
retn

Rol jnz retn

1-gram INC MOV JBE BSR PMOVMS
KB

2-gram Test jnz Jmp rol Jbe lea Jz jnbe Nop inc

3-gram Mov cmp
mov

Neg mov
jmp

Jbe sub
cmp

Jmp sub
rol

Jmp sub rol

1-gram ROL ADD ROL CMPXCH
G8B

BSR

2-gram Add mov Lea sub Movzx xor Mov jl Div cmp

3-gram
call cmp
mov

Jbe sub
cmp

Lea rol
cmp

Jz jmp
sub

Neg mov
jmp

1-gram SUB CMP MOV LOOP REX.WRX

2-gram Cmp jnz Rol add Lea sub Jz js Jz jnbe

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

Malware Detection Based on Opcode Dynamic Analysis

17

3-gram Push call add Add rol jnz
Jmp rol
mov

negmovj
mp jmp

jz jmp sub

1-gram JNB CALL SUB CMOVL JBE

2-gram Mov add Movzx xor Cmp rol
Add
cmovb

Rol imul

3-gram Call add cmp Jmp rol
mov

Add rol jnz jz
movzxlsl
lsl

Add rol jnz

1-gram NEG TEST LEA REX.WX
B

CMOVB

2-gram Mov jmp Add cmp Add cmp Rol jnz Jmp rol

3-gram
Push mov
push

Jnbe test
neg

Jnbe test
neg

Call add
jnz

Jz movzx
lsl

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e4

