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Abstract 
Malware detection is an important problem in the field of information security. Opcodes are the most direct information 
reflecting the execution behavior of malware, The malware based on the dynamic analysis of opcodes also faces some 
challenges: the acquisition of the operating code information in the execution process of the malware; the high false alarm 
rate in the detection process and the large system overhead caused by the malware detection in the application layer. In 
order to deal with the above problems, this paper proposes a new scheme for dynamic opcode acquisition, the opcode 
information obtained from the software runtime is used for offline analysis. The detection accuracy of off-line malware 
can reach 99.85%, which is superior to the traditional technology. Moreover, this paper proposes an online detection 
scheme: CPU built-in malware monitoring model (CBMM), which can solve the problem that it is difficult to accurately 
identify the execution trajectory of malware in the current malware detection process, at the same time, this model can 
monitor malware in real time. Finally, we implement our model by VerilogHDL, functional simulation was carried out in 
modelsim simulation software and its implementation cost was analyzed. 

Keywords: Malware Detection, Opcodes, Dynamic Detection. 

Received on 16 July 2020, accepted on 15 October 2020, published on 20 October 2020 

Copyright © 2020 Jing Zhang et al., licensed to EAI. This is an open access article distributed under the terms of the Creative 
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work 
is properly cited. 

doi: 10.4108/eai.22-6-2021.170239

* Corresponding author. Email: zjj7ucas@163.com 

1 Introduction 

With the development of the Internet technology in recent 
years, it is also used by criminals to carry out malicious 
activities due to the openness of the Internet. So 
information security is becoming more and more 
important. An important problem in the field of 
information security is malware detection. Most antivirus 
software use a combination of signatures and heuristics 
method to detect malware. The problem with this 
approach is that it is susceptible to malware obfuscation 
mechanisms, making it difficult to accurately identify the 
trajectory of malware execution. 

Because the malware will eventually execute the code 
with malicious behavior in the execution process, the 
malware can be detected by analyzing the behavior 
information of the malware. Since opcodes are the most 
direct information reflecting the execution behavior of 
malware, this paper analyzes the information of opcodes 
in the execution process of malware for malware 
detection. However, the malware based on the dynamic 
analysis of the operating code also faces some challenges: 
the acquisition of the operating code information in the 
execution process of the malware; the high false alarm 
rate in the detection process and the large system 

overhead caused by the malware detection in the 
application layer. In order to deal with the above 
problems, this paper firstly analyzes the progress and 
existing problems of existing malware detection 
technology based on dynamic opcode analysis, then 
proposes a new scheme for dynamic opcode acquisition, 
the opcode information obtained from the software 
runtime is used for offline analysis. In the off-line 
analysis, this paper uses a variety of feature selection 
algorithms to extract features of the operating code 
information when the software is running, we use the 
extracted feature subset combined with a variety of 
machine learning algorithms to conduct cross-comparison 
experiments. Finally, the detection accuracy of off-line 
malware can reach 99.85% and the false alarm rate can 
reach 0.5%. Based on the above research results, this 
paper proposes an online detection scheme: CPU built-in 
malware monitoring model (CBMM), which can solve the 
problem that it is difficult to accurately identify the 
execution trajectory of malware in the current malware 
detection process, at the same time, this model can 
monitor malware in real time. Finally, we implement our 
model by VerilogHDL, functional simulation was carried 
out in modelsim simulation software and its 
implementation cost was analyzed. 
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2 Related Work 

Malware detection can be divided into dynamic malware 
detection and static malware detection according to the 
way of obtaining malware information. Dynamic malware 
detection is a way to expand malware detection by 
running malware and obtaining behavior information 
(including opcode, register, API call, etc.) during its 
operation. 

In order to deal with the problem that the signature-
based malware detection method is susceptible to the 
confusion mechanism, the current malware detection 
research begins to focus on how to detect malware by 
analyzing the behavior information of software runtime. 
The opcode information at the time of software execution 
reflects the operation performed by the processor. By 
analyzing the opcode information at the time of software 
running, the existence of malware can be detected, it is 
not affected by the confusion mechanism [2]. 

Ozsoy et al. [3] used Intel Pin tools to insert 
instructions into malware, they collected instructions 
during program operation and analyzed the information of 
instruction type, frequency of access operation, and they 
used neural network and logical regression to construct 
classifier. The sensitivity of classifier to malware reached 
100% and the false alarm rate was 9%. [4] [5] also 
proposed to use opcode for malware detection Testing. In 
[6], the author proposed to use the instruction sequence 
with variable length as the feature. After obtaining the 
feature, the malware detection was carried out using 
bagging integrated learning algorithm, finally a better 
detection effect was obtained. There are also scholars who 
directly use hexadecimal opcode data for malware 
detection. The advantage of this approach is that the 
complexity of opcode types can be reduced because one 
hexadecimal data may correspond to multiple opcode [8]. 

It can be seen that opcode can be used as a good 
feature in malware detection, due to the use of opcode 
information in dynamic analysis, we can solve the 
problem of malware detection caused by code confusion. 
But most of the previously proposed methods have a high 
false alarm rate, high performance overhead and resource 
requirements. On-line detection of malware and accuracy 
and false alarm rate need to be further improved. 

In terms of dynamic opcode acquisition, there are two 
main ways: using application layer tools to obtain (e.g. 
Intel Pin tool [52], valgrind [53]); using system level 
tools to obtain (mainly sandbox) [55]. During the use of 
application level tools, there is a problem that kernel-
space information cannot be obtained, when using 
sandbox tools, there is the problem of low monitoring 
efficiency. We propose a new opcode dynamic acquisition 
scheme in Section 3. 

3 Proposed Methodology 

The malware detection model determines malware as 
malware or benign software according to the input 
characteristic data. The malware detection model M can 
be understood as a function whose domain is a set of all 
programs P, and the range is {Y, N}: 

The detection model M scans the program p, determine 
whether the program contains malicious behavior. The 
desired result is: if the M returns Y, the program is 
detected to contain malicious behavior; otherwise, 
malicious behavior is not detected. In this paper, the 
detector is the malware detection technology of opcode 
dynamic analysis, and the domain of definition is the set 
of programs. 

The traditional dynamic analysis method is difficult to 
obtain the complete sequence of malware opcode. In this 
paper, a method of obtaining the operation-time opcode 
information is proposed, and this method uses the 
complete opcode information. We use different feature 
extraction algorithms and classification algorithms to 
extract and classify them, then we analyze the effects of 
different feature selection algorithms, N-gram length and 
classification algorithms on malware detection. 
Experiments show that the detection accuracy of malware 
is 99.85%, which is superior to traditional technology. 

We divides the current malware detection based on 
opcode dynamic analysis into three parts and two stages 
(see Fig. 1). Three parts refer to dynamic opcode 
acquisition part, feature extraction part and decision 
classification part. Two stages refer to offline data 
analysis stage and online detection stage. The relationship 
between the three parts and the two stages is as follows: in 
the off-line data analysis stage, the required dynamic 
opcode information is obtained by the dynamic opcode 
acquisition part, a feature subset is obtained by the feature 
extraction part, the decision and classification of the third 
part is expanded by the acquired feature subset. At the end 
of the off-line data analysis stage, we can get a malware 
detection classifier which is input into the dynamic 
opcode information feature. The online detection stage 
mainly uses the results obtained after offline analysis to 
detect malicious code online. The next step is to introduce 
the offline opcode dynamic acquisition scheme in Section 
3.1. Section 3.2 introduces the feature algorithm and 
decision algorithm used in the off-line analysis stage, and 
section 3.3 presents the online malware detection scheme 
in this paper. 
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Fig. 1. Dynamic analysis of malware detection based on opcodes 

3.1 Opcode Acquisition Scheme 

The current dynamic opcode acquisition method still has 
some problems, such as incomplete information and low 
monitoring efficiency, so we propose a dynamic opcode 
acquisition scheme. This scheme is mainly based on the 
QEMU [58] binary translation mechanism, as shown in 
Fig. 2, in the process of translating guest opcode into host 
operation, the data saving module is inserted to save the 
required information. A sandbox system based on QEMU 
is designed through the above ideas. This sandbox system 
can provide instruction level monitoring granularity. A 
QEMU sandbox system will be implemented in section 4. 

Fig. 2. QEMU binary translation technology 

Fig. 3 shows the dynamic opcode acquisition scheme 
of this paper based on QEMU sandbox system, which 
includes three parts: data source, data filtering, and 
QEMU sandbox system. The sections are described 
below. 

• Data source: software to be analyzed. Malicious
software is downloaded from Virus share website in
this paper. It is a website dedicated to providing
malware analysis samples for researchers. The

benign software obtains from the Linux system 
software, mainly from the system software under the 
/usr/bin and /bin directory. 

• Data filtering: To ensure the reliability of malicious
samples, filter them before analyzing them. This
paper uses the virustotal [59] for sample filtering, by
writing an interface program, we use virustotal to
analyze malware. Virusshare provide nearly 10
mainstream antivirus engines including McAfee,
Symantec, 360 and so on, which can ensure the
reliability of malware.

• QEMU based sandbox system: this part is the core
part of this scheme, the main work is to run the
software to be analyzed and obtain its dynamic
opcode data. This system will be described in detail
in section 4.
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Fig. 3. Dynamic opcode acquisition scheme 

3.2 Feature Selection And Decision 
Classification 

Feature Selection: 
The feature selection algorithms adopted in this paper are 
as follows. 

• Correlation-based Feature Selection (CFS) Algorithm.
• Chi party Test Feature Selection Algorithm.
• Information Gain and Information Gain Rate.
• Symmetric Uncertainty Feature Selection Algorithm.
• N-gram Algorithms.

In section 4, we will use these feature selection
algorithms for feature extraction, and analyze the effect of 
feature selection algorithms on the final detection effect. 

Table 1. Examples of n-gram 

Operand sequence Mov cmp push jmp add 

1-gram Mov,cmp,push,jmp,add 
2-gram Mov cmp ,cmp push, push jmp, jmp 

add 
3-gram Mov cmp push, cmp push jmp, push 

jmp add 

Decision Classification: 
The decision classification algorithms used in offline 
analysis are decision tree, SVM, Bayesian network, 
ensemble learning algorithm and the neural network. 

3.3 Online Malware Detection Scheme 

We propose an online malware detection scheme. As 
shown in the following figure, this scheme mainly 
includes three parts: data separation module, feature 
extraction module and decision module. 

Fig. 4. Schematic diagram of malware detection 
scheme 

Data separation module works to split the opcode 
according to the CR3 value. The data source of the data 
separation module is the decoder of the processor. The 
feature extraction module and the decision module will be 
designed by using the detection module obtained after 

offline analysis. So this part will be explained in detail 
after section 4 offline data analysis. 

4 System Implementation And 
Experiment 

Analytical experiments will be carried out in this section. 
The acquisition mode will use the scheme proposed in 
section 3 to obtain dynamic opcode. After the dynamic 
opcodes information is obtained, the opcodes will be 
analyzed by empirical and computational methods. The 
computationally based analysis method will be applied to 
the feature selection algorithm and classification 
algorithm introduced in section 3. In the process of 
analyzing the experimental results, the analysis method of 
control variables is mainly used to analyze the factors that 
affect the detection accuracy of malware. We further 
design online malware detection scheme: CPU built-in 
malware monitoring module (CBMM), the model can 
detect malware online during CPU operation. We realize 
the CBMM through Verilog HDL, use modelsim 
simulation software for functional simulation and analyze 
the actual modern price. 

4.1 Data Collection Environment 

The environment in which the data collection system 
operates is shown in Table 2. 
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Table 2. Data collection environment 

operating system architecture processor memory 

host Windows10 64bit Intel i7-8750H 16G DDR4 

client Ubuntu16.4 32bit Qemu core 4G 

As shown in Fig. 5, the QEMU based sandbox system 
consists of three modules: microarchitecture information 
preservation module, software scheduling module and 
system operation anomaly monitoring module. 

Fig. 5. QEMU based sandbox system 

The three modules described above are described below: 

• Opcode information saving module. According to the
principle of QEMU binary translation, we modify the
source code in the process of QEMU intermediate
translation, add the data saving program and design the
trigger point where the software needs to save the data
at run time, so that the information such as opcode can
be saved under the specified scenario. Through
analyzing the x86 instruction set, the instructions 0 xf1
and 0 xd6 which do not exist in the x86 instruction set
are selected as the trigger points for the preservation of
microarchitecture information.

• Use two long integer variables ϕ and φ to represent the
number of times 0 xf1 and 0 xd6 two instructions are
executed.

Start flag： start recording opcode information. Stop 
flag： stop recording opc in formation. 

• Software scheduling module. The microarchitecture
information saving trigger point and information
saving program designed according to step 1 enables
the user to trigger the microarchitecture saving
program of the simulator under the condition that the
microarchitecture information needs to be saved. At the
same time, the scheduling software also needs to keep
the initial state of each simulator running platform
consistent, so it needs to be restored to the initial state
before each system running, and the function flow of
the scheduling module is shown in Fig. 6.
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Fig. 6. Software scheduling module 

• Abnormal monitoring module. Scheduling software
automatically triggers and stops the system's ability to
hold processor microarchitecture information under
certain conditions. But in some situations, such as
running, some malware can cause unrecoverable
damage to the system. For improving the robustness of
the whole system, the abnormal monitoring module is
designed, and the analysis is carried out according to
the existence time PID the second dispatching
subprocess of the module. If the abnormal time is set,
the abnormal monitoring software will deal with the
current system scheduling software call subprocess.

Through the above opcode collection scheme, we can get 
the opcode information that needs to be analyzed in the 
offline analysis stage in this paper. 

4.2 Datasets 

Datasets: Malware gets system software from virusshare 
[69], benign software gets from 32-bit Ubuntu 16.04. 
Table 3 shows the number of malware and benign 
software in the text. 

Table 3. Datasets 

Number 

benign Software 1166 
malicious software 2189 

Evaluation criterion: accuracy, recall, ROC curve. 
Malware is defined as a positive class sample and 

benign software as a negative class sample. 
Accuracy: 

Recall: 

ROC curve: ROC curve is a curve with false positive rate 
and true rate as axes. The area under the ROC curve is 
called AUC. Briefly, the greater the AUC, the better the 
classification effect. 

4.3 Data Processing 

Experimental result: 
A total of 168 different opcodes appeared in this paper, 
and the top18 number of opcodes appeared in malware 
accounted for 93.6% of all opcodes (Fig. 7). We also 
counted opcodes that only appear in malware (Fig. 8).The 
main functions of the most frequent opcodes are listed in 
Appendices Table 7, Data of N-gram N=2, 3 were also 
extracted in this experiment (Appendices Fig. 14~Fig. 
19). There are 3064 different sequences in the 2- gram 
and 20,387 in the 3- gram. 

We use feature selection algorithm to process opcode 
data, first construct arff format file to meet weka data 
format, which contains data feature name and feature 
data. The frequency characteristic information of different 
opcodes is mainly considered in this paper. Feature 
selection can reduce the dimension of feature data and 
reduce the computational complexity of classifier. Then 
we will choose different classification algorithms to 
experiment, and compare the experimental results under 
the combination of different feature algorithms and 
different classification algorithms. Feature selection 
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algorithms as well as classifier algorithms will act in the 
case of Ngram N=1, 2, 3 (Fig. 7). 

Fig. 7. 1-gram opcode feature selection 

Experiment of Classification Algorithm. 
When the feature selection algorithm is CFS, the random 
forest classifier has the best performance for a single 

opcode feature, and its accuracy is 99.85%, followed by 
Bayes Net, accuracy of 99.79% (Table 4). 

Table 4. Results of classifier test (accuracy) 
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Fig. 8. Bayes Net and random forest ROC curve 

Table 5. Bayes Net and random Forest recall rate 

According to the figure above, the CFS feature 
selection algorithm is the best one. Remove the 
information gain rate feature selection algorithm at N=1. 
In other cases, the accuracy rate is above 99%. Except for 
the CFS feature selection algorithm, the accuracy of 
classification algorithm increases with the N of N-gram 
under other feature selection algorithms. 

4.4 Design and Implementation of On-line 
Malware Detection Scheme 

This section will design the online malware detection 
module in this article: CPU built-in malware monitoring 
module (CBMM). 

Bayes Net Random forest 

False alarm rate 0.9% 0.5% 

Recall rate 0.993 0.997 
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The data separation module is responsible for diverting 
the received opcode data stream according to the CR3 
value, obtaining the opcode data after the processing data 
preprocessing module is shunted by multiple channel; 
feature extraction modules associated with the CR3 value 
to generate the feature vector; the decision module detects 
the indicated by the current CR3 according to the feature 
vector generated by the feature extraction module. The 
advantages of the CPU built-in malware monitoring 
model are hardware implementation, the response speed is 
fast, it can be monitored in real time without the influence 
of malware confusion mechanism. As shown in Figure 9. 
The diagram shows where the security module is built in 
Schematic architecture. The input of the CBMM in this 
architecture is the opcode section in the instruction, as 
well as the value of the cr3register (Fig. 10). The model 

determine whether the current running program or 
software has malicious behavior through the detection of 
the input data stream. During on-line monitoring, the 
module generates feature vectors and judges malware 
when the CR3 changes and the input opcode reaches the 
preset threshold. Before the decision condition is reached, 
the whole module will only use the register to record the 
number of times that the specific opcode is executed, the 
decision module will only be used in the decision stage, 
because the data separation module the multiple channel 
obtained by the block (set to 64 channel in this paper) is 
running in parallel, the expected value of the data 
received by each channel is 1/64 of the processor 
processing data, which can greatly alleviate the problem 
of high processor processing speed. 

Fig. 9. Schematic diagram of secure processor structure embedded in CBMM module 
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Fig. 10. Typical use of CR3 in address translation

Hardware Implementation Cost Analysis. 
Implementation and simulation environment: Quartus 
Prime Standard Edition 16Modelsim. The functional 
modules are simulated at RTL level using modelsim and 
power consumption prediction using PowerPlay power 
Analyzertool. 

Feature extraction module will produce feature vectors 
when the current CR3 value changes or the recorded 
opcode reaches a certain threshold. Decision module uses 
the decision tree algorithm. This algorithm is a C4.5 
algorithm. The information gain rate is used to construct 
the decision tree, pruning is carried out in the process of 
constructing the tree. 

CBMM module is a complete functional module after 
integrating data separation module, feature extraction 
module and decision module. This paper uses modelsim 
to verify it. The required input data will be constructed in 

the simulation experiment. By writing the testbench to 
satisfy all the excitation of the module, we analyze its 
accuracy according to its simulation output. In the 
experiment, all opcode data are from offline collected 
data, CR3 data are added for themselves. In the 
experiment, the CR3 data range is 0-99. In the online 
simulation experiment, 50 benign samples and 50 evil 
samples were used Italian software to test. 

4.5 Experimental Results Of Algorithm 
Simulation 

As shown below, the input is CR3 and the opcode and the 
output is the decision result of the decision module, 01 
means the decision is malware and 10 means the decision 
is benign software. During the experiment of CBMM 
module, the module can detect the malicious software 
accurately, and accord with the expected effect of offline. 

Fig. 11. Simulation results of feature extraction module 

Fig. 12. Decision Tree Algorithm Simulation 

Fig. 13. CBMM simulation waveform 
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Thermal power consumption analysis is carried out 
after functional simulation. The following table shows the 
estimated thermal power consumption and resource usage 

of each module. LE logic unit in the FPGA development 
board. According to Table 9, the whole on-line detection 
scheme can be completed with few logical units. 

Table 9. Analysis of resources and estimated power consumption 

resource Feature extraction 
module 

Decision module Complete module 

LU LE 163 39 172 

Power heat dissipation 138.14mW 129.86mW 141.86mW 

5 Conclusion 

A CPU built-in malware monitoring model is proposed in 
this paper to complete the design and simulation of the 
module, but this module does not take into account the 
performance factors in hardware implementation. In the 
future work, the implementation of this module will be 
optimized and built into the real processor to achieve the 
effect of its practical application. 
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Appendices 

Fig. 14. Benign and malware top18 opcode (left: benign software, same below) 

Fig. 15. Opcodes that only appear in malware 

Fig. 16. Benign Software and malware 2-gram top18 

Fig. 17. Malware-specific sequence 
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Fig. 18. 3-gram benign software and malware sequence top18 

Fig. 19. 3-gram sequence top10 only in malware 

Table 6. Operation code description 

Operation code description 

MOV Move 

CMP Compare Two operands 

TEST Logical compare 

CALL Call Procedure 

JZ Jump near if zero/equal (ZF=1) 

PUSH Push Word, Doubleword or Quadword Onto the Stack 

LEA Load Effective Address 

ADD add 

JNZ Jump near if not zero/not equal (ZF=0) 

JMP Jump 

RETN Return from procedure 

Table 7. Contribution of single opcodes to classification top10 

opcodes description 
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JECXZ Jump short if rCX register is 0 

JP Jump short if parity/parity even 
(PF=1) 

PUNPCKLBW Unpack Low Data 

REX.WB REX.W and REX.B combination 

PMOVMSKB Move Byte Mask 

BSR Bit Scan Reverse 

REX.WRX REX.W, REX.R and REX.X 
combination 

REX.WX REX.W and REX.X combination 

SUB Subtract 

TEST Logical Compare 

Table 8. Under different feature selection algorithms, N-gram N=1, 2, 3 feature top10 

Metho 
d top10

CFS infogain chisquare GainRatio symmetrical 

1-gram MOV JECXZ JECXZ JP JECXZ 

2-gram Test jz Movzx 
jecxz 

Movzx 
jecxz 

Sub rol SUB ROL 

3-gram
mov mov 
mov 

Retn lea 
sub 

Ret lea sub 
retn lea 
sub 

Retn lea 
sub 

1-gram CMP REX.RXB REX.RXB CPUID JP 

2-gram Jz mov Rol jnz Rol jnz Jecxz rol Movzx 
jecxz 

3-gram Mov test jz Sub rol test Sub rol test 
Sub rol
test 

Sub rol test 
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1-gram TEST JPS JP JECXZ PUNPCKL 
BW 

2-gram Lea mov Sub rol Sub rol 
movzxjec 
xz 

Rol jnz 

3-gram Test jz mov Jbe lea rol Jbe lea rol Jbe lea rol Jbe lea rol

1-gram CALL SUB JNBE SETBE CMOVL 

2-gram Jnz mov Lea rol Jmp rol Nop inc Jecxz rol 

3-gram
Mov mov 
cmp 

Lea rol 
cmp 

Neg mov 
jmp 

jbe sub 
cmp 

Jbe sub cmp 

1-gram ADD ROL MOVZX STOS REX.WB 

Method 
top10

CFS infogain chisquare GainRatio symmetrical 

2-gram Push push Jbe lea Lea rol Sub or Jbe lea 

3-gram Mov mov lea Jz sub mov Jz sub mov
Rol jnz 
retn 

Rol jnz retn 

1-gram INC MOV JBE BSR PMOVMS 
KB 

2-gram Test jnz Jmp rol Jbe lea Jz jnbe Nop inc 

3-gram Mov cmp
mov 

Neg mov 
jmp 

Jbe sub 
cmp 

Jmp sub 
rol 

Jmp sub rol 

1-gram ROL ADD ROL CMPXCH 
G8B 

BSR 

2-gram Add mov Lea sub Movzx xor Mov jl Div cmp 

3-gram
call cmp 
mov 

Jbe sub 
cmp 

Lea rol 
cmp 

Jz jmp 
sub 

Neg mov 
jmp 

1-gram SUB CMP MOV LOOP REX.WRX 

2-gram Cmp jnz Rol add Lea sub Jz js Jz jnbe 
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3-gram Push call add Add rol jnz
Jmp rol 
mov 

negmovj 
mp jmp 

jz jmp sub 

1-gram JNB CALL SUB CMOVL JBE 

2-gram Mov add Movzx xor Cmp rol 
Add 
cmovb 

Rol imul 

3-gram Call add cmp Jmp rol
mov 

Add rol jnz jz 
movzxlsl 
lsl 

Add rol jnz 

1-gram NEG TEST LEA REX.WX 
B 

CMOVB 

2-gram Mov jmp Add cmp Add cmp Rol jnz Jmp rol 

3-gram
Push mov 
push 

Jnbe test 
neg 

Jnbe test 
neg 

Call add 
jnz 

Jz movzx 
lsl 
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