
This Malware Looks Familiar: Laymen Identify Malware
Run-time Similarity with Chernoff faces and Stick Figures

Nathan VanHoudnos
Software Engineering Institute
Carnegie Mellon University
nmvanhoudnos@cert.org

William Casey
Software Engineering Institute
Carnegie Mellon University

wcasey@cert.org

David French
Software Engineering Institute
Carnegie Mellon University

french@cert.org

Brian Lindauer
Software Engineering Institute
Carnegie Mellon University

lindauer@cert.org

Eliezer Kanal
Software Engineering Institute
Carnegie Mellon University

ekanal@sei.cmu.edu

Evan Wright∗

Anomali Inc.
evan@Anomali.com

Bronwyn Woods†

Turnitin
bwoods@turnitin.com

Seungwhan Moon
Language Technologies Institute
Carnegie Mellon University

seungwhm@cmu.edu

Peter Jansen
Language Technologies Institute
Carnegie Mellon University

pjj@cmu.edu

Jaime Carbonell
Language Technologies Institute
Carnegie Mellon University

jgc@cs.cmu.edu

ABSTRACT

Classifying unknown malicious binaries into malware families pro-

vides valuable information to security professionals. The task of

recognizing a malicious binary (i.e., attributing it to a previously ob-

served attack pattern) is widely considered a difficult task requiring

extensive domain expertise. In this work, we offer a new approach

which focuses on transforming the the recognition problem domain

from system traces to Chernoff faces, thereby engaging the facial

recognition aptitude of laymen.

To do so we (i) curated a expert tagged dataset of malware vari-

ants, (ii) instrumented behavior trace monitors for each variant,

(iii) constructed a simple, graph based feature set from the run-

time behavior, and (iv) visualized low-dimensional representations

of these system call graphs with stick figures and Chernoff faces.

We then selected the three families with the largest variation and

asked non-experts on Amazon Mechanical Turk to classify binaries

between these three families using the generated visual represen-

tations, a task that would otherwise be delegated to experts. We

found that non-experts completed the task with between 63% and

∗Main contributions were while employed at CMU Software Engineering Institute.

86% accuracy, and when aggregated, these non-expert labels suc-

cessfully trained a classifier to a similar level of performance as the

ground truth labels. Although simple, the experiments conducted

provide a novel evaluation of the inherent difficulty of malware

recognition tasks. Additionally new operational possibilities for

effective human in the loop malware recognition are indicated and

discussed as future work within the research prospectus.

ACM Reference format:

Nathan VanHoudnos, William Casey, David French, Brian Lindauer, Eliezer

Kanal, Evan Wright, Bronwyn Woods, Seungwhan Moon, Peter Jansen,

and Jaime Carbonell. 2017. This Malware Looks Familiar: Laymen Iden-

tify Malware Run-time Similarity with Chernoff faces and Stick Figures.

In Proceedings of EAI International Conference on Bio-inspired Information

and Communications Technologies, Hoboken, New Jersey, USA, March 2017

(BICT’17), 8 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The risks and impacts of malware continue to increase, so also the

amount and rate of its production [18]. New operating systems and

software, such as web browsers, are targeted within hours and days

of release with exploit frameworks that probe for vulnerabilities

and generate attacks and malware. Still organizations must protect

themselves and their digital assets, forming an emerging cyber

security role where time critical operational decisions are needed.

Often a best response will incorporate the evidence available when

actions are needed, therefore knowledge and its timeliness are

important.

In operational security settings, once a given software artifact

(of unknown provenance) is determined malicious the next critical

task is to determine how it relates to a reference group of previously

†Main contributions were while employed at CMU Software Engineering Institute.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
BICT 2017, March 15-16, Hoboken, United States

10.4108/eai.22-3-2017.152417
Copyright © 2017

BICT’17, March 2017, Hoboken, New Jersey, USA N. VanHoudnos et al.

known malicious software artifacts (i.e., its family). By linking an

artifact to prior experience the defender may respond strategically:

to mitigate malware, employ firewall protections, utilize software-

dissection tools, remove persistent attackers, delay the adversary, or

adjust security policies to thwart the adversarial trends. However,

the tasks associated with classifying a malicious artifact are widely

considered technically difficult requiring extensive domain exper-

tise and time intensive manual processing. As such, the problem

is typically considered beyond the layperson’s capacity and the

primary approach relies on reverse engineering - a resource limited

and time costly proposition. The current classification approach

thus faces a problem of scale as the labor and financial cost of ex-

pert reverse-engineers is high while talent cannot meet current

demand [26]. To address this problem within existing operational

security infrastructures we consider leveraging the strengths of

non-experts.

Our approach considers human in the loop decision systems for

malware recognition and how the decision artistry of both experts

and non-experts can be utilized within active learning systems.

Because the work is tightly coupled to contemporary malware

classification processes (affect the resulting recognition problem)

we proportion a discussion to as much of the data preparation issues

as possible.

We include a discussion of significant steps in the transformation,

which we summarize as (i) creation of a dataset of malware variants

labeled by experts, (ii) derived behavior sequences with a trace

monitor, (iii) constructing feature vector from trace data, and (iv)

reduction to low-dimensional representations of data features for

visualization with stick figures and Chernoff faces, and finally (v)

face and figures recognition experiments presented to non-experts

on Amazon Mechanical Turk.

2 RELATEDWORK

We overview relevant work in three main areas underlying the

problem and experiment: malware classification, human in the loop

machine learning, and visualization.

2.1 Malware Classification

Modern system architectures and applications are constructed as

volumes of programs, data files, and resources collectively termed

artifacts. Artifacts are frequently updated and patched making

trusted verification and provenance management even more diffi-

cult. In this context attackers find ample ’attack surface’ and means

to go un-recognized. We consider the basic recognition problem:

given a single artifact we wish to determine previously- or well-

known malware samples or groupings that are related. Approaches

to this problem are grouped into three stages of recognition: Static

detection, Dynamic detection, and Behavioral detection.

Static detection scrutinizes the artifact as it appears in storage

(on disk), as such it includes applying match heuristics such as file-

names, hash function values, ormembership for specific strings/patterns

such as Antivirus or YARA signatures [33]. Malware authors, aware

of these techniques and wanting not to be recognized, have coopted

code re-writing and obfuscation techniques that make files appear

vastly different but with otherwise identical logic. This adversarial

tactic usually defeats match heuristics such as file hashing or most

other static detection facilities. Among the plethora of malware

obfuscation attacks[34], the tactic of polymorphic malware is used

to slightly modify in each compiled payload for the purpose of

obscuring hash function values.

To overcome this, defenders have considered a second type of

recognition focused onwhat an artifact does rather thanwhat it con-

tains. Dynamic detection scrutinizes the outcome when the artifact

is stimulated by loading or executing within the appropriate envi-

ronment. A common example will scrutinize the dropped files or

system properties altered consequently by the artifact stimulation.

Often this is done by applying static detection to artifacts conse-

quential to stimulating the instance under consideration. In [25],

the value of dynamic analysis for recognition was demonstrated

on polymorphic malware.

As an extension of dynamic detection, is behavioral detection

which considers not only the discrete outcomes from stimulating

artifacts, but also the fine grain sequence of system events. The

idea is to capture not only the consequences of execution, but

also the implementation pattern that achieves the design goal. We

employ a trace monitor as a means to observe the sequence of

Abstract Program Interface (API) events, thus logging interactions

between the artifact and the system kernel. Trace monitors can

be implemented within kernel mode or in user mode with binary

instrumentation, a method that augments the artifact with additional

profiling logic.

Several themes to mechanize malware classification are actively

researched and pertinent. One theme is the advancements of au-

tomated systems for static and dynamic detection, including an

emphasis on model-based classification [22, 21, 15]. Nonetheless

a strong need for expert human evaluation remains [20], thereby

indicating the importance of retaining the human in the loop. Super-

vised and unsupervised classification of malware features has been

considered with considerable previous work in areas of both static

and dynamic features[14], and further dimensionality reduction

and supervised classification has been addressed [3]. Behavioral

analysis also is found in several studies that indicate that API trac-

ing allows the behavior of obfuscated malware to be clearly grouped

together in a family[31, 6].

2.2 Human in the loop machine learning

Several papers have addressed leveraging crowdsourced labels to

train a machine learning model. This combined crowdsourcing-

machine learning approach has been shown successful across vari-

ous domains, most notably in Computer Vision [29, 17], Machine

Translation [5, 2], etc. A recent line of work [32, 23] has employed

active learning strategies in crowdsourcing, where the objective is

to minimize the annotation cost by querying only the most infor-

mative samples from the pool of unannotated data. For example, an

uncertainty-based active learning strategy [27] iteratively queries

an unlabeled instancewith the highest entropy of the class-posterior

probabilities, thereby avoiding redundant queries to a model. In

this work, we also use an active learning strategy to choose an

optimized order of stimuli to show to annotators.

N. VanHoudnos et al. BICT’17, March 2017, Hoboken, New Jersey, USA

2.3 Visualization

Visualizing high dimensional data is well studied in the human

perception literature. Approaches include representing a high di-

mensional scatter plot in fewer dimensions by finding a lower di-

mensional embedding of the data [9, 19] and glyph based methods

that encode several dimensions into the characteristics of an icon

such as Chernoff faces [7] or star glyphs [16]. The innate ability

of humans to recognize faces makes Chernoff faces useful for a

variety of human computer interface tasks [4]. In this work, we

use both Chernoff faces and our own glyph representation of stick

figures to visualize malware behavior.

3 DATA

The recognition problem presented to non-experts depends on sev-

eral stages: (i) the reverse engineering and analysis to provide ex-

pert labels, (ii) the trace monitor system that renders behavior data,

and (iii) an iterative process of feature engineering, exploratory

data-analysis, and machine classification used to determine the

non-expert recognition task, and (iv) presentation of visualization

and experiments with non-expert human subjects. Non-experts

are tested against experts, that is the expert labels are withheld

and non-experts are asked to recognize a matching group for each

instance. Non-expert performance is evaluated as the difference

between their assignments and the expert labels. The recognition

problem domain is transformed from traces to faces in stages ii and

iii. While currently the transformation requires expert guidance

(as discussed below), our future work will test if this can also be

accomplished with data-agnostic, automated or non-expert driven

methods.

3.1 Ground truth labels

In order to provide a data set that could be used as ground truth for

these experiments, we applied an iterative process to identify mal-

ware families [12], using a large corpus of candidate malware files

obtained from Virus Total [28]. We limited our scope to Microsoft

Portable Executable (PE) files, since they comprise a substantial

percentage of files likely to be available from public sources [24].

For each family, we started with a single exemplar and reverse

engineered it sufficiently to understand both the program struc-

ture and behavior. Based on analyst intuition, we selected code

believed to be indicative of the exemplar, comprising bytes of the

file representing assembled x86 instructions, applied a normaliza-

tion algorithm (described as the ”PIC algorithm” [8]) to these bytes,

and encoded the normalized bytes as a YARA signature [33]. We

then applied this signature to the corpus of candidate malware files,

and selected those candidate files that matched the signature for

inclusion within a particular family. These family-included files

were compared with each other by an analyst, using techniques

such as section hashing [8, 11] and function hashing [8] to attempt

to identify outliers or false positives, and this process was iterated

until the selected signature produced no false positives from the

large candidate corpus. This final signature was then assigned a

name corresponding with a family, and files that matched the sig-

nature were declared to be part of the family. This process was

applied to all malware families selected for these experiments.

3.2 Behavior data

Formally, given a class of events E and a system program p, a
program’s trace t (p) can be defined as a temporal sequence of

observed events over E. When a program is run within an operating

system, the kernel provides services to a user program, and we

therefore focus on these events at the boundary between kernel

layer and user layer as the focus for a monitoring tool for what

may be considered a kernel Abstract Program Interface (API).

As an example when a program seeks to write a file, perhaps

malware to self replicate, the program must request this service

from the kernel layer as creating a new file requires a system service.

The event is observable via a well designed trace monitor because

the service is performed by the kernel via a system call.

In our work, we design trace monitor tools abstractly around a set

of system calls that would be required to achieve a wide range of

system services. Then binary rewriting techniques are implemented

to detect and observe these events, using Intel PIN tool library. The

system[6] implements a set of monitors on 527 Windows kernel

level functions, of which 238 are Rtl, functions 224 are NT functions
and 17 are Ldr functions. The trace monitor then becomes a pro-

gram that takes as input a program p and returns as output a trace

t (p) as a sequence over the events of E. Next the trace monitor is

deployed in a scalable and safe sandbox setting. Since we execute

malware capable of exploiting systems, we use Virtual Machines

(VM) to provide both containment1 and resetting2 capabilities. Ad-

ditionally VM technology provide scale, as we can copy the VM and

deploy them across physical machines using a variety of hypervisor

and virtualization techniques. Having assigned one clean VM to

each malware, the only other significant design parameter is the

observational time budget which maybe defined as the amount of

time we allow the malware to run within the trace monitor before

halting the observation process as well as terminating the malware

process. We usually set the observational runtime budget to 30

seconds. Control of the system is achieved with a variety of scripts

to manage the virtual machines, marshalling data and resetting ma-

chine states, loading/running executable within the trace monitors,

etc.

We maintain the identity of each binary executable program as

b its unique identity (provided by a cryptographic hash function),

the trace monitor system thus derives a trace for each binary t (b)
and we additionally use the family association tag provided by the

cataloging effort (described above) as f (b).

3.3 Sample selection

Here we describe the process of selecting a non-trivial and meaning-

ful sample for testing non-expert assistance in operational malware

recognition. One problem often requiring experts to go back and re-

evaluate data involves inconsistent variance measures for separate

classifiers. For example, if static detection expresses low variance

while behavioral detection expresses high variance, a new malware

feature (needing to be learned) could be implicated and human

1Containment ensures that a malware will not infect additional machines nor commu-
nicate back to a command server information concerning its testing environment.
2Virtual Machines can be check-pointed, meaning that their state can be saved and
restored, this is useful for malware studies as an infected machine maybe quickly
restored to a safe state prior to having any malware contact.

BICT’17, March 2017, Hoboken, New Jersey, USA N. VanHoudnos et al.

judgment may be preferred or necessary. We therefore incorpo-

rate a round of data exploration with principal component analysis

(PCA) applied to the expert labeled data to find families with high

behavioral variance (relative to the comparatively stable static de-

tection characteristics). Surprisingly, we discovered that variation

in behavior features (within each expert tagged family) are infre-

quent rather than common. In our problem, such variance was

noted in few families, resulting in a re-evaluation task with only

three families.

We essentially use expert tags and multiple classifier outputs to

identify a re-evaluation task needed as part of the overall recogni-

tion problem. Arguing that such a task would otherwise be dele-

gated to experts, additional utility for the recognition problem is

gained if non-experts can perform the re-evaluate task with the

same precision as experts. As future work, we would like incorpo-

rate non-experts into the data exploration and reduction phase.

To reduce dimensionality we summarize a trace t (b) as a low
dimensional representation of its run-time graph on the events E.
Conceptually, we could construct this graph by setting events E
as nodes and adding a directed edge between two nodes when the

corresponding API calls appeared successively in the trace t (b).
We limited the graph to the first 1,000 lines (999 transitions) to

standardize the edge weights between graphs. We expressed the

call graph as an edge list matrix, where each row of the matrix

represented a trace, and each column represented a count of tran-

sitions. This resulted in a matrix of 8,277 rows and 652 columns.

We then constructed a low-rank approximation to this edge list

matrix with Principal Components Analysis[10]. Note that four of

the columns had zero variance across traces; we discarded them

before performing PCA.

Empirically, the principal components strategy both separated

the malware families quite well and revealed two regimes malware

heterogeneity. Figure 1 displays box plots of the first principal

component for the 29 families that have at least 100 instances. Note

that the left of the figure displays families where the first principal

component has very little variation within family, but can have

appreciable variation between families. The right of the figure, in

contrast, displays families that exhibit substantial within variation.

In early work, we selected families from the left of figure, with

negligible within family variation. This made the classification

task remarkably easy – any machine learning method and any

collection of non-experts was able to clearly distinguish between

these families without difficulty.

For this work, we chose families from the right of the figure,

specifically, the three with the highest within family variation.

In the figure, the chosen families are labeled with the arbitrary

names Amlity, Squent, and Desper. Note that the families also

show considerable overlap with each other on the first principal

component. Since it is not feasible to release the ground truth

dataset, we provideMD5 hashes of typical examples of these classes:

Amlity bb8789de18346097680ec25c540ccaa8,

Squent 00008f397be9eb4de57165b6ac35b931, and

Desper 00097ac658ea91c6b4e4272b3e95d56d. Further information

can be found at Virus Total [28].

A Support Vector Machine (SVM) classifier was used to check the

feasibility of distinguishing between these three malware families.

Classification using the PCA vectors typically had 80% accuracy

due to the presence of outliers. We scaled the PCA vectors to the

unit interval by replacing them with their empirical cumulative dis-

tribution function, i.e. an empirical histogram transformation. This

transformation did improve performance; the SVM cross validation

accuracy on the transformed data rose to approximately 90%.

4 VISUALIZATION

4.1 Stick Figures

We set out to choose a visualization that would not be confusing for

a layperson, but that also did not leverage pre-existing knowledge.

For example, we considered the possibility of using birds to rep-

resent different classes of malware, but did not want to introduce

a confound where experienced birders performed better because

of our chosen representation. We settled on the idea of drawing

fictional alien species, and decided to start with a style well within

our artistic reach – stick figures.

Figure 2 displays example stick figures for the three families

where Desper’s are the first two rows with red heads, Amlity’s are

the third and fourth rows with green heads, and Squent’s are the

fourth and fifth with blue head. The height and arm angle were

generated from the first scaled PCA vector, the number of hairs

from the second, the number of sides in the polygon that forms

the head from the third, and the length of the legs from the fourth.

Note that the coloring was not present for the experiments to avoid

biasing the results.

4.2 Chernoff faces

We adopted Chernoff faces as an alternative to stick figues because

they have a greater capacity to encode higher dimensional data.

For example, the faces function from the aplpack R library [30]

gives 15 possible dimensions with which to construct the Chernoff

faces.

To keep the stick figures and Chernoff faces comparable, we

recycled to first four scaled principal components so that each rep-

resented several features. We used the default scaling and assign-

ment order of the faces function. Specifically, the first principal
component adjusted the height of the face, width of the mouth, the

height of the hair, and the width of the nose. The second scaled

principal component adjusted the width of the face, the amount of

smiling, the width of the hair, and the width of the ears. The third

scaled principal component adjusted the structure of the face, the

height of the eyes, the style of the hair, and the height of the ears.

The fourth scaled principal component adjusted the height of the

mouth, the width of the eyes, and the height of the nose.

Figure 3 shows example Chernoff faces for each family generated

from the same examples as in Figure 2. Note that the Chernoff faces

appear to highlight the heterogeneity within families as compared

to the stick figures.

4.3 Sensitivity analysis

Although the subjects visualized are simple and commonly familiar,

individuals are likely to express differential responses to various fea-

tures (e.g., face height). While we have sought to avoid confounds

arising from preexisting knowledge of the visualization subject

(as could arise when visualizing birds) human non-experts may

unavoidably present differential responses or other confounds (e.g.,

N. VanHoudnos et al. BICT’17, March 2017, Hoboken, New Jersey, USA

Figure 1: First principal component for 29 families, family names on the x-axis were redacted

Figure 2: Stick figure examples.

mood) difficult to control for. On the other hand, the sensitivity of

the representation (faces and stick figures) on data can be explored

with general numerical techniques (e.g., Monte-Carlo estimation) to

evaluate how principal components are sensitive to data noise and

model parameters. Additionally, techniques to make PCA more ro-

bust to outliers could be applied when sensitivities are determined.

A more thorough approach involving model parameters and data

sensitivities are considered as future work.

5 EXPERIMENTS

The experimental framework used PsiTurk [13] to present faces

and stick figures to anonymous workers on Amazon Mechanical

Turk [1]. Figure 4 illustrates the interface. Note that the users were

provided with (i) ground truth labels for prior stimuli, (ii) immediate

Figure 3: Chernoff face examples.

feedback on their accuracy, and (iii) an indication of their progress

through the task.

For each of the experiments, the first 15 stimuli were practice

stimuli, and the next 150 stimuli were graded for accuracy. We chose

the order of stimuli to mimic that of an active learning strategy

responding to oracle labeling for the task so that in future work

we would be able to compare the difficulty that humans have with

labeling a stimulus with the difficulty that a machine learner has.

The pay scale for the experiments was based on accuracy, which

gave the users an incentive to perform the work well. The schedule

is illustrated in Table 1.

We report on four trials which compared the ability of users

to distinguish between the Amlity, Squent, and Desper families of

malware using the two types of visualization. They are detailed in

Table 2.

BICT’17, March 2017, Hoboken, New Jersey, USA N. VanHoudnos et al.

Figure 4: The User’s interface to our experiment on Mechanical Turk

% Percent correct Compensation

0%-44% $0.50

45%-69% $1.00

70%-89% $2.00

90%-100% $2.50

Table 1: Reward Structure for users

Trial Users Visuals

1 50 Chernoff faces

2 100 Chernoff faces

3 75 Stick Figures

4 75 Stick Figures

Table 2: Users and Visuals for each trial

6 RESULTS

We find that the non-expert users of Amazon Mechanical Turk are

able to classify heterogeneous families of malware with limited

training by using simple visualizations of malware runtime behav-

ior. Figure 5 shows the error rates of the classifiers (SVM) trained

with (i) the ground truth labels (blue line), and with (ii) the turkers’

answers from Trial 1 and 2 (green line; averaged result), at varying

number of stimuli labeled. It can be seen that non-expert answers,

albeit with noisy labels, can still yield a classifier model that has a

comparable accuracy to a model trained with ground truth labels.

We also find that the modality of visualization affects classifi-

cation difficulty. Figure 6 displays a scatter plot of the proportion

correct for each stimulus as averaged across all of the responses.

The colors of the points correspond to the families: Desper’s are red,

Amlity’s green, and Squent’s blue. The left panel compares Trials 1

and 2 to examine if the proportion correct is similar between the

two trials. Note that this appears to be the case, the points are

tightly and evenly clustered around the 45 degree equality line. The

right panel compares the proportion correct for the stick figures

versus the Chernoff faces. Note that the stick figures are typically

more difficult for the non-experts to classify, i.e. the fall below the

45 degree line.

7 DISCUSSION

One consequence of this result for the analyst is that, by using a visu-

alization based on normalized features, the analyst can quickly and

intuitively correlate findings in multiple feature spaces, especially

when starting from ground-truth. For example, the relatively wide

variance of the PC1 values for the family Amlity suggests that there

are multiple sets of runtime instruction paths through exemplars of

Amlity. Visual inspection of the Amlity Chernoff faces suggests that

there may in fact be 2-3 ”primary” clusters of variants within this

family. Applying function hashing to the exemplars of this family

N. VanHoudnos et al. BICT’17, March 2017, Hoboken, New Jersey, USA

20 40 60 80 100 120 140
Stimuli Labeled

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
rr

o
r

R
a
te

Ground Truth

Turkers Avg

Figure 5: Comparison of error rates on a held-out test set of

SVM classifiers trained with (i) ground truth labels and (2)

with crowdsourced labels (Trial 1 and 2), at varying number

of stimuli labeled. Standard deviation across classification

models built from individual turkers’ answers are shown in

error bars.

reveals that there is significant functional overlap between exem-

plars, with at least two clusters of files possessing different counts of

functions. Reverse engineering two exemplars, one from each candi-

date sub-cluster (e.g. file MD5 01a28bbf8cf0e6185dc7e97d9e7cc846

and file MD5 049652adb1580ff3c6fdfc6363f09768) reveals that, while

both programs appear to be compiled with Visual Studio and to

use MFC, the function that resolves the imports for each program

(file MD5 01a28bbf8cf0e6185dc7e97d9e7cc846 address 0x402640,

and file MD5 049652adb1580ff3c6fdfc6363f09768 address 0x401F80)

differ in the stack variables used within the functions. In this way,

the visualizations for both PCA and the Chernoff faces suggested

variation within the family that was able to be confirmed by reverse

engineering, even though the function used to identify the family

(found at 0x402E70 in file MD5 01a28bbf8cf0e6185dc7e97d9e7cc846

and at 0x4024A0 in file 049652adb1580ff3c6fdfc6363f09768) was

constant between exemplars.

Although this is but a single example, the underlying significance

is that this technique may allow the analyst to better estimate the

amount of reverse engineering that may be required to understand

the various modes of a particular malware family. Combining this

fact with an organizational or corporate structure in which many

malware families must be understood in a relatively short amount

of time, this gives an opportunity to prioritize and/or appropri-

ately resource the efforts by first using automated and lower-skill

(implying lower-cost) means to gauge the scope of analysis.

In addition, we find that non-expert labels obtained from the

described process can build a classifier model that has a comparable

error rate to that of ground truth samples. This suggests promise for

our future work on a human in the loop malware analysis system.

8 ACKNOWLEDGEMENTS

Copyright 2017 ACM

This material is based upon work funded and supported by the

Department of Defense under Contract No. FA8721-05-C-0003

with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development

center.

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Carnegie Mellon® and CERT® are registered marks of Carnegie

Mellon University.

DM-0004454

REFERENCES
[1] Amazon Mechanical Turk: Artificial Artificial Intelligence. url: http://www.

mturk.com.
[2] V. Ambati, S. Vogel, and J. G. Carbonell. “Active learning and crowdsourcing

for machine translation”. In: LREC ’10 (2010).
[3] Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng. “A Static

MalwareDetection SystemUsingDataMiningMethods”. In:CoRR abs/1308.2831
(2013). url: http://arxiv.org/abs/1308.2831.

[4] Maya Cakmak and Andrea L Thomaz. “Eliciting good teaching from humans
for machine learners”. In: Artificial intelligence 217 (), pp. 198–215.

[5] Chris Callison-Burch. “Fast, cheap, and creative: evaluating translation quality
using Amazon’s Mechanical Turk”. In: Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing: Volume 1-Volume 1. Association
for Computational Linguistics. 2009, pp. 286–295.

[6] WilliamCasey et al. “Agent-based trace learning in a recommendation-verification
system for cybersecurity”. In: Malicious and Unwanted Software: The Americas
(MALWARE), 2014 9th International Conference on. IEEE. 2014, pp. 135–143.

[7] Herman Chernoff. “The Use of Faces to Represent Points in K-Dimensional
Space Graphically”. In: Journal of the American Statistical Association 68.342
(1973), pp. 361–368.

[8] C Cohen and J Havrilla. “Function Hashing for Malicious Code”. In: CERT
Research Annual Report. Ed. by Software Engineering Institute. Carnegie Mellon
University, 2009, pp. 27–29.

[9] Daniel Engel, Lars Hüttenberger, and Bernd Hamann. “A Survey of Dimension
Reduction Methods for High-dimensional Data Analysis and Visualization”. In:
Visualization of Large and Unstructured Data Sets: Applications in Geospatial
Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011.
Ed. by Christoph Garth, Ariane Middel, and Hans Hagen. Vol. 27. OpenAc-
cess Series in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2012, pp. 135–149. isbn: 978-3-939897-46-0.

[10] Brian S Everitt and Graham Dunn. “Principal components analysis”. In: Applied
Multivariate Data Analysis, Second Edition (1993), pp. 48–73.

[11] D. French. “Beyond Section Hashing”. In: CERT Research Annual Report. Ed. by
Software Engineering Institute. Carnegie Mellon University, 2010, pp. 64–66.

[12] J Gennari and D French. “Defining malware families based on analyst insights”.
In: Technologies for Homeland Security (HST), 2011 IEEE International Conference
on. Nov. 2011, pp. 396–401.

[13] Todd M Gureckis et al. “psiTurk: An open-source framework for conducting
replicable behavioral experiments online”. en. In: Behavior research methods
(Jan. 2015).

[14] Qingshan Jiang, Xinxing Zhao, and Kai Huang. “A feature selection method
for malware detection”. In: Information and Automation (ICIA), 2011 IEEE Inter-
national Conference on. 2011, pp. 890–895.

[15] Boojoong Kang et al. “Malware Classification Method via Binary Content
Comparison”. In: Proceedings of the 2012 ACM Research in Applied Computation
Symposium. RACS ’12. San Antonio, Texas: ACM, 2012, pp. 316–321. isbn:
978-1-4503-1492-3.

[16] Michael D Lee and Rachel E Reilly. “An Empirical Evaluationof Chernoff
Faces, Star Glyphs, and Spatial Visualizationsfor Binary Data”. In: Australasian
Symposium on Information Visualisation. Ed. by Tim Pattison and BruceThomas.
2003.

BICT’17, March 2017, Hoboken, New Jersey, USA N. VanHoudnos et al.

Figure 6: Comparison of the difficulty of labeling given stimuli across trials.

[17] Xin Li and Yuhong Guo. “Adaptive active learning for image classification”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2013, pp. 859–866.

[18] Marta Lopez. “27% of all recorded malware appeared in 2015”. In: (Jan. 2016).
url: http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-
malware-appeared-in-2015/.

[19] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”.
In: Journal of machine learning research 9.Nov (2008), pp. 2579–2605.

[20] Dominik Maier, Tilo Müller, and Mykolai Protsenko. “Divide-and-Conquer:
Why Android Malware cannot be stopped”. In: 9th International Conference on
Availability, Reliability and Security. Ed. by SBAResearch. Fribourg, Switzerland,
2014.

[21] Syed Bilal Mehdi, Ajay Kumar Tanwani, and Muddassar Farooq. “IMAD: In-
execution Malware Analysis and Detection”. In: Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation. GECCO ’09. Montreal,
Québec, Canada: ACM, 2009, pp. 1553–1560. isbn: 978-1-60558-325-9. doi:
10.1145/1569901.1570109. url: http://doi.acm.org/10.1145/1569901.1570109.

[22] Abedelaziz Mohaisen and Omar Alrawi. “Unveiling Zeus: Automated Classifica-
tion of Malware Samples”. In: Proceedings of the 22Nd International Conference
on World Wide Web. WWW ’13 Companion. Rio de Janeiro, Brazil: ACM, 2013,
pp. 829–832. isbn: 978-1-4503-2038-2. doi: 10 .1145/2487788 .2488056. url:
http://doi.acm.org/10.1145/2487788.2488056.

[23] Seungwhan Moon and Jaime G Carbonell. “Proactive learning with multiple
class-sensitive labelers”. In: Data Science and Advanced Analytics (DSAA), 2014
International Conference on. IEEE. 2014, pp. 32–38.

[24] Dipl-Ing Maik Morgenstern and Hendrik Pilz. “Useful and useless statistics
about viruses and anti-virus programs”. In: Proceedings of the CARO Workshop.
2010.

[25] Chinmaya Kumar Patanaik, Ferdous A. Barbhuiya, and Sukumar Nandi. “Ob-
fuscated Malware Detection Using API Call Dependency”. In: Proceedings
of the First International Conference on Security of Internet of Things. Secu-
rIT ’12. Kollam, India: ACM, 2012, pp. 185–193. isbn: 978-1-4503-1822-8. doi:
10.1145/2490428.2490454. url: http://doi.acm.org/10.1145/2490428.2490454.

[26] Pamela Samuelson and Suzanne Scotchmer.The Law and Economic of Reverse
Engineering. Levine’s Working Paper Archive. David K. Levine, 2003. url:
http://EconPapers.repec.org/RePEc:cla:levarc:618897000000000538.

[27] B. Settles and M. Craven. “Training text classifiers by uncertainty sampling”.
In: EMNLP (2008), pp. 1069–1078.

[28] Virus Total. url: https://www.virustotal.com/.

[29] C Wah. “Crowdsourcing and its applications in computer vision”. In: University
of California, San Diego (2006).

[30] Hans Peter Wolf and Uni Bielefeld. aplpack: Another Plot PACKage: stem.leaf,
bagplot, faces, spin3R, plotsummary, plothulls, and some slider functions. R pack-
age version 1.3.0. 2014. url: https://CRAN.R-project.org/package=aplpack.

[31] J-Y. Xu et al. “Polymorphic Malicious Executable Scanner by API Sequence
Analysis”. In: Proceedings of the Fourth International Conference on Hybrid
Intelligent Systems. HIS ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 378–383. isbn: 0-7695-2291-2. doi: 10 . 1109 / ICHIS . 2004 . 75. url:
http://dx.doi.org/10.1109/ICHIS.2004.75.

[32] Yan Yan et al. “Active learning from crowds”. In: Proceedings of the 28th inter-
national conference on machine learning (ICML-11). 2011, pp. 1161–1168.

[33] YARA: The pattern matching swiss knife for malware researchers (and everyone
else). url: http://virustotal.github.io/yara/.

[34] Ilsun You and Kangbin Yim. “Malware Obfuscation Techniques: A Brief Survey”.
In: Proceedings of the 2010 International Conference on Broadband, Wireless
Computing, Communication and Applications. BWCCA ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 297–300. isbn: 978-0-7695-4236-2. doi:
10.1109/BWCCA.2010.85. url: http://dx.doi.org/10.1109/BWCCA.2010.85.

