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ABSTRACT

This paper presents a simulation framework in which a
pre-assembled rectangular pattern of DNA tiles can be put
together with sets of other DNA tiles to autonomously
assemble replicas of itself in a discrete two-dimensional
grid. The simulator implements both abstract and
chemical kinetics based modelling to simulate the tile
pattern self-replication. While the abstract model uses
only logical matching between the edges of tiles to guide
the assembly process, the chemical Kkinetics model
calculates stochastic preference for attachment and/or
detachment of each tile during the self-replication. A
comparison is made between pattern self-replication timing
in the abstract model and cellular automata based models.
Simulation of chemical kinetics behaviour shows that the
physico-chemical parameters of tile self-assembly govern
the tractability of self-replication process and reliability of
replicating patterns. Observations are made about the
limitations of the simulator, and a few suggestions for
improvement and further studies are discussed.

CCS Concepts

eComputing methodologies
Modeling and simulation;

—  Self-organization;

Keywords

Algorithmically Programmable Pattern self-replication,
Simulation of self-replication, DNA self-assembly, DNA tile

1. INTRODUCTION

Self-replication is a fundamental mechanism in biology
which has been used by nature to autonomously construct
complex molecular systems inexpensively using evolution.
Application of this inspiration to engineer artificial
molecular systems has been a constant pursuit of
nanosciences. Gunter von Kiedorowski [17] first introduced
a minimal system of molecular self-replication, which
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typically involves a three-step process. First, a template
molecule assembles with few substrate molecules resulting
in an intermediate complex formation. Second, the
substrate molecules within the complex join together
irreversibly by covalent binding, and thereby forming a
replica of the template. Third, the complex molecule
dissociates into two templates: the former template and
the newly created replica. Each of these templates can
reiterate the three-step process adding to the template
population.

Template directed non-enzymatic self-replication has
been used for the synthesis of nucleic acid sequences using
only linear organization of short sequences of nucleic acids
(primers). However, recent advances in structural DNA
self-assembly have opened up perspectives for the
non-enzymatic self-replication of two-dimensional (2-D)
and three-dimensional (3-D) patterns of DNA [14, 18, 9, 2].

DNA tile self-assembly [19] is an emerging paradigm for
nanostructure  construction and  molecular  scale
computation. DNA tiles [21], the building blocks of tile
self-assembly, can be designed to interact with strength
and specificity for the assembly of logically and/or
algorithmically directed periodic and aperiodic 2-D
intricate patterns. For a theoretical modelling of tile
assembly, Erik Winfree first introduced an abstract Tile
Assembly Model (aTAM) [19]. In the aTAM framework,
the assembly starts from a single seed tile and the pattern
grows in 2-D as more tiles adjoin one-by-one following a
simple assembly rule — the total binding strength of an
incumbent tile should be greater than or equal to a
threshold value known as temperature parameter of
assembly. However, DNA tile assembly is essentially a
physico-chemical process, where local reaction temperature
and tile concentration are the governing factors. Therefore,
for a realistic modelling of tile assembly process, Winfree
introduced kinetic Tile Assembly Model (kTAM) [19]. The
kTAM considers each tile assembly step as a reversible
process governed by the tile concentration, local reaction
temperature and binding strengths of tiles. The model
enables analysis of the assembly errors and growth rate for
a given tile assembly system.

In this paper, we describe a simulation framework for
minimal system of self-replicating patterns of DNA tiles,
earlier studied in Gautam et al. [5]. The simulator
produces replicas of 2-D target patterns in the tile
self-assembly medium. There are two modes in which the
simulator can be used: 1) abstract version of the simulator
implements the aTAM [19], and 2) kinetic version



implements the kTAM [19].

The remainder of the article is structured as follows:
background of DNA tile self-assembly and tile assembly
models is described in Section 2. Section 3 describes the
design of tile pattern self-replication simulator. In
Section 4, we describe the details of underlying models
used in the design of the self-replication simulator.
Section 5 presents simulation results and observations
based on these results. Section 6, concludes the article.

2. BACKGROUND

In this section we discuss briefly the background of the
main concepts used in this article. This includes: a brief
introduction to the self-assembly mechanism of DNA tile
patterns, the abstract and kinetic modelling of tile assembly.

2.1 Self-assembly of Programmable DNA tile
Patterns

Erik Winfree [19] introduced self-assembly of DNA
molecular structures (DNA tiles [21]). DNA tiles serve as
building blocks for programmable self-assembly of 2-D
physical patterns of tiles. DNA tiles consist of four (~ 50
nucleotide) ss-DNA molecules, synthesized for a given
DNA tile design. Figure 1 illustrates the construction of a
Double Crossover (DX) molecular DNA tile with four DNA
strands. As shown in (a), each ss-DNA consists of a
sequence of nucleotides (A, T, G, C). The tiles
self-assemble through the bonding of these ss-DNAs at
room temperature. The bonding process occurs when two
complimentary strands meet and their base pairs: A-T and
G-C, bind. Any left-over bases from each of the bonded
strands form a sticky end(s) — as shown in (b). As the
term implies, this end is available to ”stick” or bond to
another strand. DX molecular DNA tiles are square
shaped structures where sticky-ends are represented by
their respective square edges — as illustrated in (c).
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Figure 1: DX DNA Tile Structure(a) four ss-DNA
(b) assembled DNA tile (c) abstract representation
of DNA tile.

2.2 Tile Self-assembly Models

The physical implementation of tile self-assembly in a
wet-lab is often time-consuming, expensive and challenging
with respect to reproducibility of results. Computer
simulations of tile self-assembly enable a faster way to
design tile systems, study their performance and gain
important insights without wet laboratory experiments.
There are two simulation models of tile self-assembly,
developed by Winfree [13, 19]: 1) The abstract Tile
Assembly Model (aTAM), and 2) The kinetic Tile
Assembly Model (kTAM).

Abstract Tile Assembly Model (aTAM)

In abstract model, a DNA-tile, ¢, is a quadruple
(os(t),ow(t),on(t),or(t)), where 0 € X is glue type
associated with the four sides (North (N), South (S), West
(W), East (E)) of a rotationally asymmetric unit square.
The glue type, ¥, is a finite set, which is used to derive a
glue strength function (s: X x ¥ — N) for a legitimate tile
association between two glues of tiles. The glue strength
function is symmetric, i.e., s(o1,02) = s(o2,01)
Yoi,09 € 3.

A tile pattern assembly system (TPAS) 7 = (T,S,s,T)
consists of a finite set T of tile types, an assembly S
termed as seed assembly, a glue strength function s and a
temperature parameter 7 € ZT . A tile assembly system
has a temperature ‘7’ if any larger structure of tiles cannot
be dissociated into smaller assemblies without breaking
bonds of total strength at least ‘7. Alternatively, a tile can
join the assembly as long as the sum of the strengths of the
bonds that it makes with tiles already in the assembly is at
least 7.

Figure 2 illustrates an example of tile self-assembly the
Sierpinski pattern [20, 12] at temperature 2 (7 = 2). The tile
set in (a) comprises a seed tile, two boundary tiles and four
rule tiles. Tile edges are marked by non-negative integers
illustrating their respective glue strengths. The South and
West glues of the tiles are designed as inputs and the North
and East glues are outputs.

Tile pattern assembly in the aTAM starts from a given
seed structure that nucleates the pattern formation which
further grows into a finite or infinite pattern as more tiles
join, as shown in Figure 2(b). Tiles join by forming bonds
with strength at least of 7 (e.g., a 7 = 2 assembly requires
tiles to bind with total strength at least 2). For a given
TPAS, a pattern assembly P is said to be terminal, if no tile
can be added further that satisfies the 7 — stability criteria.

The aTAM has given insights to important theoretical
aspects of the tile assembly systems, e.g, 1) what can or
can’t be self-assembled?, and 2) if something can be
assembled, how efficient it could be?

The Kinetic Tile Assembly Model (kTAM)

The kTAM captures physico-chemical reality of the tile
self-assembly process in its modelling, which was ignored in
the aTAM. The kTAM considers each tile assembly step as
a reversible process, governed by the tile concentration,
local reaction temperature and the length of the tile’s
sticky ends. The rate of tile attachment at a binding site of
a tile aggregate is directly proportional to the tile
concentration. The concentration of each type of tile
(except the seed tile) can be given by e~%m¢  where G, is
the decrease in entropy when a tile binds at a vacant site.
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Figure 2: Sierpinski pattern self-assembly.(a)
Sierpinski tile set (XOR tile set). (b) Steps of
self-assembly of Sierpinski Pattern of size 9x9. (c)
Kinetics of tile assembly in kTAM.

Therefore, the forward reaction rate (r¢) can be given by
ry = ke~ %me where ky = 6 x 10° /M/sec is the reaction
rate constant. Similarly, the tile detachment process is
controlled by the energy required to break any single
tile-aggregate bond and denoted by Gs.. The value of G,
depends on the sticky end length (s) and the temperature
(T"), where Gse &~ (4000/T — 11)s. The tile reverse reaction
rate involving b tile bonds is given by 7, = kfebe“.

A larger value of Gp thus implies a lower tile
concentration and consequently a slower forward reaction
rate (or vice versa). Similarly, a larger value of Gy, results
in a slower detachment rate. The optimum growth rate
with low error rates happens near thermodynamic
equilibrium (Gme = 2Gs) [20], and may be given by
r* &~ ry—rro and € & e~ s respectively. Therefore, a
relation between optimum growth rate and minimum error
rate may be given by r* &~ Be? where, 8 = 0.75 x 10°
/M/sec. Thus, any effort to reduce the error rate (¢) by
tuning physical parameters (Gm. and Gs.) would result in
a quadratic reduction of the growth rate. Error reduction
without significant fall off in assembly growth rate could be
achieved using redundant tile sets [20, 7] or by protecting
tile’s inputs and outputs [4, 10, 6].

3. TILE PATTERN SELF-REPLICATION
SIMULATOR

This section describes the design of Tile Pattern
Self-replication Simulator (TPSS) based on its previously
proposed theoretical model [5].  The simulator takes
algorithmically programmable rectangular pattern of tiles

as an input and produces replicas of the pattern. At least
one pre-assembled copy of a target pattern is required to
start the self-replication process.

A target pattern is initialized in two steps: First, an L-
shaped seed structure (West and South edges) of rectangular
pattern is created using an XOR tile set. A corner tile is first
chosen and then the two arms the L-shaped structure self-
assemble in parallel as more tiles matching by single side join
the growing seed structure. Second, using the seed structure,
full pattern is formed as more tiles matching by two sides
(or decided by the kinetics of the tile binding) assemble to
the seed structure.

The simulator first assembles a mold of the target
pattern using mold forming tile sets, and thus forming a
combined Pattern-Mold structure (P-M). The P-M
structure is dissociated into the mold and the pattern at
the end of the cycle. In the subsequent replication cycles,
the dissociated pattern and mold copies serve as seeds to
drive the two pathways of the cross-coupled system, as
illustrated schematically in Figure 3.

In the start of the pattern self-replication, cycle CO shown
in Figure 3, at least one copy of the pre-assembled pattern,
P?, is supplied. The self-replicator produces a complex P-M,
which is subsequently dissociated into new copies of P and
MY at the end of the cycle C1. In the subsequent replication
cycle, Cji, 271 copies of P and M are produced. In the cih
cycle, pattern copies are presented by P’ and mold copies
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are represented by M7, where j varies from 0 to (271 — 1).
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Figure 3: Tile pattern self-replication: unrolled
cycles of cross-coupled system of tile pattern self-
replication.

In the following, we describe: 1) pattern forming tile set;
2) mold forming tile set; 3) pattern-to-mold formation
process ; 4) mold-to-pattern formation process.

3.1 Pattern Forming Tile Set

To assemble a pattern in the tile self-assembly
framework, a tile set and an initial configuration of tiles
(seed) is required. In the absence of seed, tiles do not
assemble to produce large aggregates. However, the



presence of seed acts as a nucleation point where tiles join
to grow the pattern. In the following, a pattern forming
tile set, seed structure and pattern initialization are
illustrated in brief.

A pattern forming XOR tile set is illustrated in Figure 4.
A square tile unit having four edges (N, S, E, W) is shown
in Figure 4(a). Input(ip)/output(op) edges and XORing
logic operating implemented between them is shown in
Figure 4(b) and Figure 4(c), respectively. The four tiles of
XOR tile set used as Pattern forming tiles are shown in
Figure 4(d).
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Figure 4: Pattern forming XOR tile set. (a) Square
unit of tile. (b) Input(ip) and output(op) edges of
an oriented tile unit. (c) XOR operation between
inputs to derive output logic. (d) Four XOR tiles of
the pattern forming tile set.

Programmable rectangular patterns of tiles can be
produced using the pattern forming XOR tile set
illustrated in Figure 4. A target rectangular pattern can be
introduced by initializing an L-shaped seed from which the
entire pattern is assembled. A number of L-shaped seed
structures, as shown in Figure 5, can be initialized.

To initialize an L-shaped seed structure, first a random
tile is picked and placed at the corner of the structure, and
subsequently more tiles are added to form the two arms of
the structure. To form the horizontal arm of the L-shaped
structure, tiles are selected such that logic value on the West
edge of each added tile matches with the logic on the East
edge of the previous tile. Similarly, to form the vertical arm,
tiles are selected such that logic value on the South edge of
each added tile matches with the North edge of the previous
tile.

Using an L-shaped seed structure corresponding tile
pattern can be formed further using the tile assembly
mechanism [19]. The pattern forms by filling tiles to the
seed structure, where tiles are added by matching the logic
at their input pins (left and bottom) with the available
sites in the growing pattern.

3.2 Mold Forming Tile Set

We describe herein the sets of mold forming tiles. Based
on the bottom and left borders of the pattern, the mold
forming tiles are further divided into two sets of tiles: the
horizontal mold forming tile set and vertical mold forming
tile set, respectively. Mold forming tile sets implement the
XOR logic, but the orientation of the tiles is different from
the pattern forming tile set illustrated earlier in Figure 4.
The horizontal mold forming tile set, Figure 6, uses tiles with

S3 s4

Figure 5: Initialization of L-shaped seed structures
and tile patterns. Four different L-shaped seed
structures (S1, S2, S3, S4) and corresponding tile
patterns (P1(4,4), P2(4,4), P3(4,4), P4(4,4),) are
shown.

top and right edges as inputs, and right and bottom edges as
outputs. The vertical mold forming tile set, Figure 7, uses
tiles with right and bottom edges as inputs, and left and top
edges as outputs. The two tile sets form the horizontal and
vertical arms of the mold, respectively, as shown in Figure 8.
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Figure 6: Horizontal mold forming tile set. (a)
Square unit of tile. (b) Input(ip) and output(op)
edges of an oriented tile unit. (c) XOR operation
between inputs to derive output logic. (d) Four
XOR tiles of pattern forming tile set.

3.3 Pattern-to-Mold Formation

Pattern-to-mold formation pathway in the cross-coupled
system of pattern self-replicator assembles mold around the
south-west boundary of the pattern. Mold formation, as
shown in Figure 8, starts at the corner tile of the pattern,
where mold forming tiles first bind, and subsequently the
horizontal and vertical arms of the mold structure grow
along the south and west edges of the pattern, respectively.
Each of the horizontal and vertical edges of the mold are
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Figure 7: Vertical mold forming tile set. (a) Square
unit of tile. (b) Input(ip) and output(op) edges of
an oriented tile unit. (c) XOR operation between
inputs to derive output logic. (d) Four XOR tiles of
pattern forming tile set.

formed by tiles from separate tile sets: horizontal mold
forming tile set and vertical mold forming tile set, as
shown in Figure 6 and Figure 7, respectively. A tile in the
horizontal arm of the mold attaches if its north and west
edges have matching with the south edge of a tile in the
pattern and east edge of the previous tile in the mold,
respectively. Similarly, a tile in the vertical arm of the
mold attaches if its east and south edges have matching
with the west edge of a tile in the pattern and north edge
of the previous tile, respectively.
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Figure 8: Pattern to mold formation using mold
forming tile sets.

3.4 Mold-to-Pattern Formation

In each cycle, assembled pattern-mold complexes
dissociate in mold and pattern structures. The dissociated
mold structure serves as a seed in the mold-to-pattern
formation process of the cross-coupled system of
self-replication. Figure 9 illustrates a few steps of the mold
to pattern formation process. Glues on the inner side of
the mold structure provide information to self-assemble the

pattern using the pattern forming tiles. A tile attaches at a
vacant site of the growing pattern if its south and west
edges match with the north and east edges of the tiles in
the vacant site, respectively.  Once the filing of the
rectangular pattern is complete, incoming tiles can no
more attach by more than one bond, thus the pattern can
not grow further: terminally assembled pattern.
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Figure 9: Formation of Pattern from Mold.

4. TILE PATTERN SELF-REPLICATION
MODELS

A two dimensional rectangular grid of size m X n, as
shown in Figure 10, is used as a workbench of the
simulator. Each cell in the grid is identified by coordinates
(i, j), where 0 < 4 < n and 0 < j < m. The conventions
used to represent each of the L-shaped seed, pattern, and
mold are as follows. 1) for a m x n size pattern, cell (m,0)
in the grid, is used for the corner tile of the L-shaped seed
of the pattern. The L-shaped seed of the pattern occupies
the left most and the bottom most cells of the grid. 2)
mold of a m X n pattern occupies the left most and the
bottom most cells of the grid of size (m + 1) x (n +1). 3)
we used data structure to hold dynamic data
corresponding to patterns and molds of self-replication
cycles (shown in Figure 3). The data structure initializes a
separate grid of size (m + 1) x (n+ 1) to perform processes
— seed — mold formation and mold — seed formation —
for every copy of seed and mold in each cycle.

The TPSS comes in two versions: 1) abstract Tile Pattern
Self-replication Model (aTPSM) based on the the aTAM;
kinetic Tile Pattern Self-replication Model (kTPSM) based
on the kTAM. The two models used in the simulator design
are described below.

4.1 Abstract Model

The aTPSM implements the pattern self-replication
process in four steps: 1) initialization of two-dimensional
rectangular pattern that is to be replicated; 2) pattern to
mold formation; 3) mold to pattern formation; 4)
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Figure 10: Two-dimensional grid of m xn dimension.

self-replication cycles: running the steps 2 and step 3 for
each copy of the pattern and the mold in parallel. In the
aTPSM, the criteria for a stable attachment of a tile is the
same as in the aTAM, that is, each tile must has at least 7
total binding strength as it attaches with a lattice site.
Tiles attaching by a total binding strength < 7 are
rejected; there is no stochastic preference involved in the
attachment and/or detachment of such tiles.

4.2 Kinetic Model

The kTPSM is based on the kTAM that was used in the
tile assembly simulator “Xgrow” [1]. While the main steps
of pattern self-replication in the kTPSM are the same as
aforementioned, tiles assemble and  disassemble
stochastically in mold — pattern and pattern — mold
formation processes. At each site (i, j) within the cluster of
cells in the grid that would be occupied by tiles when
aggregate formation is complete, the rates of association
and dissociation of tiles are calculated using stochastic
rules described below.

A 2-D array is used to store the arrangement of tiles in
the current assembly. Initially (at time ¢ = 0) the array
contains all zeros to indicate empty sites, except for the
cluster of sites (i,j), which are occupied by the seed. At
every simulation step (¢t = At,2A¢t...), one of the following
two events is stochastically chosen to simulate the reaction
between an associating tile and an assembled aggregate: an
ON-event, where a new tile is added to the array, and an
OFF-event,where a tile in the assembly is removed.

ON-event rate: For every time step, all m empty sites
adjacent to the aggregate are counted to calculate the net
on rate (ron)

Ton = mkype Cs (1)

OFF-event rate: For every time step, the off rate (ro5¢)
is calculated as the following.

For all occupied sites (i, j) within the aggregate (except for
the initial aggregate of the seed), the total binding strength
(bs;) of the tile in the occupied site is calculated. The net
off rate (ro5y) is calculated by summing up the dissociation
rates of all the tiles occupying the aggregate. The net off
rate is

Toff = > Toffb (2)
b

, where 70555 = npkre ¢ and n, is the number of sites (i

, j) having tiles attached by binding strength b. The kinetic
rates of tile association, dissociation and the parameters, ky,
Gme, Gse are described in Section 2.2.

The total rate for events of any kind is 7iotal = Ton + 7oy,
which is used to calculate both simulation time step and the
type of the next event.

Simulation Time Step: time until the next event
occurs, simulation time step (At), is chosen based on the
Boltzmann distribution P,(At) = rietare”tetet At. Thus, At
can be given by At = —ln([g;oi’tll)).

In each simulation step, on-event or off-event is chosen
based on the following stochastic criteria. An on-event is
chosen with the probability, Pr(on) = ron/Ttotal, in this
case, a tile is attached to a vacant site (i, j) adjacent to the
aggregate. All the adjacent sites and all tile types are
equally likely to be chosen. If on-event was not chosen, an
off-event occurs, and the probability that some site (i, j)
within the aggregate dissociates the tile attached to it. The
the probability that a site with b bonds dissociates is
Toffb/Tofs, and again all such sites are equally likely. Once
the event is chosen and the array is updated, all rates are
calculated again to decide the next event.

To simulate the mold — pattern process, the L-shaped
mold serves as seed and a 2-D array is used to store the
status of pattern formation. For pattern — mold process,
the seed consists of the entire pattern and the corner tile
of the mold. The array used to store the status of mold
formation consists of cluster of cells lying on the south most
and the west most boundary of the 2-D grid.

S. SIMULATION RESULTS

The abstract model of self-replication produces 2°7!
copies of the target tile pattern, where ¢ is the number of
self-replication cycles. For a given target pattern of size
m X n, producing gi-1 copies requires
ts = maz(m,n) + (i — 1) X (m + n) + i time-steps. The
abstract model produces time stamps for each tile addition
step and total time to reproduce the 2°! copies of the
target tile pattern. The self-replicated copies produced
using the abstract model are perfect (containing no
erroneous tiles) by design.

In the context of abstract tile pattern self-replication
model, it is tempting to draw a comparison between the
CA-based self-replication loops [15]. In particular, the
parameters, such as loop sizes and replication periods of
different CA based self-replicating loops resemble with the
terms, pattern size and replication time of the abstract tile
pattern self-replication model.

The closest self-replication loops to the tile pattern
self-replication are Byl’'s loop [3] and Chou-Reggia
loop [11]. The Byl’s loop consists of 12 cells, and
reproduces the loop in 25 time-steps. The cells in Byl’s
loop can be in one of the 6 possible states and there are
total 43 transition rules. The Chou-Reggia loop further
reduces the loops size to 5 cells, each cell can be in one of
the 8 possible states, and reproduces the loop in merely 15
time-steps. Considering the abstract model of tile pattern
self-replication, which uses 12 types of tiles (considering
each tile to be equivalent to a state in CA concept) and
four transition rules (00 — 00,11 — 00,01 — 11,10 — 11).
Tile patterns of size 4x3 and 3x2 that are similar to the



sizes of Byl’'s loop and Chou-Reggia loop, can be
reproduced in 11 and 8 time-steps, respectively. This
margin in self-replication time of tile pattern self-replicator
comes from the parallelism and asynchronism inherent in
the tile self-assembly mechanism.

Another interesting attribute of the tile pattern
self-replication is the programmability of target patterns:
using the same set of tiles a larger pattern can be
self-replicated by providing at least one copy of the pattern
to start with. In contrast to the programmable nature of
tile pattern self-replication, CA-based self-replicating loops
are usually non-programmable and often implement a
single dedicated functionality. Although Tempesti’s
loop [16] and Perrier’s loop [8] introduce programmability
in the self-replicating loops, large number of states (e.g., 63
states in the Perrier’s loop) and increased complexity make
them difficult for realization. A typical programmable
self-replicating Tempesti’s or Perrier’s loop of size 150 cells
requires =~ 300 time-steps to reproduce itself, which is too
large in comparison to the 41 time-steps needed to
self-replicate a tile pattern of the similar size.

We performed simulations of pattern self-replication
using the kTPSM for a range of G, Gse values for both
fixed size patterns and patterns of varying sizes. Figure 11
and Figure 12 report observations obtained from these
simulations.
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Figure 11: Assembly errors in self-replicating
patterns produced by simulation using the kTPSM.
Simulation statistics of assembly errors are collected
by running the TPSS for 3 replication cycles for a
20x25 size target pattern. In these simulations, G,,.
is fixed at 16 and G.. varies from 8.4 to 16 with an
interval of 0.2.

In particular, the values of these parameters were chosen
to cover the self-replication dynamics near melting
(Gme = 2Gse) transition. For a fixed Gme (Gme = 16), the
self-replicator produces patterns with very few errors (1
tile out of 1000 may be faulty) for 8.4 < Gse < 11.4, as can
be observed from Figure 11. For 11.4 < G, < 16, errors
are introduced in the self-replicating patterns. The errors
grow swiftly as Gs. approaches the G,,.. Simulation of
self-replicating patterns of different sizes shows no

significant variation in the errors near melting transition,
but near Gm. =~ 1.40G,. fraction of erroneous tiles in a
self-replicated pattern increases with its size, as shown in
Figure 12. Errors in the patterns become very large, as Gse
approaches the Gp,e.

Gpe=16
110° ‘ ‘ ‘
10x10 pattern --@---
20x20 pattern
30x30 pattern --%-
40x40 pattern --X--
] 50x50 pattern --A--

1071 60xg0 patter
70x70 pattern -- o -

1102

210%

1403 e
%3

Fraction of erroneous tiles in patterns

o

Figure 12: Simulation results of assembly errors in
self-replicating patterns of different sizes. For each
pattern size, the simulation parameters are: number
of replication cycles =2; G,,. = 16; G, is varied from
8.4 to 16.

Time required and accuracy of the self-replication task
in the kinetic model depends on the physico-chemical
parameters (Gme and Gs) of self-assembly. A phase
diagram of the self-replication dynamics observed from the
simulations using the kTPSM is illustrated in Figure 13.
Pattern self-replicator works reliably in the region
(1.45Gse < Gme < 1.9Gse), shown in blue color. In the
region Gpe < 1.45Gse, assembly errors get introduced in
the self-replicating patterns (with Gs. approaching G,
errors increase swiftly). For Gie > 1.90G;., the pattern
replication becomes intractable, and therefore no patterns
are produced.

G, =1.9G, G, =1.45G_

G,. >1.9G,

Intractable

G, <1.45G,,

mc —

Unreliable self-replication

G

se

Figure 13: Phase diagram of tile pattern self-
replicator dynamics using kinetic model.



6. CONCLUSION

We described a simulation framework of a minimal self-
replication system of DNA-tile patterns. The self-replicator
is based on a cross-coupled model, where both pattern copies
and assembled mold copies serve as seeds to further assemble
copies of each other. There are total three sets of tiles used in
the design of the pattern self-replicator: one set of tiles self-
assemble the target patterns using mold as a seed, and other
two sets of tiles self-assemble molds of the patterns. Each
set consists of four types of tiles, where each tile implements
an XOR logic between its designated inputs and outputs.

The simulator is programmable, i.e. a user can initialize a
target pattern for self-replication out of a variety of different
patterns of the same size. A further programmability in
the simulator can be added by extending it to include the
self-replication of tile patterns that are assembled using a
variety of other types of tiles, e.g. OR, AND, NAND, and
XNOR tile sets. Currently, the simulator does not consider
any chemical kinetics for the dissociation of pattern-mold
complexes. Future work is expected to include this aspect
into the self-replicator so as to further analyze its role in the
dynamics of the pattern self-replication.

In addition to serving as a model for the self-replication
of programmable DNA tile patterns in the DNA
self-assembly medium, the simulator may pave ways to
study the fundamental principles behind the evolution of
biological life in which self-replication is a key concept.
Such understanding may help us to design nature-inspired
computation systems, overcoming the limitations posed to
the existing bio-inspired techniques which presently
abstract away from natural evolution.

Simulator source code:
A Java source code for the simulator is available at the link:
https://github.com/VKGAUTAM/TPSS
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