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ABSTRACT
In swarm systems like honeybees, ants, fish and birds the
individual agents show interesting abilities to decide col-
lectively about the swarms behavior based on only locally
available information. One example is the BEECLUST al-
gorithm, which is derived from honeybees and was imple-
mented on autonomous robot swarms several times. Here
we demonstrate a translation concerning the environmental
stimulus: Honeybees aggregate in temperature fields and we
used their behaviors to operate robots in a luminescent field
to aggregate at the brightest spot. We demonstrate here by a
set of experiments that a swarm of 10 e-puck robots is capa-
ble to choose a global optimum over a local optimum and we
compare those dynamics to real honeybee behaviors. Then
we demonstrate that a few ”social seed robots” can make the
swarm choosing a different option collectively. This allows
the swarm to be controlled from the outside without any
change of its internal program. We analyze this emergent
phenomenon and discuss its implications for future decen-
tralized non-invasive swarm control applications.
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•General and reference → General conference pro-
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1. INTRODUCTION
Groups that make common decisions are ubiquitous in na-

ture on all size and organizational levels: Bacteria [4, 19],
social insects [23, 16, 6], birds [18], fish [24] and herding
animals [17] are often seen to exhibit collective behaviors
in which the emergent collective decision making is driv-
ing the behavior of the collective (swarm intelligence) [10].
The collective behavior results from the interactions among
individual agents which can be often approximated (when
studying natural systems) or programmed (when creating
artificial systems) by simple interaction rules.

Similar principles have been found also in human inter-
action ranging from markets [5], political systems [8], team
building [26] and fashions [20]. Also the simple interaction
principles can be often identified, e.g. ”doing what others
do” and ”doing something more often, more likely or longer
in case it seems beneficial” associated with simple ”avoid
collisions, conflicts and adverse situations”.

Interestingly, a simple laboratory model system was found
to show similar properties and rules of interaction: the col-
lective thermotaxis of young honeybees. In a field with
different thermal optima, a single young honeybee moves
almost randomly around this field, with only a slight pref-
erence to warmer areas. Most bees move only randomly
through the arena or along the arena wall. Still a single
young honeybee is not able to determine a ”stable solution”
and to locate itself at the thermal optimum. However, a
group of bees collectively decides for the optimal tempera-
ture spot [22]. Therefore the apparent disadvantage of lim-
ited thermoreception of individuals is somehow compensated
by the interaction of individuals within the swarm. Further
studies showed, that groups of bees are not only able to
perform collective thermotaxis and aggregate at the ther-
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mal optimum, but collectively discriminate a local from a
global thermal optimum in complex thermal gradients [25].
Detailed analyses revealed that the collective choice of the
bees is based on simple local interactions: bees stop when
meeting another bee, and the warmer it is the longer they
rest [15]. Based on these observations, the BEECLUST al-
gorithm was developed by [22, 21]. Due to its low require-
ments, the honeybee-derived algorithm is ideal for imple-
mentation on robotic systems. It consists only of four sim-
ple rules (An explanatory implementation as pseudo-code is
shown in Fig. 2):

1. Move forward. When detecting an object check if it is
a wall or another robot (line 00 - line 04).

2. If the object is a wall turn and continue with 1 (line
05, line 06).

3. If the object is another robot measure local illuminance
(for bees temperature) and calculate correlated waiting
time (line 07 - line 09).

4. When the waiting time is over turn and continue with
1 (line 13 - line 16).

Figure 1: Diagram of the BEECLUST algorithm.
The asterisk indicates the starting point of the algo-
rithm. Redrawn from [22].

Figure 2: Explanatory implementation of the
BEECLUST algorithm as pseudo-code.

With this four simple rules, the BEECLUST is the sim-
plest (so far discovered) swarm algorithm capable of finding

the global optimum in a complex landscape of heterogeneous
qualities. To accomplish that the individuals do not generate
a map of the environment, they do not need self-localization,
nor robot-to-robot communication about environmental val-
ues. Individual protagonists only relay on random walk and
on no other method of orientation, no internal memory is re-
quired to store environmental information. In contrast, the
swarm itself is a memory that uses the robots and their inter-
actions and locations to build a memory and to compute the
environment collectively. The BEECLUST algorithm works
even very robustly in a dynamically changing environment
[14], all without any centralized control unit.
The simple mechanisms identified in honeybees and ex-

pressed by the BEECLUST algorithm can be implemented
in robots. The advantage of robots over simulated agents
is that they provide the best physics engine available for
free: real physics. In order to study the capabilities of such
systems in physically embodied agents and compare it to
simulated agents, we programmed the rules of BEECLUST
into a swarm of robots that has to find a global optimum in
a light gradient field containing also a local optimum. The
same principles were programmed also into computer agents
running in a similar simulated environment.
We focused our experimental work on the scientific ques-

tion whether or not the presence of a pre-given social seed
at the local optimum can drive the swarm as a whole into
that final solution, although the same swarm would pick
the global optimum without that social seed. And we want
to quantize this effect by trying different numbers of social
seeds. This set of experiments presented here stands in a
line of experiments in which BEECLUST was experimented
in dynamically changing light gradients without social seeds
[15] and with simulated and robotic agents with one social
seed robot in slow-reacting temperature fields [13, 14]. The
study at hand is the first experiment that tests the effect of
social seed agents in this system in a light-gradient, which
is a fast-reacting stimulus field compared to temperature
fields.
Our focal assumption is that a certain number of such

social seeds can drive the swarm into unfavorable collective
decisions, as they make the swarm to pick the local over the
global optimum. Such agents can be seen as malfunctioning
agents, or maybe even malevolent agents. However, if such
a modulation of swarm control is possible, it offers also a
way to control or modulate self-organizing swarms from the
outside without switching the general paradigm: The system
stays self-organized, decentral, parallel and without a global
unit of control. But the experimenter/designer/manager of
the system can place environmental incentives to the swarm
to alter its behavior.

2. MATERIAL & METHODS

2.1 Experimental setup
The here presented robot experiments are primarily based

on a previous study where young honeybees were tested con-
cerning their collective decision making abilities in a com-
plex thermal environment (Fig. 7, [25]). Therefore we tried
to transfer as many parameters from the real-life honeybee
experiments as possible to our robotic experiment setup.
While the bees navigated in a temperature gradient with a
global and a local thermal optimum (Fig. 5a), the robots
were tested in a qualitatively comparable environment with



Figure 3: Measured local luminance of the ”Arti-
ficial Life Lab Color/Brightness Extension Board”
compared to the values of the Wetekom ST-2232
photometer

Figure 4: Overview of the e-puck robot with exten-
sion board (top):
(a) VGA camera (b) Brightness sensor on top of
the ”Artificial Life Lab Color Extension Board”
(c) Proximity sensor (d) Rechargeable battery (e)
On/Off switch (f) LED

a local and a global optimum generated by two light sources
(Fig. 5b and Fig. 5c).

We used plastic sheets of different color, dimming the lu-
minance values radiated by the two light sources, to gener-
ate a global and a local optimum. One of this sheets being
orange (local optimum) and one being transparent (global
optimum) to create similar possible distortions (Fig. 6).
Overall this leads to a comparable distribution of luminance
values, while maintaining a similar size and shape of global
and local optimum. The difference in color is not impor-
tant for the result of the experiments, given that the robots
only measured for luminance levels. We targeted luminance
values at a maximum of 1000 lx at the global optimum,
400 lx at the local optimum and about 0 lx at the pessi-
mum. We conducted our robotic experiments in a rectan-
gular arena with a length of 200 cm and a width of 120 cm
(24000 cm2). As the e-puck robot is not capable of measur-
ing light intensities from above, we designed the ”Artificial
Life Lab Color/Brightness Extension Board”, light intensity
measurements were performed by a TCS3200 color light-to-
frequency converter (whereas we only used it for light inten-
sity measurement). We executed a light intensity calibration
of this extension board by correlating it to measurements of
a ”Wetekom ST-2232” photometer (Fig. 3).

2.2 Experiments
Using the BEECLUST algorithm as a controller for our

e-puck robots, two sets of experiments were conducted:

• In the first scenario we replicated the above mentioned
choice experiments conducted with real honeybees [25].
Swarms of 10 robots were tested in a complex envi-
ronment with an local and a global optimum (N =
10 repetitions). We determined the distribution of all
robots in the different evaluation zones (global opti-
mum, 11.2% of the total area , local optimum, 11.2% of
the total area and pessimum, outside the other zones,
77.6%) at the end of each run (10 minutes).

• In the second scenario we again tested swarms of 10
robots in the same setup, but introduced social seed
agents. These are robots that behave essentially equal
to ”ordinary” robots. Other robots perceive them not
as an obstacle, but as a real counterpart and react to it
accordingly to the rules of the BEECLUST algorithm.
The difference to all the other ”ordinary”robots is, that
social seed agents are immobilized and can be placed
at certain points in the arena, where they will stay
for the whole duration of an experiment. We placed
two extra robots in the local and the global optimum
each (4 additional robots in total). Depending on the
experiment, either none, one, or both of these robots
acted as social seed agents in the local optimum. Two
additional robots were used as dummy robots in the
global optimum. The dummy robots in the global op-
timum can only be perceived as obstacles by the ordi-
nary robots and were used to prevent any unwanted bi-
ases in the setup. Again, the distribution of the robots
in the different evaluation zones was determined at the
end of each run (10 minutes).

To show that our robots, controlled by the BEECLUST
algorithm, exhibit comparable collective behaviors to real
life honeybees, we determined the number of bees or robots
at the end of each run in each evaluation zones. In con-
trast to honeybees, robots also allow us to monitor their
internal states over the whole run time. Hence we were able
to determine the number of robots in active waiting mode
and analyzed the temporal distribution of robots in wait-
ing mode over the total run time of all experiments. The
build-in LEDs of the robot (Fig. 4f) were used to indicate
the internal state of each robot. We detected the number
of robots in active waiting mode at the global and the local
optimum every two seconds over the course of each run (10
minutes). The ’Uniform random distribution Model’ (UDM)
is based on the assumption that the individual agent (robot
or bee) does not take into account neither the other agents
nor the temperature gradient. The predicted distribution
of agents to the 3 different evaluation zones (global opti-
mum, pessimism and local optimum) therefore corresponds
to the size of these zones (11.2% for the global optimum and
the local optimum, respectively, and 77.6% for the pessimum
area). Deviations in the observed distribution of agents from
the UDM predictions indicate that agents locations are not
chosen independently.



Figure 5: Maps of the optima (global and local) in a
luminance field. (a) 3-dimensional representation of
the different temperatures within the arena of the
honeybee experiments. The targeted temperatures
were 36◦C at the global optimum (right side), 32◦C
at the local optimum (left side) and 31◦C at the
pessimum (center of the arena). (b) Luminance val-
ues [lx] within the arena for robotic experiments as
seen from the side. The targeted luminance values
were 1000 lx at the global optimum (right side of
the arena), 400 lx at the local optimum (left side of
the arena) and 0 lx at the pessimum (center of the
arena). (c) Luminance values within the arena for
robotic experiments as seen from above.

Figure 7: Arena of real-life honeybee experiments
with color-coded representation of the temperature
gradient within the arena. Targeted temperatures:
optimum (right zone) 36◦C, center of the arena (out-
side the optima) 31◦C and local optimum (left zone)
32◦C.

Figure 8: Graph of the fuction Eq. 1 using the val-
ues u = 0.00225 and m = 0.000023. Dependency of the
waiting time duration on the light intensity as mea-
sured by the robot (lower x-axis label), as well as the
actual light intensity (upper x-axis label). Modified
version of the waiting time function, inspired by [22].
Correlation between sensed luminance values of the
robots and actual luminance values is shown in Fig.
3.

2.3 Analyses

2.4 Implementation of BEECLUST on robots
We used e-puck robots (see Fig. 4) as a hardware plat-

form [2] for our experiments. These robots have a round
base with a diameter of 7 cm and are equipped with 8 in-
frared sensors (Fig. 4c) capable of measuring ambient light
and the proximity of objects, used here for obstacle avoid-
ance as well as the detection of other robots. As we used
light for creating a complex environment with a global and
a local optimum we designed an extension board capable of
measuring luminance values. The e-puck robots in our ex-
periments were adjusted to a mean velocity 15 cm/sec. In
comparison to honeybees (the mean crawling speed of bees
is about 1.5 body lengths per second), our robots have a
slightly higher velocity (around 2 robot lengths per second).
The higher velocity of the robots leads to a reduced run time
in robotic experiments. All robots were initially placed ran-
domly into the area outside the optima, their initial heading



Figure 6: Setup of the arena running a robotic experiment. Left side: Local optimum with a dimmed
light source. Right side: Global optimum, light source is also covered in plastic sheets to replicate possible
distortion.

was randomized (0◦<heading<360◦).
One of the most important properties of the BEECLUST
algorithm is the translation of the environmental parameter
in focus (e.g. temperature, light intensities...) to a waiting
time after each agent-agent contact. Here we used a modi-
fied version of a waiting time function proposed by [22], Eq.
1. The waiting time function is shown in Fig. 8, plotted
against the light intensity perceived by the robots as well as
the actual light intensity.

w(t) =

{
m·s(t)3

u·s(t)3+s(t)
if s(t) > 0

0 otherwise
(1)

The waiting-time variable w(t) depicts the waiting-time
of each robot in seconds as a result of Eq. 1. The variable
s(t) stands for the sensed luminance value of the TCS3200
light sensor. The parameter u controls the steepness of the
waiting-time function and the parameter m scales the wait-
ing time function on the y-axis. For the experiments re-
ported here, we used the values of u = 0.00225 and m =
0.000023, resulting in a waiting-time function seen in Fig.
8.

2.5 Results
Fig. 9 shows the distribution of honeybees and robots in

their respective experiments. Fig 9a shows that most of the
honeybees (median of 70%) were located at the global opti-
mum. This is significantly more than the Uniform random
Distribution Model (UDM) hypothesizes (for the global op-
timum: 11.2%). The second most bees were located in the
pessimum (median of 15.6%), distinctly less than predicted
by the UDM (77.6%). The fewest bees were located in the
local optimum (median of 12.3%), which is very close to
what the UDM predicts (11.2%). Fig 9b shows a very sim-
ilar distribution for the robotic experiments. Most robots
were located at the global optimum (median of 55%, UDM:
11.2%), the second most at the pessimum (median of 25%,
UDM: 77.6%) and the fewest at the local optimum (median
of 15%, UDM: 11.2%).

In Fig. 10 the results of all experiments with different
number of social seed agents are shown. Fig. 10a shows that
with no social seed agent in the global optimum around 55%
(median) of the robots are located in the end of the experi-

ments. The second most robots were located in the experi-
ments with one social seed agents (median of 35%), followed
by the experiments with two social seed agents (median of
30%). All results are distinctly above the predicted values
of the UDM. Fig. 10b shows that we found a very similar
percentage of robots over all experiments at the area outside
the optima (pessimum). At the end of the runs, the fewest
robots were located here using no social seed agent (median
of 25%), followed by experiments with one social seed agent
(median of 30%) and experiments with two active social seed
agents (median of 30%). The percentage of robots outside
the optima is considerably lower than the UDM hypothe-
sized for it. Fig. 10c shows the percentage of robots at the
local optimum. While the fewest robots gathered here in
experiments with no social seed agent (median of 15%), one
social seed agent led to a significant increase of robots in
this area (median of 20%). Two social seed agents led to
even more robots gathering in the local optimum (median
of 35%).
In Fig. 11 we show that different numbers of social seed

agents lead to a different distribution of waiting time activ-
ity in both optima. The percentage of the median number of
robots in the global (red dots) and the local optimum (blue
dots) for different numbers of social seed agents is shown.
In Fig. 11a we additionally show the median of the per-
centage of real honeybees over the course of the experimen-
tal time (global optimum: yellow squares, connected via an
interpolated line (red), local optimum: light blue squares,
connected via an interpolated line (light blue)). As seen in
comparison to the robotic experiment results, the difference
between the temporal distribution between global and local
optima decreases with an increasing number of social agents.
In the temporal distributions of Fig. 11b (using one social
seed agent) and Fig. 11c, the effect of social seed agents
can be seen. In experiments with one social seed agent,
the difference between the number of robots in the global
and the local optima diminishes, which is shown even more
prominently in experiments using two social seed agents.

2.6 Discussion
Our study showed that the BEECLUST algorithm was

implemented successfully on a swarm of e-puck robots, and
we showed in detail how this re-embodiment of honeybee



Figure 9: Results of honeybee experiments in comparison with robot experiments. (a) Median percentage
of bees in the three different optima zones: global optimum, 36◦C, local optimum (suboptimum), 32◦C and
outside the optima (pessimum), 31◦C. Pooled results of experiments with honeybees (groups of 6, 24, 64 and
128 with N=8 runs for each group size) after 30 minutes of run time. (b) Median percentage of robots in
the three different optima zones (global optimum, 1000 lx; local optimum, 400 lx and outside the optima
(pessimum), 0 lx). 10 robots per run were used with N=10 repetitions and a run time of 10 minutes. The
dashed line represents the predicted values by the Uniform random Distribution Model, deviations from this
line indicate that agents locations are not chosen independently.

Figure 10: Percentage of robots for the three tested number of social seed agents (dark gray filled boxplots:
no social seed agent, light gray filled boxplots: one active social seed agent, white filled boxplots: two social
seed agents). (a) Robots at the global optimum at 1000 lx. (b) Robots at the local optimum, 400 lx. (c)
Robots outside the optima (pessimum), 0 lx. N = 10 repetitions/number of social seed agents. The dashed
line indicates the predicted values by the Uniform random Distribution Model for these zones. The dashed
line represents the predicted values by the Uniform random Distribution Model. Deviations from this line
indicate that agents locations are not chosen independently.



Figure 11: Median number of agents at the global and local optimum normalized according to the total
number of participating agents, hence the percentage (N = 10). The number of robots in active waiting
mode was counted for every two seconds. The percentage of the median number of robots in the global
(red dots) and the local optimum (blue dots) for different numbers of social seed agents is shown for: (a) no
social seed agent, (b) one social seed agent and (c) two social seed agents. In (a) we additionally show the
percentage of the median number of real honeybees over the course of the experimental time (pooled data,
global optimum: yellow squares, connected via an interpolated line (red), local optimum: light blue squares,
connected via an interpolated line (light blue)).

behaviors was performed: We had to translate the honey-
bee behavior (walking in temperature gradient fields) into
a swarm robotic implementation on e-puck hardware oper-
ating in luminance fields (light gradient fields). We tested
several swarm configurations in a binary choice setting with
a global optimum on the right side and a local optimum on
the left side. This experimental setting is a classical setup in
experimenting the swarm intelligence in social insects, e.g.
the ”double bridge experiment” in ants [7], the ”feeder-choice
setup” in honeybees [23] or the ”two-shelter setup” in cock-
roaches [3]. The shelter choice was successfully re-embodied
into swarm robots and already [11] used in mixed societies
of cockroaches and cockroach-like robots [12]. A similar ap-
proach is pursued by us in the project ASSISIbf [1], with
the aim to extract behavior of honeybees and fish and the
re-embody them into robots in order to generate mixed so-
cieties with their natural counterparts. The ability of the
swarm to discriminate between an global optimum and a lo-
cal optimum was first demonstrated (Fig. 9b) and compared
to honeybee behavior in luminance gradient fields (Fig. 9a).
Then we demonstrate that a ”social seed robot” in the local
optimum can draw a fraction of the swarm to the other side
(Fig. 10a, b, c) and that two social seed robots can attract
an even greater proportion to the other side. The observed
dynamics of swarms without social seed in this decision mak-
ing are showing patterns over time which are comparable to
those found in honeybees (11). Analysis showed that the
convergence to a global optimum takes on average 8 min-
utes (80% of the experimental run time), while the final
system state is reached with two social seeds already after 2
minutes (20% of the experimental run time). Thus the effect
of the social seed is assumed to be rather ”cutting off” the
further convergence to the global optimum side than lower-
ing the carrying capacity of any given side. The temporal
distribution of robots using no social seed agent (Fig. 11)
also indicates competitive inhibition: For the first 2 min-
utes the number of robots in both optima increases (20% of
the experimental run time). After that only the number of
robots in the global optimum increases further, reducing the

number of robots in the local optimum. Social seed agents
subdue this effect, as can be seen in Fig. 11b and 11c.
The main implication of our finding is that a swarm driven

by simple social interaction algorithms (e.g. BEECLUST)
can be easily affected, controlled or modulated by adding
new interaction-patterns, like our social seed robots. They
interact normally with their swarm mates, however they
just insist in locating themselves around the local optimum.
This shows that even an already existing swarm, maybe one
that is already running somewhere, can be post-hoc repro-
grammed by introducing socially modulating agents. This is
significant for future swarm robotics and swarm intelligence
research but also clearly indicates a potential security prob-
lem: An intended swarm behavior is prone to such attacks,
especially because no access to the internal interconnection
of individual agents is required. There are other more com-
mon swarm systems running with rather ”fixed interaction
programs” since a long time: animal societies, human so-
ciety, markets and economies, traffic networks and social
networks. In all these systems agents interact with simple
stimulus-response-triggered behaviors which are sometimes
modulated by learning (short term) or evolution (long term).
Introducing special agents offers a way to get control over
these systems ”from the inside” without the need to repro-
gram them, what is not possible in most cases. This offers
the door for many future applications: Robots that mimic
natural organisms to gain control over these natural swarm
systems [1, 9], chatbots in social media or even ”benevolent
agents-provocateur cars”which have the only purpose to in-
teract with other cars in a way that they draw, in a subtle
way, parts of the self-organizing traffic flow to other roads,
this way bringing relief to the overall system.
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