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ABSTRACT

Evolved biological network topologies may resist perturbances
to allow for more robust information transport across larger
networks in which their network motifs may play a complex
role. Although the abundance of individual motifs corre-
late with some metrics of biological robustness, the extent
to which redundant regulatory interactions affect motif con-
nectivity and how this connectivity affects robustness is un-
known. To address this problem, we applied machine learn-
ing based regression modeling to evaluate how feed-forward
loops interlinked by crosstalk altered information transport
across a network in terms of packets successfully routed over
networks of noisy channels via NS-2 simulation. We devel-
oped 233 topological features which distinctly account for
the opportunities in which two feed-forward loops may ex-
hibit crosstalk. Random forest regression modeling was used
to infer significant features from this modest configuration
space. The coefficient of determination was used as a pri-
mary performance metric to rank features within our re-
gression models. Although only a handful of features were
highly ranked, we observed that, in particular, edge con-
nected feed-forward loops correlated substantially with an
improved chance for successful information transmission.
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1. INTRODUCTION

Network motifs are recurrent network structures that ex-
hibit higher statistical significance in biological networks
than in random ones. In the past, they have been implicated
in the tendancy for information transport to resist noisy per-
turbances and successfully convey the cellular state. Past
studies indicate that feed-forward loop (FFL) network mo-
tifs are important, not just in terms of abundance [11], but
also in terms of certain behaviors such as response time [10].
Feed-forward loop structure (Figure 1) is intriguing because
it offers two ways of regulating a protein-expressing gene
(node C) via two influential paths: a direct route (A to C),
or an indirect path beset by a waypoint (A to B to C). This
setup may be communicationally efficacious due to the sig-
naling modality of multiple regulatory paths to protein ex-
pression of a regulated gene. We may therefore hypothsize
that higher FFL abundances will lead to better information
transmission performance. One central question remains:

a

(a) Canonical FFL (b) Embedded FFL

(c) Edge Connected FFL

Figure 1: (Top Left) A canonical feed-forward loop
is one free of additional interactions. (Top Right)
Embedded feed-forward loops are contained within
more complicated topological configurations. (Bot-
tom) Feed-forward loops interrelated by sharing an
edge.
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Figure 2: (a) Network extraction and NS-2 simula-
tion methodology. (b) A feed-fowrad loop transcrip-
tional network motif.

Do FFLs contribute signaling/communication benefits indi-
vidually, synergistically in combination with others, or not
at all? To address this question, we examined the extent
to which feed-forward loops crosslinked by regulatory inter-
actions (edge-connected motifs) contribute to successful in-
formation transport across biological networks, modeled as
networks of noisy channels across which information packets
are routed via NS-2 simulation.

Existing network robustness metrics are predominantly
“static” [2, 3], in that they do not consider dynamical in-
formation transport. Chan et al. [2] provides an in-depth
review of existing robustness metrics. Notably absent are
metrics which consider motif-based features including the
possibility of crosslinked feed-forward loops. Here we are
concerned with the successful transmission of information
packets routed across a biological network, modeled using
the discrete event network simulator NS-2. These simula-
tions account for the dynamics of information flow among
the nodes in a network under controlled conditions such as
channel noise and congestion-based information loss. To this
effect, we define informational “robustness” as the ratio be-
tween the total number of packets received at perfectly ab-
sorbing “sink” nodes to the total number of packets emitted
from potentially many source nodes. We will refer to this
metric colloquially as the packet receipt rate (PRR), which
accounts for network behavior resulting from graded per-
turbations, and is more comprehensively detailed elsewhere
reports [9]. We employ discrete event simulations and ma-
chine learning techniques to develop a model trained using
feature data to predict robust network topologies for infor-
mation transport. We use these anlayses to rank-order the
differing configurations of linked feed-forward loops, seeking
to answer the following questions: Does abundance posi-
tively correlate with information-transport robustness? If
so, which features are primary contributors to robustness?

2. MATERIALS AND METHODS

Our basic methodology is illustrated by Figure 2. First,
subnetworks extracted (Section 2.1) from transcriptional reg-
ulatory networks of the Escherichia coli (E. coli) bacterium,
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and passed to the network simulator platform NS-2 (Section
2.2) to generate packet receipt rates. Next, feature values
are determined using Python, from which we remove all the
duplicate feature vectors and retain a unique feature vec-
tor with minimal PRR among all features vectors. Features
are further scaled to the interval [0,1], which reduces the
processing time of our regression models. However, scal-
ing is not necessary for Random Forest regression. These
data are processed (Section 2.4) into a format illustrated
by Step 1 of Figure (2), upon which a random forest re-
gression machine learning technique is applied for ranking
purposes. The coefficient of detemrination is calculated to
identify an optimal estimators number (Section 2.5). Before
feature ranking is actually done, we perform feature selec-
tion which is a process to reduce the feature set (from the
original 233 feature set). Finally, features are ranked us-
ing feature importance—a method used to determine feature
significance in regression trees. Section 2.6 details the pa-
rameters used for creating random forests regression models
and accuracy measurement.

2.1 Network Datasets

Directed transcriptional subnetworks from the E. Coli bac-
terium were extracted using GeneNetWeaver [13], with a to-
tal of 300, 400, and 500 total genes, and repeated 1000 times
for each network size. Regulatory information was retained
while disconnected network components, and autoregulatory
loops were discarded. Table 1 shows the details of the net-
work counts considered here. This step pruned the datasets
down to 957, 932, and 941 networks for, respectively, the
300, 400, and 500 network sizes. This dataset is then used
to explore network dynamics in two ways: a) model interac-
tions using NS-2 (Section 2.2) and b) determine structural
features of importance. Feature vectors were generated by
extracting features from pruned networks, and all duplicate
feature vectors were removed. The number of unique feature
vectors are reported in Table 1.

2.2 NS-2 simulation setup

The problem of information flow across a biological net-
work can be mapped onto the problem of packet transport
over a wireless sensor network [4, 6, 7, 5]. In the NS-2
model, each node relays finite-sized packets of information
to other nodes along outgoing edges to neighboring nodes.
Packets are relayed in this manner using a flooding protocol
until they reach (perfectly absorbing) sink nodes, which do
not retransmit. Genes coding for transcription factor pro-
teins, and those that do not, are represented as nodes in the
network with regulatory interactions conceptualizing com-
munication channels which determine the destination nodes
of transmitted packets. Biology is inherently noisy, and we
account for this by using noisy channel models wherein 10%,
20%, 35%, 50%, 60%, 75% and 90% of packets will be, on
average, lost during transmission across any individual in-
ternode route. Packet receipt rate in the network is mea-

Table 1: Ttranscriptional network properties.

Size  Connected Networks Unique Feature Vectors

300 958 163
400 933 168
500 942 157




Table 2: Feature Reduction from 233 features in
each network
Size  Occurring Features

Uncorrelated features

300 95 50
400 98 52
500 138 57

sured as the percentage of the number of packets received at
sink nodes to the number of packets sent by all source nodes.
Networks with higher packet receipt rate are considered to
be more robust. Packet receipt rates of the networks range
in between 0 (least robust) and 100 (most robust).

2.3 Feature Identification

We developed toplogy-based network characteristics to
understand which network qualities and features contribute
primarily to information transport and routing over biolog-
ical networks. While some of these characteristics, such
as average shortest path, network density, and betweenness
centrality have been considered before, our emphasis on us-
ing them to evaluate information transport and potential ro-
bustness of these dynamical routing processes places strong
emphasis on the network dynamics. Previously, we identi-
fied fifteen different network features and ranked them us-
ing unsupervised learning techniques [8, 9]. While previous
work has focused on properties of individual FFLs, we fo-
cused here on understanding how FFLs coupled by crosstalk
behave within the embedding evnvironment of the network.
To this effect, we developed 233 unique features (selected
features in Table 3) that captures the abundance of con-
nected FFL structures as follows. First, we identified all
possible ways in which two feed-forwarded loop motifs could
be connected by one or more edges; second, we counted the
occurance of each pattern in the above mentioned transcrip-
tional networks.

We used machine learning techniques to identify signifi-
cant features among a list of several features, and employed
different machine-learning strategies by leveraging the widely
recognized scikit module in Python [12]. We do not exhaus-
tively tabulate data on edge-connected motif abundance for
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Figure 3: Mean squared error (MSE) for different
number of Random Forest estimators for networks
of size 300 and heavy channel loss (90%). A lower
MSE here indicates a better performance.
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Figure 4: Feature value distribution. Refer to Table
3 for depictions of features 1, 2, 3, 8, and 14.

different network sizes here due to length considerations, but
we have nevertheless provided a summary of these data in
Section 6. Testing for correlations between feature abun-
dance and feature importance is described below in Section
2.7

2.4 Data

Data is constructed similar to the procedures previously
described [9]. Each network is represented as a combination
of feature values, feature ids and output labels determined
using NS-2 simulation. Each network (section 2.1) is repre-
sented as a combination of output labels and 233 configu-
rations of feed-forward loops connected by crosstalk, which
we term “edge-connected features.” In the field of machine
learning, such a combination is referred to as a feature in-
stance. Results from NS-2 simulations are used as output
labels and the corresponding features are calculated using
the networkX [14] module in Python. In previous work [8,
9], we considered the problem of ranking features to be un-
supervised one, and used an analysis of variance (ANOVA)
F-value to determine significance of each feature. Here, how-
ever, we consider the problem to be a supervised one and
retain the output labels, which range between 0 and 100,
as floating points. Regression techniques are suitable when
the value of output labels is continuous. Furthermore, we
introduce feature selection here as an improvement from our
earlier work wherein the entire feature set was used to rank
features. Before creating the regression model, data is split
into training and testing data in 80:20 ratio. The accuracy
of regression models presented in Figure 6 is based on test-
ing of the model created on the test data of edge connected
FFL based features.

2.5 Feature Down-Selection

We selected only a subset of all 233 edge-connected fea-
tures, because there is potential for some of them to be corre-
lated with others (section 2.3) or some of them might display
a higher variance. To begin, we first selected features that
occurred in more than one network. The second column of
Table 2 shows these feature counts. Because our aim was
to deduce a minimal set of features important for informa-
tion transport across these networks, we eliminated pairs of
features that were positively correlated if Spearman’s corre-
lation coefficient was > 0.95. The third column of Table 2
shows these counts upon removing such correlated features.
Finally, we considered different feature selection methods
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Figure 5: Selected features from a total of 233 for
every model at a given network size and channel loss
model, as described in 2.5

and examined those residing in the intersection. Random-
ized PCA was considered but ignored since it does not ex-
ploit the output label data to minimize the feature space.
To this effect, a feature selection step was performed using
random forests with regression.

Random forest models [1] are well-suited to solve classi-
fication and regression problems. A “random forest” refers
to the trees (estimators) used by ensemble machine learning
models to predict the outcome of data. Mean squared error
(MSE) is used to determine the best number of estimators
(number of decision trees) used in the random forests algo-
rithm. A number of estimator (e.g, 100 to 300) incremented
by steps of 10, were used here in creating the random forest
model. MSE is determined for each estimator and the av-
erage of the number of estimators is used as the MSE value
for that specific estimators’ number. The variation in MSE
noted before and after feature reduction, and shown in Fig-
ure 3 for a singular case of a 300 node network with 90%
channel loss model. Before reduction, MSE is lowest for 290
estimators, whil it is lowest 200 after reduction. The estima-
tor for which MSE is the least was selected for calculating
feature importance, as shown in Figure 3.
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Figure 6: Coefficient of determination (COD) for
edge-connected FFL features regressors model for
different network sizes. A higher COD value indi-
cates a improved performance.
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Table 3: Feature abundance.

Feature ID Symbol Abundance
1 NA 41789
2 5A 32452
3 AA 26272
5 KA 11068
6 54 10056
7 % 7327

KA 6483
9 SA 5398
11 QA 4801
14 FayTaN 4064
16 K4 3811
18 Fayay 2994
19 JagraV 2826
20 &EAD 2798
22 % 2066
25 % 1784
36 % 996
52 FagraN 458
59 AZQ 422
62 % 357
63 % 348
69 % 281
. M
R
78 % 210
81 @S 194
o1 QQ 152
92 % 152
104 % 113
125 % 60
131 & 51




Our analyses reveal that feature importance depends heav-
ily on the network size and channel loss model over time. All
the features with importance values > 0.03 were selected to
model the final regressor for prediction. Figure 5 shows the
final counts of selected features for different network sizes
and channel loss models.

2.6 Regression modeling

Before we carry out feature reduction, we conduct ran-
dom forests regression to determine a COD calculated using
all uncorrelated features identified for a given network size.
Important features are selected from the set using the fea-
ture importance attribute of random forests regression. We
then create a random forests regressor to predict outcomes
based on the model of the new feature set, and this model
is tested using the test data set.

Regressor performance is measured using the coefficient of
determination (COD), which quantifies how predicted val-
ues provided by the model compare against real values. Ade-
quate regressor models typically exhibit a COD near 1, while
poorly performing models exhibit values near 0. As evident
from Figure 6, the COD determined from the reduced fea-
ture set (section 2.5) either improved the model accuracy or
showed no substantial difference from the set of all features.
In a majority of the cases, it is evident that feature reduc-
tion did not affect performance in a negative way, suggesting
that the set of reduced features plays a much stronger role
in information transport in these transcriptional networks
than all other features. Additionally, we observe that our
models perform well at higher levels of noise or channel loss.

Figure 5 shows the number of features selected by our
feature-selection process from all 233 features. The maxi-
mum number of important features was 15 for the network
size 300 and channel loss model of 35% and 60%, with 8
as the least number of important features for 400 node net-
works operating under a channel loss model of 10% and 20%.
We find that many scenarios exhibit 11 and 12 important
features.

Feature important (section 2.5) is shown in Figure 7. Heat
maps were generated for all the networks at channel loss
models of 10%, 20%, 35%, 50%, 60%, 75%, and 90%. Figure

Reduced Features Importance for Size 500
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Figure 7: (a) Feature significance in size 500 net-
works for all loss models and reduced feature sets.
The darker the color the higher the feature signifi-
cance. Additionally, numbers are included to indi-
cate feature rank; higher is better.
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7 represents one such case for a network size of 500 and
all loss models created with every reduced feature set. We
observe that features with IDs 1, 2, 3, 8, 9, 11, 14 and
52 are important for all levels of packet loss. Additionally,
features 62 and 81 are important for 75% and 90% packet
loss. Topologies of these features have been collected into
Table 3. Here, the abundance of each feature is provided
for the largest connected component of the entire E. coli
transcriptional network.

2.7 Feature Importance correlation with fea-
ture abundance

To test the hypothesis that high feature values correlate
positively with high feature importance, we performed fol-
lowing task executed at network level. That is, for each
network size, the significant features were identified for all
models for different levels of packet loss.

1. Identify the top five features using random forest re-
gression (feature importance as a metric);

2. Calculate the number of times each features occurs
within the top five ranks at different channel loss mod-
els and network size;

3. Plot the distribution of these feature (Figure 4).

We found that correlation between abundant feature val-
ues with high variance and its importance. From all the
models, features 1, 2, 3, 8, 14 are consistently in top five
features, these features are strong indicators of robustness.
Figure 4 shows the feature value(abundance) distribution of
top five features as mentioned earlier. We can see that all
the features have high abundance with high variance. It is
important to note that certain features such as 62, 81, 125
make their impact distinctively in specific network sizes at
specific loss scenarios. This can be attributed to the fact
that these specific features might be expressed more during
the network extraction step (Section 2.1). Figure 4 illus-
trates a boxplot of the distribution of feature values of the
top five features, with outliers in the dataset marked with
+. Feature-value distributions for other networks are not
shown (see section 4).

3. DISCUSSION & CONCLUSIONS

In this paper we studied how differing topological config-
urations of FFL crosstalk affected the information transport
success in transcriptional subnetworks of the Escherichia coli
bacterium. We evaluated information transport according to
packet transport and routing events enabled by NS-2 simula-
tions. Random forest based regression models revealed that
a handful of edge-connected FFL configurations, such as 1, 2,
3, 8 and 14 (Table 3), may have an important role in enabling
the robust communication of molecular information across
the subcellular transcriptional-regulatory machinery of the
cell. Certain crosstalk configurations appeared differentially
important under varying noise levels inherent to the com-
munication channels. Understanding how noise interferes
with communicating the cellular state to distal molecular
processes is a great challenge, because the cell is a dynam-
ically evolving environment that continually produces and
destroys molecular components from which signaling success
is not guaranteed.



Extensions of this work involve investigations in larger E.
coli transcriptional subnetworks, to explore whether or not
trends in feature significance scales with increasing network
complexity. Furthermore, we intend to extend our anly-
ses to the transcriptiona-regulatory networks of the baker’s
yeast Saccharomyces cerevisiae. Previous results [9] reveal
that feature significance varies from one organism to another
and scales across network size and perturbation conditions.
As we fine-tune our regression models it is also important
to focus on moderately sized networks (e.g., 300 and 500
nodes) with larger channel loss models (e.g., 35% and 50%),
to better understand why our regression models did not ad-
equately perform.

Finally, the present work will provide a foundation for
the biological network community to better understand the
functional role of crosstalk between smaller transcriptional
network motifs. In addition, the engineering community
may benefit from knowledge that certain network topolo-
gies provide more robust communication platforms, trans-
forming the difficult problem of information-preserving dy-
namical routing across terrain and environmental obstacles
into one concerned only with short-range topological inter-
actions.

4. ADDITIONAL MATERIAL

Datasets are available for research purposes at:
http://github.com/syedkm /EdgeConnected Motifs.

In addition, this address provides results for all the channel
loss models not presented here due to space considerations.
Sensitivity analyses for variation in mean square error, mean
absolute error, and explained variance are also provided.
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