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ABSTRACT
The use of communication networks to interconnect con-
trollers and physical plants in industrial and critical infras-
tructure facilities exposes such control systems to threats
typical of the cyber domain. In this sense, studies have
been done to explore vulnerabilities and propose security
solutions for Networked Control System (NCS). From the
point of view of the control theory, the literature indicates
that stealthy and accurate cyber-physical attacks must be
planned based on an accurate knowledge about the model
of the NCS. However, most literature about these attacks
does not indicate how such knowledge is obtained by the
attacker. So, to fill this hiatus, it is proposed and eval-
uated in this paper an Active System Identification attack,
where the attacker injects data on the NCS to learn about its
model. The attack is implemented based on two bio-inspired
metaheuristics, namely: Backtracking Search Optimization
Algorithm (BSA); and Particle Swarm Optimization (PSO).
The results indicate a better performance of the BSA-based
attack, especially when the captured signals contain white
Gaussian noise. The goal of this paper is to demonstrate
the degree of accuracy that this attack may achieve, high-
lighting the potential impacts and encouraging the research
of possible countermeasures.

CCS Concepts
•Security and privacy → Formal security models;
Cryptanalysis and other attacks; •Computing method-
ologies→ Search methodologies; Computational con-
trol theory;

Keywords
Security, Cyber-Physical Systems, Networked Control Sys-
tems, System Identification, Backtracking Search
Algorithm, Particle Swarm Optimization

1. INTRODUCTION
System identification, i.e. the action of building mathemat-
ical models of dynamic systems, is often used to obtain the
model of physical processes aiming to subsidize the design of
their respective control systems. However, it can also be con-
sidered a key step for the execution of stealth – or covert, as
mentioned in [16, 17, 20] – attacks against Networked Con-
trol Systems (NCS). Indeed, to reduce the probability to be
detected by algorithms that monitor the dynamics of the
controlled plant, the attacker must have an accurate model
of the targeted system, such as demonstrated in [16, 17, 20].

A possible strategy to obtain information about the model of
the targeted system is through passive System Identification
attacks, as reported in [5]. In this technique, the attacker
eavesdrops the communications between the controller, ac-
tuators and sensors of the NCS until enough information is
collected to determine the parameters of the plant and its
control system. Such passive approach can make the system
identification to last for a long time, until meaningful in-
formation transits at the eavesdropped communication line.
The situation is even worse if the system is on steady state,
because no meaningful information may transit through the
NCS’s communication links for a long time – indeed, the
information content of the signals measured under steady
operating conditions is often insufficient for identification
purposes [22]. This attacker’s constraint may be overcome
by Active System Identification attacks, which, as far as we
know, is not reported in the literature.

In this sense, in the present work, we propose an active
attack for the identification of NCSs. Our approach was
inspired by the classic active cryptanalytic attacks – cho-
sen plaintext and chosen cypher text –, where the attacker
inserts messages in the crypto-engine, in opposition to pas-
sive attacks – cyphertext-only, known plaintext –, where the
attacker simply listen the communication channels and pas-
sively collects information [19].

In the attack herein proposed, a specially tailored signal is
inserted by the attacker in an NCS communication chan-
nel and, by observing the behavior of the system in closed-
loop, the attacker determines the parameters of its open-loop
transfer function. To do so, the attacker just needs to in-
tercept one communication channel of the NCS, where the
attacker both insert the attack signal and listen the conse-
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quent system response. The knowledge of the NCS’s open-
loop transfer function, obtained through this attack, is useful
for the design of other sophisticated attacks. For instance,
if an attacker learns the open-loop transfer function of an
NCS, it is possible to further design attacks capable to ac-
curately change the transient response and/or steady state
response of the plant, such as demonstrated in [5], causing,
for example, stationary errors or overshoots on the plant.
A stationary error may reduce the efficiency of the physi-
cal process, while overshoots may cause stress and possibly
damages [6, 21] to the plant, reducing its mean time between
failure (MTBF).

The present Active System Identification attack is developed
based on two bio-inspired metaheuristics, whose results are
analyzed and compared, namely: the Backtracking Search
Optimization algorithm (BSA) [4]; and the Particle Swarm
Optimization (PSO) [10]. If the attack signal a(k) and the
consequent response ya(k) of an NCS is known, its open-
loop transfer function can be assessed by applying a(k) in
an estimated model, which is adjusted until its estimated
output ŷa(k) matches ya(k). In this sense, the BSA and
the PSO are used to iteratively adjust the parameters of an
estimated model, by minimizing a specific fitness function,
until the estimated model converges to the actual model of
the NCS. The BSA and the PSO are chosen to perform this
task due to their capability to converge to good solutions,
such as demonstrated in [9, 13, 23, 24, 8] specifically for
control system problems.

It is worth mentioning that the Active System Identification
attack herein proposed is different from the active attacks
performed to identify vulnerabilities of protocols and appli-
cations within the layers of the OSI model, such as the active
scanning process used to identify network services [2].The
attack herein proposed aims to identify the physical model
of a plant that, in an NCS, lies above the application layer
of the OSI model.

The goal of this paper is to demonstrate the degree of accu-
racy that such attack may achieve, highlighting its potential
impacts and encouraging the research of countermeasures
capable to prevent or detect the execution of this kind of
attack. The remainder of this paper is organized as follows.
In Section 2, we review the literature on NCS attacks, with
focus on the intelligence gathered to subsidize their design.
In Sections 3 and 4, there are provided brief descriptions of
the BSA and PSO, respectively. In Section 5, it is described
the Active System Identification attack, herein proposed.
In Section 6, there are presented and compared the results
achieved by the proposed attack, using both metaheuristics,
in simulations where the NCS is constituted by a DC mo-
tor and a proportional-integral (PI) controller. Section 7
contains our final considerations.

2. RELATED WORKS
The possibility of large impact cyber-physical attacks be-
came unprecedentedly concrete after the launch of the Stuxnet
worm [11] and has been motivating researches concerning the
security of NCSs. In this section, it is presented a review of
the literature related to this subject.

In [12] the authors propose two queueing models that are
used to evaluate the impact of delay jitter and packet loss

in an NCS under attack. The attack is not designed taking
into account the models of the controller and the physical
plant. Such models are unknown by the attacker. Thus, to
affect the plant’s behavior, the attacker arbitrarily floods the
network with traffic, causing jitter and packet loss. In this
method of attack, the excess of packets in the network can
reduce the stealthiness of the attack, allowing the adoption
of countermeasures, such as packet filtering [12] or block-
ing the malicious traffic on its origin [18]. Moreover, the
arbitrary intervention in a system which the models are un-
known may lead the plant to an extreme physical behavior,
which is not desired if a stealth attack is intended.

In [7], it is presented a testbed for Supervisory Control
and Data Acquisition (SCADA) using TrueTime – a MAT-
LAB/Simulink based tool. The authors demonstrate an at-
tack where a malicious agent transmits false signals to the
controller and actuator of an NCS. The false signals are ran-
domly generated, aiming to make a DC motor lose its stabil-
ity. This kind of attack does not require a previous knowl-
edge about the plant and controller of the NCS. The draw-
back is that the desired physical effect and the stealthiness
of the attack can not be ensured due to the unpredictable
consequences of the application of random false signals to a
system which the model is not known.

A general framework for the analysis of a wide variety of
attacks over NCSs is provided in [20]. The authors classify
and establish the requirements for the attacks in terms of
the model knowledge, disclosure and disruption resources.
In their work, it is stated that covert attacks require high
level of knowledge about the model of the targeted system.
Exemples of covert attacks that agree with this statement
are provided in [16, 17]. In these works the attacks are
performed by a man-in-the-middle (MitM), where the at-
tacker needs to know the model of the plant under attack
and also inject false data in both the forward and the feed-
back streams. The stealthiness of the attacks described in
[16, 17] is analyzed from the perspective of the signals arri-
ving to the controller, and depends on the difference between
the actual model of the plant and the model known by the
attacker. In [1], it is demonstrated another stealth attack
where the attacker, aware of the system’s model, injects an
attack signal in the NCS to steal water from the Gignac
canal system located in Southern France.

Table 1: Synthesis of the related attacks

How the
System knowledge

Attack Method knowledge is obtained

Stuxnet worm [11] Modifications Yes Experiments
in the PLC in a real

code system
Long, et al. [12] Inducing jitter None N/A

and packet loss
Farooqui, et al. [7] Data injection None N/A
Smith [16, 17] Data injection Yes Not described
Teixeira [20] Packet loss None N/A

Data injection Yes Not described
Amin [1] Data injection Yes Not described
SD-Controlled [5] Data injection Yes Passive

system
identification

In [1, 16, 17, 20], where it is required a previous knowledge
about the models of the NCS under attack, it is not des-



cribed how this knowledge is obtained by the attacker. It is
just stated that a model is previously known to subsidize the
design of the attack. More recently, in [5], the authors pro-
pose a System Identification attack to fill this hiatus. They
demonstrate how the data required for the design of Denial-
of-Service (DoS) or Service Degradation (SD) attacks may
be obtained through a passive System Identification attack.
The attack proposed in [5] does not need to inject signals on
the NCS to estimate its models. However, it depends on the
occurrence of events, that are not controlled by the attacker,
to produce signals that carry meaningful information for the
system identification algorithm. The Active System Identi-
fication attack herein proposed, constitutes an alternative to
the passive System Identification attacks in situations where
the attacker may not wait so long for the occurrence o such
meaningful signals. A synthesis of the characteristics of the
attacks referred in this section is presented in Table 1.

3. BACKTRACKING SEARCH
ALGORITHM

In this section, there are described the basic concepts of the
BSA, in order to provide a clear comprehension regarding to
the parameters of the algorithm that are adjusted for the at-
tack. The BSA is a bio-inspired metaheuristic that searches
for solutions of optimization problems using the information
obtained by past generations – or iterations. According with
[4], its search process is metaphorically analogous to the be-
havior of a social group of animals that, at random intervals
returns to hunting areas previously visited for food forag-
ing. The general, evolutionary like, structure of the BSA is
shown in Algorithm 1.

Algorithm 1 BSA

begin
Initialization;
repeat

Selection-I;
Generate new population

Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end

At the initialization stage, the algorithm generates and eva-
luates the initial population P0 and sets the historical pop-
ulation Phist. The latter composes the BSA’s memory.

During the first selection stage (Selection-I), the algorithm
randomly determines, based on an uniform distribution U ,
whether the current population P should be kept as the
new historical population, and thus replace Phist (i.e. if
a < b | a, b ∼ U(0, 1), then Phist = P ). Subsequently, it
shuffles the individuals of this population.

The mutation operator creates Pmod, which is the preli-
minary version of the new population Pnew). It does so
according to (1):

Pmod = P + η · Γ(Phist − P), (1)

wherein η is empirically adjusted through simulations and
Γ ∼ N(0, 1), with N being a normal standard distribution.
Thus, Pmod is the result of the movement of P’s individuals
in the directions established by vector (Phist − P).

In order to create the final version of Pnew, the crossover
operator combines randomly, also following a uniform dis-
tribution, individuals from Pmod and others from P.

At the second selection stage (Selection-II), the algorithm
evaluates, selects elements of Pnew (i.e. individuals obtained
after mutation and crossover), which should have better fit-
ness than those in P (i.e. individuals before applying both
the operators of crossover and mutation) and replaces them
in P. Hence, P includes only new individuals that should
have evolved. While the stopping condition has not yet been
reached, the algorithm iterates. Otherwise, it returns the
best solution found.

Note that the algorithm has two parameters that are empir-
ically adjusted: the size |P| of its population P; and η, that
establishes the amplitude of the movements of the indivi-
duals of P. The parameter η must be adjusted to assign to
the algorithm both good exploration and exploitation capa-
bilities. With this parameters set, the BSA is used to search
for the global minimum of the fitness function described in
Section 5.

4. PARTICLE SWARM OPTIMIZATION
PSO has roots in the collective behavior of social models
such as bird flocking and fish schooling. A particle, i.e. the
basic element of the algorithm, represents a possible solution
of a problem. Thus, the swarm represents a set of possible
solutions. At each iterative cycle, the position of each par-
ticle is updated according to (2), where xj and vj are the
position and velocity of particle j, respectively.

xj(t+ 1) = xj(t) + vj(t+ 1) (2)

The computation of vj considers three terms: the particle’s
inertia; the particle’s cognition, which is based on the best
solution found by the particle so far; and social term, which
is based on global best solution found by the swarm. The
velocity of particle j, at each dimension d, is defined in (3):

vjd(t+ 1) = ωvjd(t) + ϕ1r1d(t)(mjd − xjd(t))

+ϕ2r2d(t)(mgd − xjd(t)),
(3)

wherein ω is a parameter that weighs the inertia of the par-
ticle, ϕ1 and ϕ2 are parameters that weigh the cognitive and
social terms, respectively, r1 and r2 are random numbers in
[0,1], mj is the best position visited by particle j so far, and
mg is the best position discovered by the swarm considering
the experience of all the particles.

In order to better explore multi-dimensional search spaces,
a velocity limit is imposed for each dimension d, as in (4):

0 ≤ vjd ≤ δ(maxd −mind), (4)

wherein maxd and mind are the maximum and minimum
limits of the search space at each dimension d and δ ∈ [0, 1].

The overall computation that the PSO performs to minimize
a fitness function f(x) is given in Algorithm 2, where x is
the particle position and S is the swarm size.



Algorithm 2 PSO Algorithm

begin
for each particle j, 1 ≤ j ≤ S do

Set randomly position xj and velocity vj ;
mj ← xj ;

end
mg ← smallest mj , 1 ≤ j ≤ S;
repeat

for each particle j, 1 ≤ j ≤ S do
Update velocity vj , as in (3) and (4);
Update position xj , as in (2);
fitness ← f(xj);
mk ← xj , whenever fitness < f(mj);
mg ← xj , whenever fitness < f(mg);

end
until Stopping condition;
return mg;

end

5. THE ACTIVE SYSTEM
IDENTIFICATION ATTACK

The Active System Identification attack, herein proposed,
is intended to assess the coefficients of a transfer function
G(z) = C(z)P (z) of an NCS, wherein C(z) is the controller’s
control function and P (z) is the plant’s transfer function as
shown in Figure 1. The transfer functions are all linear
time-invariant (LTI). This attack is performed by a MitM
that may be located either in the forward or in the feedback
link. For the sake of clarity of the analysis presentation,
but without loss of generality, we focus on the case where
the MitM is in the feedback link, i.e. between the plant’s
sensors and the controller’s input. To estimate the model of
the attacked NCS, the attacker injects an attack signal a(k),
and measure the response of the system to such signal.
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Figure 1: Active System Identification attack with a MitM
in the feedback link.

The complete response of the generic NCS shown in Fi-
gure 1, considering only the inputs R(z) = Z[r(k)] and
A(z) = Z[a(k)], is expressed in the z domain by (5):

Y (z) =
G(z)

1 +G(z)
R(z)− G(z)

1 +G(z)
A(z), (5)

wherein Y (z) = Z[y(k)]. Z represents the Z-transform op-
eration. As a premise, in a normal condition, it is considered

that a(k) = 0 and the system is designed to make y(k) → q,
in such way that y(k) ≈ q ∀k > ks, i .e. the output y(k)
of the NCS converges and stabilizes at a constant value q
after a certain amount of samples ks. Indeed, it is usually
one of the main aims of a control system. Now, considering
a(k) 	= 0, the output y(k), ∀k > ks, may be defined approx-
imately as (6):

y(k) = q −Z−1

[
G(z)

1 +G(z)
A(z)

]
, ∀k > ks. (6)

Thus, after ks, the portion of y(k) caused by r(k) can be
eliminated by just subtracting q from (6), which leads to (7):

ya(k) = y(k)− q = −Z−1

[
G(z)

1 +G(z)
A(z)

]
, ∀k > ks. (7)

wherein ya(k) represents the portion of y(k) caused by the
attack signal a(k). The value of q can be assessed by the
attacker through an eavesdropping attack in the feedback
stream, by just capturing y(k) after the stabilization of the
NCS. The subtraction of q after ks makes the system iden-
tification attack independent of r(k) ∀k > ks. The Active
System Identification attack now just relies on the attack
signal a(k), which can be chosen, and the response of the
system to the attack ya(k) can be obtained in accordance
with (7). The signal ya(k) starts with a(k) and has the size
of a monitoring period T .

If the attack input a(k) and its consequent output ya(k) are
known, the model of G(z) can be assessed by applying the
known a(k) in an estimated system, defined by (8):

ŷa(k) = −Z−1

[
Ge(z)

1 +Ge(z)

]
∗ a(k), (8)

wherein Ge(z) is the estimation of G(z) and ŷa(k) is the out-
put of the estimated system in face of Ge(z). By comparing
ŷa(k) with ya(k), the attacker is capable to evaluate whe-
ther Ge(z) is equal/approximately G(z). Note that Ge(z) is
a generic transfer function represented by (9):

Ge(z) =
αnz

n + αn−1z
n−1 + ...+ α1z

1 + α0

zm + βm−1zm−1 + ...+ β1z1 + β0
, (9)

wherein n and m are the order of the numerator and the de-
nominator, respectively, and [αn, αn−1, ...α1, α0] and [βm−1,
βm−2, ...β1, β0] are the coefficients of the numerator and the
denominator, respectively, that are intended to be found by
this Active System Identification attack. Thus, to find G(z),
the coefficients ofGe(z) are adjusted until the estimated out-
put ŷa(k) converges to the known ya(k).

In this sense, the BSA and the PSO are used to iteratively
adjust the estimated model, by minimizing a specific fitness
function presented in this section, until the estimated model
Ge(z) converges to the actual G(z) of the real NCS. To com-
pute the fitness of the individuals of the optimization algo-
rithm, i.e. the BSA or PSO, the same attack signal a(k)
that provided ya(k), according with (7), is applied on the
estimated system defined by (8) and (9), where the coeffi-
cients of Ge(z) are the coordinates xj = [αn,j , αn−1,j , ...α1,j ,
α0,j , βm−1,j , βm−2,j , ...β1,j , β0,j ] of an individual j of the
BSA/PSO. The output ŷaj(k) is the response of the esti-
mated model (8) (9), in face of a(k), when the coefficients



of Ge(z) are xj . So, the fitness fj of each individual j is
obtained comparing ŷaj(k) with ya(k), according with (10):

fj =

N∑
k=0

(ya(k)− ŷaj(k))
2

N
, (10)

wherein N is the number of samples that exist during the
monitoring period T of ya(k). Note that, if no other inputs
– perturbation or noise – occur in the NCS during T , then
min fj = 0 when [αn,j , αn−1,j , ...α1,j , α0,j , βm−1,j , βm−2,j , ...
β1,j , β0,j ] = [αn, αn−1, ...α1, α0, βm−1, βm−2, ...β1, β0], i.e.
when the estimated Ge(z) converges to G(z).

An analogy may be established between this Active Sys-
tem Identification attack and the Chosen Plaintext crypt-
analytic attack [19], wherein a(k) corresponds to the cho-
sen plaintext, ya(k) represents the ciphertext, the equa-
tions (8) and (9) together correspond to the encryption al-
gorithm and the actual coefficients [αn, αn−1, ...α1, α0] and
[βm−1, βm−2, ...β1, β0] of Ge(z) correspond to the secret key.

6. RESULTS
In this section, there are presented and analyzed the results
obtained with simulations of the proposed Active System
Identification attack. The attacked system, shown in Fi-
gure 2, consists of a DC motor whose rotational speed is
controlled by a Proportional-Integral (PI) controller. This
example is chosen due to the use of DC motors in a vast num-
ber of real world control systems. Moreover, DC motors has
been widely used in previous works about NCS [3, 12, 14,
15]. It is noteworthy that the model herein chosen as an ex-
ample does not exhaust the potential targets for this attack.
NCSs composed by another kinds of LTI devices may also
be a target. However, it must be taken into account that
the computational cost of the attack, when launched over
different LTI systems, may vary with the number of their
unknown coefficients – i.e. the number of dimensions of the
search space explored by the optimization algorithms (BSA
or PSO, in this paper).
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Figure 2: Active System Identification attack on noisy NCS.

The PI control function C(z) and the DC motor transfer
function P (z), obtained from [12], are represented by (11):

C(z) =
0.1701z − 0.1673

z − 1
, P (z) =

0.3379z + 0.2793

z2 − 1.5462z + 0.5646
.

(11)

Thereby, the transfer function to be identified G(z) – that is
also the open-loop transfer function of the NCS – is defined
by (12):

G(z) = C(z)P (z) =
g1z

2 + g2z + g3
z3 + g4z2 + g5z + g6

, (12)

wherein g1 = 0.0575, g2 = −0.0090, g3 = −0.0467, g4 =
−2.5462, g5 = 2.1108 and g6 = −0.5646. The sample rate
of the system is 50 samples/s and the set point r(k) is an
unitary step function. Network delay and packet loss are
not taken into account in the simulations of this paper.

The structure of the equations (11), and so the structure of
(12), are previously known by the attacker once that, as a
premise, it is known that the target is an NCS that controls a
DC motor using a PI controller. Thus, in these simulations,
the goal of the Active System Identification attack is to dis-
cover g1, g2, g3, g4, g5 and g6.

The chosen attack signal a(k) is a discrete-time unit im-
pulse (13):

a(k) =

{
1 if k = ka;
0 otherwise,

(13)

wherein ka is the single sample in which the attacker inter-
fere in the system by adding 1 to the feedback stream. Note
that the discrete-time unit impulse is chosen to excite the
NCS due to its short active time – i.e. one sample –, which
increases the stealthiness of the attack in the time domain.

The effectiveness of the Active System Identification attacks
are evaluated in both conditions with and without noise. To
simulate the noise, it is inserted w(k) ∼ N(μ, σ), indicated
in Figure 2, which is a white Gaussian noise wherein N is
a normal distribution, μ is its mean and σ is its standard
deviation. In all simulations the mean is μ = 0 rad/s. The
standard deviation is adjusted such that 95% of the ampli-
tudes of w(k) are within ±I (I = 2σ). There are consid-
ered four different noise intensities I: 0 (no noise), 0.0025
rad/s, 0.005 rad/s and 0.01 rad/s. For each noise inten-
sity I, there are executed 100 different simulations, for each
of the mentioned metaheuristics. In each simulation, the
feedback stream is captured by the attacker during a period
T = 2s (100 samples), starting at sample ka + 1.

The attack model was implemented in MATLAB, where the
simulations were carried out. The SIMULINK tool was used
to compute ya(k) and ŷaj(k) – the latter, for each individ-
ual j of the optimization algorithms. The parameters of the
BSA and PSO described in Sections 3 and 4, respectively,
were empirically adjusted through a set of simulations with-
out noise (I = 0). These parameters are then used for all
noise conditions. In the BSA-based attacks, the parameter
η is set to 1. In the PSO-based attacks, it is used the follow-
ing parameters configuration: ω = 0.4, ϕ1 = ϕ2 = 1.5 and
δ = 0.1. In both algorithms, the population is set to 100
individuals and the limits of each dimension of the search
space are [−10, 10]. In each simulation, the BSA and the
PSO are executed for 4500 iterations.

Figure 3 presents the mean estimated values of g1, g2, g3,
g4, g5 and g6, with a Confidence Interval (CI) of 95%, for
different values of noise intensity I. Note that the actual
values of these coefficients are also depicted in Figure 3. In
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Figure 3: Mean of the estimated coefficients of G(z), with CI of 95%, in face of different noise intensities I.
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(a) BSA and PSO, without noise
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(b) BSA with I = 0.005
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(c) PSO with I = 0.005

Figure 4: Response of actual and estimated systems produced by a(k), in face of different noise intensities.

this Figure, it is possible to compare the results achieved by
the BSA-based and the PSO-based attacks. For the compu-
tation of each outcome presented in Figure 3, there were not
taken into account the results beyond two standard devia-
tion from the mean of each set of 100 simulations. According
with Figure 3, it is possible to verify that, for all coefficients
of G(z), both the BSA-based and PSO-based attacks present
good accuracy when I = 0 (i.e. without noise, the mean
values of the estimated coefficients are close to their actual
values). Despite the similar and accurate performance of
the two metaheuristics without noise, it is possible to state
that the BSA presented a performance slightly better than
the PSO in this noise condition (I = 0), specially with re-
gard to the coefficients g1, g2 and g3. Note that, the per-
formance of the PSO-based attack is degraded when noise
is added to the system. This performance degradation of
the PSO occurs for I ≥ 0.0025, and tends to be more ex-

pressive with the increase of I. On the other hand, from
Figure 3, it is possible to verify that the BSA-based attack
still present good accuracy for noise intensities up to 0.005.
When I ≤ 0.005, all coefficients estimated by the BSA-based
attack present a mean close to its actual value, with a small
CI. When I ≥ 0.0075, the performance of the BSA-based
attack decreases with the raise of noise in a more expressive
way, being worst when I = 0.01. Among the six coefficients
of G(z), in general, the estimation of g2 presents the lowest
accuracy for both BSA-based and PSO-based attacks. We
attribute this behavior to a lower sensitivity that the out-
put ŷa(k) of the estimated system has to the variation of g2.
This means that, in this problem, fj grows faster for errors
in g1, g3, g4, g5 and g6 than for errors in g2, making the
BSA population converge less accurately in dimension g2.

The performance of the attacks can also be evaluated in
the k domain through the exemples provided in Figure 4,



considering two different intensities of noise: without noise,
in Figure 4(a); and with I = 0.005, in Figures 4(b) and
4(c). In Figure 4(a), its is shown that, without noise, the
response of the system estimated by both BSA-based and
PSO-based attacks matches the response of the actual sys-
tem, with high accuracy. In Figure 4(b), even with a noise
intensity of I = 0.005, the response of the system estimated
by the BSA-based attack still matches the response of the
actual system, indicating the convergence of Ge(z) to G(z)
and ratifying the statistics shown in Figure 3 for the BSA
with such noise intensity. On the other hand, when apply-
ing the PSO-based attack with the same noise, as exempli-
fied in Figure 4(c), there is a slight difference between the
response of the estimated system and the response of the
actual system, produced by the mismatch of the estimated
coefficients in the presence of such noise intensity. This ex-
emplifies the worst performance of the PSO-based attacks
when compared with the BSA-based attacks in face of the
same noise intensities.

To synthesize the error of each solution found, it is computed
|Eg| according with (14):

|Eg| =
√√√√ 6∑

i=1

(gi − gei)
2, (14)

wherein gi and gei are the actual and estimated coefficients
of the attacked system, respectively, and i is the index num-
ber of each of the six coefficients of the model being assessed.
Note that |Eg| is the module of a vector composed by the er-
ror of each coefficient found, which represents another metric
to evaluate the performance of each attack. The histograms
of |Eg| are presented in Figure 5, considering the mentioned
noise intensities. It graphically shows that higher values of
|Eg| tend to appear more frequently as the noise intensity
grows, in both BSA-based and PSO-based attacks. How-
ever, based on these histograms it is possible to verify that
the mode of |Eg| is close to zero for all noise intensities, using
both metaheuristics. This indicates that, even in the pres-
ence of noise, most solutions present low deviations from the
actual coefficients. Note that, for all noise intensities, the
BSA-based attacks provide more results in the modal class
– where |Eg| is close to zero – than the PSO-based attacks.
Moreover, the worst results of the BSA-based attacks have
an |Eg| about 4, when I ≥ 0.005, while the worst results of
the PSO-based attacks have an |Eg| > 20, when I ≥ 0.0025.
These results, together with the statistics shown in Figure 3,
indicate that the performance of the Active System Identi-
fication attack is better when implemented with the BSA
than with the PSO. It is worth mentioning that, to achieve
these results, the BSA-based attacks consumed an average
processing time (6.68 ± 0.47)% higher than the PSO-based
attacks.

In general, the outcomes indicate that, for the same ampli-
tude of attack signal a(k), the performance of the attack
tends do decrease as the noise intensity increases, i.e. when
the attack signal-to-noise ratio decreases. The minimum
length of the attack signal in terms of number of manipu-
lated samples, i.e. one single sample, improves the stealth-
iness of the attack in the k domain. On the other hand, a
minimum attack signal-to-noise ratio required to guarantee
the performance of this attack is a drawback with respect

(a) BSA

(b) PSO

Figure 5: Histograms of |Eg| for different noise intensities.

to its stealthiness, from the attacker’s point of view. This
issue makes more difficult for the attacker to approximate
the amplitude of a(k) from the noise amplitude, or to noise
values that have higher probability to occur, which should
help to increase the stealthiness of the attack signal in terms
of amplitude.

7. CONCLUSION
The present work defines and propose an Active System
Identification attack that may be launched over NCSs, in
order to gather the data required for the design of other so-
phisticated cyber-physical attacks. The attack herein pro-
posed is implemented based on two bio-inspired algorithms:
the BSA and the PSO. It is shown that, in this problem,
the BSA-based attacks provide better performance than the
PSO-based attacks, specially in the presence of noise.

In general, the results indicate that the attack is capable to
estimate the coefficients of the open-loop transfer function
of an NCS, which is known to be enough for further manip-
ulation of the system’s behavior through conventional root
locus analysis/modification. It is demonstrated the capabil-
ity of the attack to achieve its goal even when:

• no meaningful information is passing through its com-
munication links, i.e. when the system had achieved
its steady state;

• the attacker intercepts the communication of the NCS
at only one point, i.e. the attacker does not need to in-



tercept both forward and feedback streams to estimate
the open-loop transfer function of the system;

• the NCS is noisy (particularly the BSA-based attack,
for 0 ≤ I ≤ 0.0075).

For future work we plan to investigate possible techniques
that guarantee the performance of the attack even with small
attack signal-to-noise ratio. Also, we plan – and encourage
other researches – to investigate countermeasures to identify
and prevent Active System Identification attacks.
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