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ABSTRACT
In this paper, we assume that the mathematicians in prov-
ing new significant theorem, such as Fermat’s Last Theorem,
deal with combining proof trees on tree forests by using the
analogy as an inference metarule. In other words, the real
mathematical proofs cannot be formalized as discrete se-
quences, but they are concurrent and can by formalized as
analog processes within a space with some topological prop-
erties. For the first time, inference metarules in a topological
space were proposed in the Talmud within a general Judaic
approach to concurrent or even massive-parallel conclusions.
The mathematician does not think sequentially like a logi-
cal automaton, but concurrently, also. Hence, we suppose
that the proof technique of real mathematics cannot be for-
malized by discrete methods. It is just a hypothesis of the
foundations of mathematics that we can use discrete tools so
that mathematics can be reduced to logic. We show in the
paper how the mathematical proof can be formalized just
by analog computations, not discrete ones.

CCS Concepts
•Computing methodologies→Parallel computing me-
thodologies; Artificial intelligence; •Parallel algorithms
→ Massively parallel algorithms; •Artificial intelligence
→ Philosophical/theoretical foundations of artificial intelli-
gence;

Keywords
Hilbert’s program; foundations of mathematics; Fermat’s
last theorem; Cauchy criterion; topological Cauchy-Cantor
intersection theorem; proof trees

1. INTRODUCTION
The Principia Mathematica, a three-volume work written

jointly by Alfred North Whitehead and Bertrand Russell and
published in 1910, 1912, and 1913, was the first book

i.e. in fact it was the first attempt to make explicitly math-
ematics from the point of view of symbolic logic, that is an
attempt to consider mathematical theorems as logical state-
ments which are automatically inferred from axioms by log-
ical inference rules. To continue and enhance this approach,
David Hilbert, the German mathematician (1862–1943), put
forward a new proposal for the foundation of mathematics
called the Finite Program (or Hilbert’s Program). In this
proposal all of mathematics should have been formalized in
axiomatic form, together with a proof by ‘finitary’ methods
proposed by Hilbert that this axiomatization is consistent.

Now there are some basic formal theories which are re-
garded as start points in the foundations of mathematics.
This means that these theories, in the way how it seems
to mathematicians, can cover big fragments of mathemat-
ics by their extensions. For instance, it is assumed that in
the foundations for number theory we should start from the
five Peano’s axioms, introduced by Giuseppe Peano in 1889
and now called the Peano arithmetic PA. Also, it is sup-
posed that any set-theoretic reasoning in mathematics (like
reasoning in topology) can be reduced to statements for-
malized in the Zermelo-Fraenkel set theory, constructed by
mathematicians Ernst Zermelo and Abraham Fraenkel and
denoted by the abbreviation ZFC, where C means axiom of
choice.

To sum up, mathematicians believe still that the founda-
tions of mathematics in the meaning of Principia Mathe-
matica are possible and any correct well-done mathematical
reasoning can be rewritten in a logical theory such as ZFC.
So, they believe that all the mathematics can be reduced to
a logic. Is it true indeed? Is it possible?

In mathematics there are really non-trivial theorems which
are so deep that they cannot be inferred without introduc-
ing absolutely new mathematical constructions. For exam-
ple, Fermat’s Last Theorem (FLT) is well formulated in PA.
Therefore this statement seems to be so simple. For the first
time, FLT was put forward by Pierre de Fermat in 1637 in
the margin of a copy of Arithmetica. However, this state-
ment was proven formally only after 358 years of effort by
mathematicians, namely by Andrew Wiles in 1995 [6]. The
most dramatic problem of FLT recently is that this theo-
rem is proved mathematically and this proof was accepted
by mathematical communities, but this statement was not
checked by logicians at all. It is unknown still whether there
is a logical proof of FLT. In other words, FLT is not covered
by any foundations of mathematics still.

As we said, FLT is well written in a first-order sentence
of PA. However, it does not mean that it can be proved
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in PA. After the Paris-Harrington theorem [3], it is well
known that there are ever first-order arithmetic statements
written in PA which cannot be proved in PA, such as the
Strong Ramsey Theorem that can easily be proved in the
second-order arithmetic from the infinite version of the stan-
dard theorem. Also, it is known that there are many other
combinatorial problems that are beyond PA. In [2], Colin
McLarty supposed that FLT can be proved in some higher-
order extensions of PA, but nobody has checked it still.
Another hypothesis of McLarty [2] is that FLT is beyond

ZFC. It is quite evident taking into account the fact that
cohomological number theory used by Wiles [6] is based on
Grothendieck’s universes which model ZFC, but the exis-
tence of a universe is not provable in ZFC. Grothendieck’s
own axiom of universes, which was added to ZFC, affirms
that every set is contained in some universe (there is an un-
countable strongly inaccessible cardinal for sets) [1]. Hence,
in cohomology we deal with ZFC+U consisting of ZFC
with the assumptionU of a universe. So, FLT can be proved
at least in ZFC+U or even in higher extensions, and evi-
dently not in ZFC. Nevertheless, there is no formal proof
still what is set theory looks like for FLT.
Thus, there are ever serious mathematical theorems such

as FLT which are beyond the recent foundations of mathe-
matics (for instance, beyond PA or ZFC). However, math-
ematicians and logicians unconsciously obey the quite re-
ligious faith and follow the deep-inner intuition that any
mathematical theorem can be reduced to a theorem of ex-
isted symbolic logic. In symbolic logic we appeal to a formal
theory Ti that possesses logical axioms/theorems (aL

i1, . . . ,
aL
in) within a logical system L like the classical propositional

logic and non-logical axioms / theorems (aT
i1, . . . , a

T
im) for

defining properties of predicates and functions introduced
in Ti. Then by using inference rules of L we can infer
in Ti all possible provable sentences from (aL

i1, . . . , a
L
in) +

(aT
i1, . . . , a

T
im). Surely, it does work in symbolic logic indeed,

but it is unknown still whether it gives something to real
mathematics. In real mathematics, i.e. in a proof of deep
sentences such as FLT, we use some axioms / presuppo-
sitions / sentences (aM

i1 , . . . , a
M
ik ) and the main task of the

foundations of mathematics is to set up a formal theory Ti

to find out an injective mapping from (aM
i1 , . . . , a

M
ik ) into

(aT
i1, . . . , a

T
im). The problem is that, on the one hand, some

sentences from (aM
i1 , . . . , a

M
ik ) in FLT can be just intuitive

and not well-formulated (or even not conscious). On the
other hand, their true symbolic-logical analogues in Ti can
be absent from the list (aT

i1, . . . , a
T
im) and not sketched still.

In this paper we assume that (aM
i1 , . . . , a

M
ik ) for serious the-

orems like FLT are not non-logical axioms / theorems which
can be represented as (aT

i1, . . . , a
T
im). So, we assume that

higher mathematics cannot be reduced to symbolic logic.
Let us suppose now that (aM

i1 , . . . , a
M
ik ) = (aM

i1 , . . . , a
M
ik ) +

(aL
i1, . . . , a

L
in) and (aT

i1, . . . , a
T
im) = (aT

i1, . . . , a
T
im) + (aL

i1, . . . ,
aL
in), i.e. they are closed under the inference rules of L.

Each proof in Ti = (aT
i1, . . . , aT

im) is a tree t. Let tej
be an inference rule of Ti, i.e. it is an elementary tree
– it has one parent (the inferred statement) and several
its direct children (axioms as premisses). Then t consists
of te1 , . . . , tej as its subtrees. Let {} be an empty tree.
Then each edge/branch of t can be labelled by a sentence
α ∈ (aT

i1, . . . , a
T
im) as follows: α[t′], where t′ is an elemen-

tary subtree (inference rule) of t that was used to obtain
α. Then a tree can be denoted by all its branches. For in-

stance, the notation t = {c[{a[{}], b[{}]}]} means that we
have a tree consisting only of two edges/premisses a[{}] and
b[{}] and one conclusion from them c[{a[{}], b[{}]}]:

a b

c

The notation t′ = {c[{a[{}], b[{}]}], a[{}]} designates the
following tree:

ca

a b

The formula t′′ = {d[{c[{a[{}], b[{}]}], a[{}]}], f [{}], e[{}]}
satisfies the following tree:

ca

a b

d e
f

Hence, in Ti we deal just with finite trees labelled in
(aT

i1, . . . , a
T
im) in the way defined above.

Let an ordered sequence of trees be called a forest. We
say a forest si = 〈ti, t′i, t′′i , . . . 〉 is a piece of a forest sj =
〈tj , t′j , t′′j , . . . 〉, written si � sj if si can be obtained from
sj by removing nodes. In other words, there is an injec-
tive mapping from nodes of si to nodes of sj that pre-
serves the lexicographic and descendant ordering. Then a



reduction of (aM
i1 , . . . , a

M
im) to (aT

i1, . . . , a
T
in) would mean that

(aM
i1 , . . . , a

M
im) is a piece of (aT

i1, . . . , a
T
in), i.e. (a

M
i1 , . . . , a

M
im) �

(aT
i1, . . . , a

T
in).

In deep theorems like FLT we have ever a forest sj , which
is a substantial part of (aM

i1 , . . . , a
M
im), such that sj is not a

piece for any forest of (aT
i1, . . . , a

T
in). So, we can distinguish

two kinds of forests from (aM
i1 , . . . , a

M
im):

1. a forest sj which is a piece of some forest from (aT
i1,

. . . , aT
in), these pieces are called logical fragments;

2. a forest sj which is not a piece of any forest from
(aT

i1, . . . , a
T
in), this sj is called a new construction.

We assume that logical fragments are well studied in the
foundations of mathematics, but new constructions are not
yet. The true mathematical task is to give non-trivial es-
sential theorems containing new constructions. The math-
ematician starts his work with logical fragments to obtain
new constructions later.

Thus, the higher mathematics is eternally to extend forests
of (aM

i1 , . . . , a
M
im) by proposing new constructions. Therefore,

the mathematician deals not only with proofs/trees (what
can be reduced completely to pieces from (aT

i1, . . . , a
T
in)), but

more often with forests which are irreducible to pieces of
(aT

i1, . . . , a
T
in). Mathematicians know that sometimes rea-

soning by analogy allows them to propose really something
new. They take a piece from one theory Ti = (aM

i1 , . . . ,
aM
im) to combine it with forests of another theory Tj =

(aM
j1 , . . . , a

M
jk) and then to obtain the next theory Tf =

(aM
f1, . . . , a

M
fl ).

In the Talmud there was proposed a metareasoning for
extending the dataset (forests) of the Torah, (aM

i1 , . . . , a
M
ik ),

by analogies for the first time (see Section 2). It is a way
how we can add new axioms to (aM

i1 , . . . , a
M
ik ) just looking

at existing forests. In Section 3 we will show how we can
use these methods in the recent foundations of mathemat-
ics. Hence, the Talmudic metareasoning in the foundations
of mathematics are called by us ‘Talmudic foundations of
mathematics’, see [4], [5]. We assume that in a real mathe-
matical practice mathematicians use a similar metareason-
ing to build up new forests by looking at existing forests (let
us notice that this metareasoning is considered often as a
mathematical intuition).

2. WHAT IS TALMUDIC LOGIC?
Usually, the term ‘Talmudic logic’ means the Judaic her-

meneutic rules (Hebrew: middot, (מידות� [4], first formulated
as a special hermeneutics by Hillel in the 1st century B.C.
(he proposed the 7 rules), by Rabbi Ishmael in the 2nd cen-
tury A.D. (he established the 13 rules for inferring the law,
halakhah), and by Rabbi Eliezer ben Jose HaGelili in the
same 2nd century A.D. (he examined the 32 rules for infer-
ring the holy stories, haggadah). As a result, in the Talmud
we face a logical point of view in respect to the Torah: all the
Biblical statements are considered ‘particular’ ( (פרט� or ‘gen-
eral’ ( (כלל� implying some conclusions by using hermeneutic
rules. A Biblical statement, ϕi

part, is regarded particular, if

its verification |ϕi
part| (i.e. all denotates of ϕi

part) is a subset

of a verification |ϕj
gen| for another statement, ϕj

gen, namely:

|ϕi
part| ⊆ |ϕj

gen|. In this case the implication ϕi
part → ϕj

gen

is true. Hence, we can draw appropriate proof trees by using
modus ponens and other classical inference rules in the way

of Section 1, if we define all the last particulars of the Torah
as axioms of the Talmud: (apart

i1 , . . . , apart
in ).

Now, let us consider an example from Exodus 22 and let
us try to build up a proof tree for the notion ‘responsibility
for the property of his neighbour’, just basing on the text of
the Torah. We have the following statements mentioned in
this chapter of the Holy Book:

G “He is responsible for the property of his neighbour.”

G1 “The neighbour’s property is given for safekeeping for
free of charge.”

G2 “The neighbour’s property is given for safekeeping for
money.”

G3 “The neighbour’s property is borrowed.”

G1P1 “The safekeeping for free of charge is stolen. He
should swear that he did not lay his hand upon his
neighbor’s property.”

If a man shall deliver unto his neighbour
money or stuff to keep, and it be stolen out
of the man’s house; if the thief be found, let
him pay double. If the thief be not found,
then the master of the house shall be brought
unto the judges, to see whether he have put
his hand unto his neighbour’s goods (KJV,
Exodus, 22:7-8).

G2P1 “The safekeeping for money is stolen. He should pay
the loss.”

G2P2 “The safekeeping for money is destroyed for natural
reasons. He should swear that he did not lay his hand
upon his neighbor’s property.”

If a man deliver unto his neighbour an ass,
or an ox, or a sheep, or any beast, to keep;
and it die, or be hurt, or driven away, no
man seeing it: Then shall an oath of the
Lord be between them both, that he hath
not put his hand unto his neighbour’s goods;
and the owner of it shall accept thereof, and
he shall not make it good. And if it be stolen
from him, he shall make restitution unto the
owner thereof (KJV, Exodus, 22:10-12).

G3P2 “The borrowed is destroyed for natural reasons. He
should pay the loss.”

And if a man borrow ought of his neighbour,
and it be hurt, or die, the owner thereof be-
ing not with it, he shall surely make it good.
But if the owner thereof be with it, he shall
not make it good: if it be an hired thing, it
came for his hire (KJV, Exodus, 22:14-15).

As we see, we deal here with the four last particulars (i.e.
Talmudic axioms): (G1P1, G2P1, G2P2, G3P2). How-
ever, the data set for ‘responsibility for the property of his
neighbour’ is not complete – we know nothing about the
following two particulars (axioms) which are supposed also:

G1P2 “The safekeeping for free of charge is destroyed for
natural reasons. What should he do?”



G3P1 “The borrowed is stolen. What should he do?”

In the picture form, the complete data set must be seen
as follows:

G

G1G3 G2

G3P2 G3P1 G1P2 G1P1G2P2 G2P1

Nevertheless, in the Torah an appropriate data set is sketched
in the following manner, i.e. it is absolutely incomplete for
inferring ‘responsibility for the property of his neighbour’:

G

G1G3 G2

G3P2 G1P1G2P2 G2P1

Thus, we need to find out possible ways for defining the
two new axioms, G1P2 and G3P1. But how? Do not
worry. In the Bava Metzia, the second of the first three
tractates of the Babylonian Talmud in the order of Nezikin
(“damages”), chapter 8, there is a metareasonig for this pur-
pose – the inference metarule for defining new axioms, called
qal wa-h. omer וחמר�) .(קל This rule occurs among the 7 rules
of Hillel, as well as among the 13 rules of Rabbi Ishmael and
the 32 rules of Rabbi Eliezer ben Jose HaGelili. Let us take
all the particulars for G2, because they are complete. Be-
tween G2P1 and G2P2 there is a strong ordering relation:
G2P2 �G2P1. Indeed, G2P2means that he is free of pay-
ing and G2P1 means that he should pay the loss. Hence,
we assume that all last particulars (G1P1, G1P2, G2P1,
G2P2, G3P1, G3P2) are partially ordered by a relation
‘� or =’ denoted by �, where = means the same payment.
Then G1P2 is defined by qal wa-h. omer as follows:

G1P2 = min(G2P2,G1P1).

From this it follows that

G1P2 “The safekeeping for free of charge is destroyed for
natural reasons. He should swear that he did not lay
his hand upon his neighbor’s property.”

Analogically, G3P1 is defined by qal wa-h. omer thus:

G3P1 = min(G2P1,G3P2).

Then it is inferred that

G3P1 “The borrowed is stolen. He should pay the loss.”

So, the main goal of qal wa-h. omer is to add new axioms
for the Torah data sets to make the proof trees more sym-
metrical: in the same tree t with only one root all subtrees
must bear the same number of edges. For instance, in the
tree

t = {G[{G1[{G1P1[{}]}], G2[{G2P1[{}], G2P2[{}]}],
G3[{G3P2[{}]}]}]}

we had the subtree t′ = {G2[{G2P1[{}], G2P2[{}]}]}
with the number of edges 2 that exceeds the numbers of
edges of all other subtrees. Then we must add new branches
to each subtree where the number of edges is less than 2.

Definition 1 (Inference Metarule qal wa-h. omer).
Let a tree t have i subtrees: t1, . . . , ti and let Nj be a number
of axioms (apart

j1 , . . . , apart
jN ) for each j = 1, i and let all ax-

ioms for each subtree be lexicographically ordered in the same

way. Assume that
i

max
j=1

Nj = n. This means that there exists

l such that 1 ≤ l ≤ i and Nl = n. Let us suppose now that
there exists k ∈ {1, . . . , i} such that k 	= l and Nk = m < n.
Then we can add new axioms by qal wa-h. omer to complete
the axioms of tk up to the set (apart

k1 , . . . , apart
kn ):

1. the set (apart
l1 , . . . , apart

ln ) is partially ordered by � and

the order � of (apart
o1 , . . . , apart

on ) is the same for any
subtree to of t such that No = n;

2. the set (apart
k1 , . . . , apart

km ) is partially ordered by the same
�, but the order can be different;

3. the item apart
k(m+1) = min(apart

km , apart
l(m+1));

4. the item apart
k(m+p) = min(apart

k(m+p−1), a
part
l(m+p)) for each

p = 1, n−m.

According to this metarule, we can have the same num-
ber of axioms for each subtree of the same tree t. In other
words, for all subtrees t1, . . . , ti of t we have the axioms
(apart

11 , . . . , apart
1n , apart

21 , . . . , apart
2n , . . . , apart

i1 , . . . , apart
in ) due to

qal wa-h. omer.
In Section 1 we have said that the task of every true math-

ematician is to extend a set of mathematical axioms. In
the statements like FLT we exceed the set of existing ax-
ioms (i.e. we put proofs outside of the foundation of math-
ematics). And we assume that the true mathematicians ap-
peal to some inference metarule to obtain new axioms for



proving their non-trivial sentences. In other words, they
deal not with mechanical proofs from existing axioms within
the foundations of mathematics, but they combine different
trees to expand the set of possible axioms beyond any foun-
dations of mathematics. This way of proving is called by
us Talmudic because of the priority of the Talmudic logic in
proposing some inference metarules for defining axioms. So,
let us generalize definition 1 as follows.

Definition 2 (Inference Metarule I). Let a tree t
has i subtrees: t1, . . . , ti and let Nj be a number of axioms

(aM
j1 , . . . , a

M
jN ) for each j = 1, i. Assume that

i
max
j=1

Nj = n.

This means that there exists l such that 1 ≤ l ≤ i and Nl =
n. Let us suppose now that there exists k ∈ {1, . . . , i} such
that k 	= l and Nk = m < n. Then we can add new axioms
by the inference metarule I to complete the axioms of tk up
to the set (aM

k1, . . . , a
M
kn):

1. the sets (aM
l1 , . . . , a

M
ln ), . . . , (a

M
o1 , . . . , a

M
on) are partially

ordered by � for all subtrees tl, . . . , to with the number
of axioms Nl = · · · = No = n;

2. the set (aM
k1, . . . , a

M
km) is partially ordered by the same

�, but the order can be different;

3. the item aM
k(m+p) = �I(aM

k1, . . . , a
M
k(m+p−1), aM

l1 , . . . ,

aM
l(m+p), . . . , a

M
o1, . . . , a

M
o(m+p)) for each p = 1, n−m,

where �I is a Boolean function.

Thus, in the Talmudic foundations of mathematics we
transform one space of mathematical proof trees into an-
other space by some inference metarules. By analogy how
in the Talmud we follow a transformation from one space
of Biblical particular-and-general to another one. The proof
trees supposed in the Torah are not complete and by the
Talmudic inference metarules such as qal wa-h. omer we can
make trees more symmetric so that their subtrees must have
the same number of branches at the end.

3. METAREASONING IN MATHEMATICAL
ANALYSIS

Let us consider an example from mathematical analysis
to show that a mathematician, extending a mathematical
horizon, operates with forests and appeals to metarules for
combining different trees, indeed. Great mathematicians do
not prove theorems in the way like a logical automaton does
it. For example, Augustin-Louis Cauchy, the French mathe-
matician of the 19th century who became a founder of mod-
ern mathematical analysis, put forward an axiom now called
Dedekind Completeness for the expansion of mathematics.
Due to this axiom, some properties of real numbers (non-
logical axioms describing real numbers) can have transmit-
ted to complex numbers, vectors, and even infinite sequences
by a mathematical analogy of the Talmudic qal wa-h. omer
rule.

3.1 Cauchy Criterion
Let us denote an infinite sequence (i.e. a countable set) of

objects x1, x2, . . . , xk, . . . by {xn}. Then some basic defini-
tions of the Cauchy approach are as follows:

Definition 3. xn
R→ x

def
= {xn} ⊂ R converges to x ∈ R

what is defined thus: {xn} ⊂ R ∧ ∃(x ∈ R)∀(ε > 0)∃(Nε)
∀(n ≥ Nε)[|xn − x| < ε].

Let us denote definition 3 by Conv({xn};R, | · |).

Definition 4. {xn} ⊂ R satisfies the Cauchy condition
iff {xn} ⊂ R ∧ ∀(ε > 0)∃(Nε ∈ N)∀(m,n ∈ N|n ≥ Nε ∧m ≥
Nε)[|xn − xm| < ε].

Definition 4 is denoted by CC({xn};R, | · |)

Axiom 1 (Dedekind completeness). ∀(A ⊆ R|A 	=
∅)∀(B ⊆ R|B 	= ∅)[∀(a ∈ A)∀(b ∈ B)[a � b] → ∃(ξ ∈
R)∀(a ∈ A)∀(b ∈ B)[a � ξ � b]].

The completeness axiom is denoted byAx3(A,B, a, b;R, |·|).

Definition 5. A sequence [an, bn] of closed intervals of
R is called a nested closed intervals system iff ∀(i ∈ N)[ai ∈
R ∧ bi ∈ R ∧ [ai, bi] ⊃ [ai+1, bi+1]].

Let us denote definition 5 by SES({[an, bn]};R, | · |).

Theorem 1. This theorem called the Cauchy-Cantor’s in-
tersection theorem consists of two parts:

1. Existence of the common point (this property is de-
noted by ECP({[an, bn]};R, | · |)):

∀({[an, bn]} ⊂ 2R)[SES({[an, bn]};R, | · |) →

∃(ξ ∈ R)∀(i ∈ N)[ξ ∈ [ai, bi]]].

2. Uniqueness of the common point (this property is de-
noted by SCP({[an, bn]};R, | · |)):

ECP({[an, bn]};R, | · |) ∧ bn − an
R→ 0 →

∃!(ξ ∈ R)∀(i ∈ N)[ξ ∈ [ai, bi]]].

Proof. (1) The existence of the common point:

A0 = {an}, B0 = {bn};

∀(a ∈ A0)∀(b ∈ B0)[a � b],Ax3(A,B, a, b;R, | · |) →

Ax3(A0, B0, a, b;R, | · |);

Ax3(A0, B0, a, b;R, | · |) ↔

∃(ξ ∈ R)∀(a ∈ A0)∀(b ∈ B0)[a � ξ � b].

The last inequality means that ξ is a common point of the
nested closed intervals system.
(2) The uniqueness of the common point.
Assume a contrary:

∀(n ∈ N)∃(ξ, ξ′ ∈ [an, bn])[ξ 	= ξ′] →

∀(n ∈ N)[|ξ − ξ′| � bn − an];

bn − an
R→ 0 iff ∀(ε > 0)∀(n > Nε)[bn − an < ε];

ε =
1

2
|ξ − ξ′| > 0 → |ξ − ξ′| < 1

2
|ξ − ξ′|.

It is a contradiction.

The statement of theorem 1 is denoted by CCP({ αn}; R, | ·
|) where αn = [an, bn] is a closed interval.



Definition 6. A sequence {xn} is called bounded iff

∃(C)∀(n ∈ N)[|xn| ≤ C].

Definition 6 is denoted by B({xn};R, | · |).

Theorem 2 (Bolzano–Weierstrass). Each bounded
sequence {xn} ⊆ R has a convergent subsequence {xnk} ⊆ R,

∃(x ∈ R)[xnk

R→ x].

Proof. The fact that {xn} is bounded means that

∃(C)∀(n ∈ N)[|xn| ≤ C] →

∀(n ∈ N)[xn ∈ [−C,C] ⊂ R].

We apply the following algorithm notated as BWAlgo:

1. a0 = −C, b0 = C.

2. For all i ∈ N \ {0} let us divide [ai, bi] into two equal
segments, and choose one of them which has an infi-
nite number of members of the sequence, denote it by
[ai+1, bi+1].

3. We obtain a sequence {[an, bn]} of closed intervals, i.e.
there is SES({[an, bn]};R, | · |). All closed intervals in
this sequence contain an infinite number of members
of the sequence {xk}. Lengths of this closed intervals

converge to zero: |bm − am| = |b0−a0|
2m

= 2C
2m

= C
2m−1 ,

C
2m−1

R→ 0.

4. Choose a sequence xkm ∈ [am, bm], m ∈ N with the
following condition: ∀(i ∈ Z)[ki−1 < ki].

From this it follows that [[CCP({[an, bn]};R, |·|) → ∃!(ξ ∈
R)∀(m ∈ N)[ξ ∈ [am, bm]]] → ∀(m ∈ N)[|xkm − ξ| � |bm −
am|]] → |xkm − ξ| R→ 0.

Theorem 2 is denoted by BWT({xn};R, | · |).
Theorem 3 (Triangle inequality). ∀(x, y ∈ R)[|x+

y| ≤ |x|+ |y|].
The proof of theorem 3 for R is obvious. Let us denote its
statement by Tr(x, y;R, | · |).

Theorem 4 (Cauchy criterion). ({xn} ⊂ R∧xn
R→

x) ↔ CC({xn};R, | · |)
Proof. Necessity. If {xn} converges to x, then ∀(ε >

0)∃(Nε ∈ N)∀(n > Nε)[|xn−x| < ε], Hence, ∀(ε > 0)∃(Nε ∈
N)∀(m > Nε)[|xm − x| < ε]. Then ∀(ε > 0)∃(Nε ∈ N) ∀(n,
m > Nε)[|xn − x| < ε ∧ |xm − x| < ε].

Thus, ∀(ε > 0)∃(Nε ∈ N)∀(n,m > Nε)[|xn − x| < ε ∧
|xm − x| < ε]∧Tr(xn − x, xm − x;R, | · |) implies that ∀(ε >
0)∃(Nε ∈ N)∀(n,m > Nε)[|xn − xm| < 2ε], then ∀(ε >
0)∃(Nε ∈ N)∀(n,m > Nε)[|xn − xm| < ε].

Sufficiency. CC({xn};R, | · |) → ∀(ε > 0)∃(Nε)∀(m >
Nε)[|xm − xNε | < ε]. If C = max{|x1|, |x2|, |x3|, ..., |xNε−1|,
|xNε − ε|, |xNε + ε|}, then ∀(n ∈ N)[|xn| ≤ C]. This means
that {xn} is bounded. So, {xn} is bounded andBWT({xn};
R, | · |), then from ∃({xnk} ⊆ {xn})∃(x ∈ R)[xnk

R→ x] it
follows that ∃({xnk} ⊆ {xn})∃(x ∈ R)[|xnk − x| < ε].
Thus, CC({xn};R, | · |) implies that ∀(ε > 0)∃(Nε ∈

N)∀(m, k ∈ N|n ≥ Nε ∧ m ≥ Nε)[|xnk − xm| < ε]. Then
∀(ε > 0)∃(Nε ∈ N)∀(m, k ∈ N|n ≥ Nε∧m ≥ Nε)[|x−xm| ≤
|xnk − xm|+ |x− xnk | < 2ε].

The Cauchy criterion is denoted by CCrit({xn}; R, | · |).

3.2 Qal Wa-H. omer for the Cauchy Criterion
Let us fix the most important steps in the proofs of the

previous subsection.
The proof of theorem 1 can be represented as the following

tree:

t1 = {CSP[{ECP[{Ax3[{{an}[{}], {bn}[{}],SES[{}]}]}],

bn − an
R→ 0[{}]}]},

the same is in the graph form:

bn − an
R→ 0

SCP({[an, bn]};R, | · |)

ECP({[an, bn]};R, | · |)

Ax3({an}, {bn}, a, b;R, | · |)

SES({[an, bn]};R, | · |){an} {bn}

The proof tree for theorem 2 is built up as follows:

t2 = {SES[{BWAlgo[{{xn} is bounded [{}]}]}],

∃!(ξ ∈ R)∀(m ∈ N)[ξ ∈ [am, bm]][{CCP[t1]}]},
which is pictured in the following manner:

∃!(ξ ∈ R)∀(m ∈ N)[ξ ∈ [am, bm]]

t1

CCP({[an, bn]};R, | · |)

SES({[an, bn]};R, | · |)

BWAlgo

{xn} is bounded

Let us define now the proof tree for theorem 4:

t4 = {CC[{∀(ε > 0)∃(Nε ∈ N)∀(n,m > Nε)[|xn − x| < ε∧



|xm − x| < ε][{Conv[{}]}],Tr[{}]}],

∀(ε > 0)∃(Nε ∈ N)∀(m, k ∈ N|n ≥ Nε∧

m ≥ Nε)[|xnk − xm| < ε][{B[{CC[{}]}]BWT[t2]}]},
with the following graph:

ϕ2

CC({xn};R, | · |)

B({xn};R, | · |)

CC({xn};R, | · |)

ϕ1

Tr(x, y;R, | · |)Conv({xn};R, | · |)

BWT({xn}; R, | · |)

t2

where ϕ1 = ∀(ε > 0)∃(Nε ∈ N)∀(n,m > Nε)[|xn − x| <
ε ∧ |xm − x| < ε]; ϕ2 = ∀(ε > 0)∃(Nε ∈ N)∀(m, k ∈ N|n ≥
Nε ∧m ≥ Nε)[|xnk − xm| < ε].
Let us define an ordering relation among non-logical ax-

ioms, ≺, as follows: A ≺ B iff an axiom A is contained in
the proof three of B. Hence, for t4 we obtain:

[Ax3(A,B, a, b;R, | · |) ≺ CCP({αn};R, | · |) ≺

BWT({xn};R, | · |) ≺ CCrit({xn};R, | · |)]∧

[Tr(x, y;R, | · |) ≺ CCrit({xn};R, | · |)].
Theorem 4 holds for real numbers. Nevertheless, this the-

orem can be extended to some other numbers by a qal wa-
h. omer :

1. A sequence of complex numbers {xn + iyn} ⊂ C can
be defined in the way of CCrit({xn + iyn};C, | · |C)
where |x + iy|C =

√
x2 + y2, i.e. it is sufficient for us

to replace all occurrences of R to C and all occurrences
of the metrics | · | to the metrics | · |C in the proof
statements of the theorem.

2. Also, sequences of vectors from Rs can be formulated
as CCrit({xn};Rs, ‖ · ‖Rs) where

‖(v1, . . . , vs)‖Rs =

( s∑
i=1

(vi)2
)1/2

.

So, we can generalize theorem 4 (the Cauchy criterion) due
to the fact that there is an analogue for the Dedekind com-
pleteness axiom (Ax3) (defined in real numbers) that holds
for aforesaid types of numbers which can be represented as
some tuples of real numbers. In this case some new in-
equalities ai � ξi � bi, i = 1, . . . , n for a = (a1, . . . , an),
b = (b1, . . . , bn), ξ = (ξ1 . . . , ξn) take place instead of the
one inequality of Ax3.

We can formulate the same generalization by using defi-
nition 2. Assume that we have some axioms (aR

1 , . . . , aR
N )

for real numbers, some axioms (aC
1 , . . . , aC

M ) for complex
numbers, and some axioms (aV

1 , . . . , aV
L ) for vectors. We

know that N > M (respectively, N > L), because in the
beginning, R was studied better than C (respectively, bet-
ter than V). Let us take a subset of axioms (aR

1 , . . . , aR
n )

for real numbers, which express the real metrics. So, aR
n

is Ax3. Now let us define a partial ordering relation � on
(aR

1 , . . . , aR
n ). Let� be a standard implication. For instance,

Conv({xn};R, | · |) → Ax3 means that Conv({xn};R, | ·
|) � Ax3. Suppose that � is extended to an ordering re-
lation on the set of axioms (aC

1 , . . . , aC
m), where m < n,

from which we are going to infer the complex metrics. By
definition 2 we can add new axioms for C, for example:
aC
n = [[Conv({xn};R, | · |) ∧ [CC({xn};R, | · |)] → Ax3] →

[[Conv({xn};C, | · |C) ∧ CC({xn};C, | · |C)] → Ax3]. We
have just added this axiom by qal wa-h. omer (see definition
2).

3.3 Cauchy criterion in the functional analy-
sis

By the end of the 19th century the mathematical objects
for which applying Ax3 seems quite natural have been ex-
hausted. The worlds of real numbers, complex numbers, vec-
tors, and even infinite sequences have already been studied
enough and mathematicians wanted something more, espe-
cially because there were problems of variation calculus that
works with maps of maps. It has been assumed for a long
period that the spaces of maps usually are infinite and so
different from the well-studied finite-dimensional spaces in
their basic properties. Further, in the minds of founders
of the functional analysis there were born metric spaces X,
where you can select a distance (metric) ρ : X2 → R among
elements, but it is impossible to determine a module (norm)
of elements in any reasonable way.
Immediately, a question arose: what properties should X

and ρ have in order to satisfy

CCrit({xn};X, ρ) = true?

It is clear that in this case we have to replace all expressions
of the form |x− y| by ρ(x, y) at all occurrences in

CCrit({xn};R, | · |)
Obviously, the field of real numbers is a special case of

metric space with the following metric: ρR(x, y) = |x − y|.
At the same time, the Cauchy criterion holds not in every
metric space, for example, it does not hold in the space
of continuous functions C[0, 1] with the metric ρL1(x, y) =∫ 1

0
|x(t) − y(t)|dt. Cauchy himself, of course, knew nothing

about the metric spaces and could hardly suspect that there
will be the following definition:

Definition 7. The metric space (X, ρ) where

∀({xn} ⊂ X)[CCrit({xn};X, ρ) ↔ ∃(x ∈ X)[xn
X→ x]],

is called complete.

The idea was to define the property Tr(x, y;X, ρ), natural
for (R, | · |), on the elements of (X, ρ), by transforming this
property from the derived theorem to the preexisted axiom,
also by transforming CCrit({xn};X, ρ) from the theorem
to the axiom and by expecting that the final object will



behave like numbers with almost the same structural the-
orems. Surprisingly, it became true! For example, for R
there exists the compactness of the bounded and closed set
and for the complete metric space of functions, continuous
on [0, 1], with the norm ‖x‖C = maxt∈[0,1] |x(t)|, also there
exists the compactness of the bounded set (with an addi-
tional condition of equicontinuity) – it is the claim of the
Arzelà–Ascoli theorem, denoted by AAT, the analogue of
BWT. The Cauchy-Cantor intersection theorem, i.e. CCP,
gets its counterpart in the form of the topological Cauchy-
Cantor intersection theorem, denoted by TCCP, for the
closed non-empty nested subsets of X.
Hence, the mathematicians of the end of the 19th cen-

tury proposed to replace the axiom Ax3 by the theorem
CCrit({xn};X, ρ) in the proof trees and, as a result, they
changed all proof sequences invented by the mathematicians
of the early 19th century. They did it to extend the math-
ematical limits in building new proof trees. For instance, if
we define an ordering relation among non-logical axioms, ≺,
as follows: A ≺ B iff an axiom A is contained in the proof
three of B, then the reasoning proposed by the mathemati-
cians of the late 19th century is as follows:

[CCrit({xn};X, ρ) ≺ AAT({xn};X, ρ)]∧

[Tr(x, y;X, ρ) ≺ AAT({xn};X, ρ)];

[CCrit({xn};X, ρ) ≺ TCCP(X, ρ)]∧

[Tr(x, y;X, ρ) ≺ TCCP(X, ρ)].

To sum up, it is important to point out that if the mathe-
maticians followed the standard foundations of mathematics
in fact, they would not change the proof sequence. But they
did it indeed, because it is significant for drawing new trees
by inference rules defined in definition 2. So, the new theo-
rems AAT({xn};X, ρ) and TCCP(X, ρ) allow the mathe-
maticians to apply definition 2 in their reasoning more often
and in more cases.

4. CONCLUSIONS
We have just tried to show that the mathematicians deal

not with a logical way of automatic proving from some ax-
ioms, but with combining proof trees on tree forests by us-
ing the analogy as an inference metarule. For the first time,
such metarules were proposed in the Talmud within a gen-
eral Judaic approach to concurrent or even massive-parallel
conclusions, see [4], [5]. The mathematician does not think
sequentially like a logical automaton, but concurrently, also.
In the logical foundations of mathematics there are two

approaches in drawing computer-assisted proofs: (i) auto-
mated theorem proving (i.e. proving mathematical theorems
by computer programs) and (ii) automated proof checking
(i.e. using computer programs for checking proofs for cor-
rectness). There are many objections for these approaches.
For instance, for (i) one the main objections is that these
methods do not give new and useful concepts in mathemat-
ics in fact, but they present just a long gloomy calculation.
For (ii) one of the main objections is that these methods can
check just very simple theorems. There are no even insights
how to check FLT by computer programs.
In our opinion, the most significant problem of existing

logical foundations of mathematics is that a mathematical

proof is considered a discrete process that can be formal-
ized by discrete methods. However, it is only a hypothesis
that mathematics can be reduced to logic and the mathe-
matical thinking is discrete. We can assume that it is not
so and a mathematical proof is an operation in a space of
proof trees with some topological properties. As a result,
the mathematical proof can be formalized just by analog
computations, not discrete ones. The meaning of mathe-
matical proofs is to transform one space of proof trees to
another space with inducing new topological properties. For
example, in the Talmud this transformation means that each
branch in proof trees with one root should have the same
number of subbranches and inferring allows us to construct
additional subbranches to make the trees more symmetric.
In mathematics the goal of proofs is quite similar and it is
to extend the mathematical limits to make proof trees in
forests more symmetric, too.
Hence, we suppose that computer-assisted proofs can be

based on some analog computations involving topological
properties of proof trees.
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