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ABSTRACT
This paper is devoted to actin filament networks as a com-
putation medium. The point is that actin filaments are sen-
sitive to outer cellular stimuli (attractants as well as repel-
lents) and they appear and disappear at different places of
the cell to change the cell structure, e.g. its shape. Due to
assembling and disassembling actin filaments, Amoeba pro-
teus can move in responses to different stimuli. As a re-
sult, Amoeba proteus can be considered a simple reversible
logic gate, where outer cellular signals are its inputs and the
amoeba motions are its outputs. In this way, we can imple-
ment the FREDKIN logic gate on the amoeba behaviours.
The actin filament networks have the same basic proper-
ties as neural networks: lateral inhibition; lateral activa-
tion; recurrent inhibition; recurrent excitation; feedforward
inhibition; feedforward excitation; convergence/divergence.
These networks can embody arithmetic functions defined re-
cursively and corecursively within p-adic valued logic. Fur-
thermore, within these networks we can define the so-called
diagonalization for deducing undecidable arithmetic func-
tions.

CCS Concepts
•Computing methodologies → Parallel computing
methodologies; Artificial intelligence; •Parallel algorithms
→ Massively parallel algorithms; •Artificial intelligence
→ Philosophical/theoretical foundations of artificial intelli-
gence;

Keywords
Actin filament; F-actin; G-actin; p-adic integer; neural net-
work; p-adic valued logic; corecursion; diagonalization

1. INTRODUCTION

Growing Computers From Slime Mould supported by FP7
and organized by Andrew Adamatzky, we have designed
some processors on the basis of the Physarum polycephalum
motions. The plasmodium of Physarum polycephalum con-
sists mainly from actin filament networks and these networks
are responsible for the intelligent behaviour of Physarum
polycephalum [11].
In this paper I show that any cell can be considered a

computer due to its actin filament networks, in particular
Amoeba proteus can be regarded as a logic gate (Sections
2, 3). The intelligent properties of neural networks such as
lateral inhibition or recurrent excitation are also connected
to appropriate properties of actin filament networks (Section
4). In actin filament networks we can define decidable and
undecidable arithmetic functions (Sections 5, 6).

2. MOTILITY OF AMOEBA PROTEUS
AND ACTIN FILAMENTS

Amoeba proteus (see Fig.1) is very sensitive to the en-
vironment and reacts directly to external stimuli by the
motility of its shape. This shape changes due to the cy-
toplasmic streaming that extends pseudopodia towards at-
tractants (food). So, the amoeboid locomotion is committed
forward if the amoeba detects an attractant. Meanwhile, for
A. proteus there exist repellents, as well: the amoeba avoids
strong light (and it moves towards the weaker light), also it
avoids dark (it moves towards light) and many other con-
ditions: some chemicals (such as salt), obstacles, anode (it
moves towards cathode), cold (it moves towards soft), and
hot (it prefers soft), etc.

The amoeboid reactions to attractants and repellents are
studied well and explained by actin filaments or F-actin
(see Fig.2), i.e. the protein which is organized into higher-
order structures, forming linear bundles, two-dimensional
networks, and three-dimensional semisolid gels. Actin mo-
nomers polymerize to form thin, flexible fibers (actin fila-
ments) 5-9 nm in diameter and up to several micrometers in
length. Actin filaments are connected to the plasma mem-
brane, where they form an actin cortex that provides me-
chanical support (see Fig.3). If there is an attractant before
the cell, actin filaments form a wave to change the cell shape
to allow the movement of the cell surface to build a pseu-
dopodia by cross-linked filaments (see Fig.3).
Actin filaments under different external conditions can be

assembled and disassembled and these reactions are regu-
lated by actin-binding proteins. For instance, on the one
hand, cofilin remains bound to actin monomers following fil-
ament disassembly and sequesters them in the ADP-bound

Physarum polycephalum is one of the unicellular organ-
isms best studied from the standpoint of computation theory
[2], [19], [21], [22]. In the project Physarum Chip Project:
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Figure 1: The morphology of Amoeba proteus: (1)
contractile vacuole (a water bubble within the endo-
plasm of A. proteus to regulate the water content of
the cell); (2) nucleus (a membrane bound organelle
containing the cell’s genetic information and respon-
sible for the actions of the amoeba); (3) cytoplasm (a
gel-like substance that allows A. proteus to form its
pseudopodia and preform its respective functions,
it contains actin filaments which are responsible for
sensitivity of A. proteus); (4) food vacuole (a vacuole
with a digestive function, containing a food for A.
proteus); (5) membrane (it contains the inner part
of the cell such as organelles and cytoplasm, it has
good regenerative abilities and elasticity).

form. On the other hand, profilin stimulate the incorpora-
tion of actin monomers into filaments. Also, there are actin-
binding proteins connecting two different actin filaments into
bundles or even into networks which can crosslink perpen-
dicular filaments.

First of all, actin filaments form the cell cortex, which lies
adjacent to the plasma membrane to support it (Fig.4). This
cytoskeleton is dynamic and sensitive to the cell surround-
ings. Each external force (each taxis) acting on the actin cor-
tex are transmitted by signaling pathways to directly react
to the external environment. If actin filaments are assembled
in parallel with the same polarity direction, they propagate
some projections, calledmicrovilli, by adding new monomers
at the plus ends adjacent to the plasma membrane (Fig.5).
For the cell migration actin filaments are crosslinked to prop-
agate membrane protrusions in the form of filopodia (Fig.6)
or lamellipodia (Fig.7). They are being formed also to probe
the cell microenvironment. The more stable bundles of actin
filaments are represented by stress fibers (Fig.8) which allow
the cell to form a track system for cargo transport. In the
cell they build up networks which change their topology by
reactions to the external forces.

Hence, actin filaments are instable, they can assemble and
disassemble rapidly by polymerization and depolymerization
respectively. For more details see [4], [5], [6], [7], [9], [10],
[12], [13], [14], [15], [16].

3. MOTILITY OF AMOEBA PROTEUS
AND THE FREDKIN GATE

Taking into account the fact that it is known in general
how it is possible to control the polymerization and depoly-
merization of actin filaments, we can consider the amoeba

Figure 2: The actin filament or F-actin is a linear
polymer of globular actin monomers (G-actin). F-
actin is flexible and has a helical repeat every 37 nm.
It ranges from 5-9 nm in diameter. It has a rotation
of 166.15◦ around the axis. Each G-actin has tight
binding sites that mediate head-to-tail interactions
with two other actin monomers, in this way actin
monomers are oriented in the same direction and
their polymerization gives a distinct polarity at the
ends of the actin filament: the plus and minus ends.
At these ends there are different rates of the actin
filament grow so that we have the plus end to which
monomers are added five to ten times faster than to
the slow-growing minus end.

Figure 3: Actin filaments responsible for the motil-
ity of Amoeba proteus.

(more correctly, the actin filament networks) as an automa-
ton, where (i) the external forces, to which the actin fila-
ments are responding, are its inputs and (ii) all the responses
causing the amoeba motility are its outputs. In this way it
is easier to implement reversible logic gates, where a unique
input is associated with a unique output and vice versa. In
these gates, the automaton maps each distinct bit string in-
put of the length n into a distinct bit string output of the
same length. For example, the FREDKIN gate is reversible,
for the input [AGE] it gives the output [CDB] by the follow-
ing rule: A = C, D = OR(AND(NOTA,G),AND(A,E)),
and B = OR(AND(A,G),AND(NOTA,E)), i.e. we deal
with the three inputs A, G, E, and the three outputs C,
D, B. See Table 1.
The FREDKIN gate can be implemented by the Amoeba

proteus motility as follows. Let us take the input string
[AGE] with the following meaning: (i) A = 0 if an appro-
priate zone of the microenvironment contains an obstacle
(barrier) and A = 1 otherwise; (ii) G = 1 if an appropriate
zone of the microenvironment contains an attractant and
G = 0 otherwise; (iii) E = 0 if an appropriate zone of the
microenvironment contains an obstacle (barrier) and E = 1



Figure 4: The cell cortex of Amoeba proteus.

Figure 5: The microvilli of Amoeba proteus.

otherwise. Let us assume that the output string [CDB] with
the following meaning: (i) C = 1 if an appropriate zone of
the cell has a deformation because of assembling an actin
filament network and C = 0 otherwise; (ii) D = 1 if an
appropriate zone of the cell has a deformation because of
assembling an actin filament network and D = 0 otherwise;
(iii) B = 1 if an appropriate zone of the cell has a deforma-
tion because of assembling an actin filament network and
B = 0 otherwise.
Thus, we can implement some reversible logic gates on the

amoeboid motions based on actin filament networks.
We can define now an Euclidean cellular automaton [8]

over a parameter space P = [0, 1]n presented by the inputs
(i1, i2, . . . , in) (i.e. external forces acting on actin filaments)
and the outputs (o1, o2, . . . , on) (i.e. reactions of actin fil-
ament networks). This automaton is defined as a 4-tuple

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 0 1 0 0
111 0 0 0 0 0 0 0 1

Table 1: The FREDKIN gate in the permutation
matrix form. The input [000] is mapped to the out-
put [000], [001] is mapped to [001], etc.

Figure 6: The filopodia of Amoeba proteus.

Figure 7: The lamellipodium of Amoeba proteus.

(P, I, F, T ) where P ⊂ 2P is a finite set of states of actin
filament networks given as subsets of P ; I ⊂ P is the set
of initial states; F ⊂ P is the set of accepting states; and
T : P × P → P is the transition function that assigns for
each parameter setting v = (i1, i2, . . . , in) ∈ P and each
state s ∈ P a next state t = T (v, s). The parameter v ∈ P
is defined as a neighborhood for (o1, o2, . . . , on) with a ra-
dius ε: v = {(i1, i2, . . . , in) : |ik − ok| ≤ ε, k = 1, n}. In this
automaton we deal with a continuous domain and with a
finite set of states, i.e. with subsets Pi of P indexed from a
finite index set S. If Pi ∩ Pj = ∅ for all i, j ∈ S we call the
Euclidian cellular automaton deterministic, if

⋃
i∈S Pi = P

we call it complete.
In the FREDKIN gate, the parameter space P = [0, 1]3.

The input (i1, i2, i3) shows the localizations of attractants
and repellents in the FREDKIN motions of the amoeba and
the output (o1, o2, o3) shows the localization of the amoeba
cell in appropriate FREDKIN motions. Using this gate in
the way of [18], we can implement the adder on Amoeba
proteus and then some arithmetic functions.

4. ACTIN FILAMENT NETWORKS
An actin filament network is defined as a system (N ′, V ′,

w′), where (i) N ′ is a non-well-founded set of processors
called ‘filaments’; this set is non-well-founded, because it
is impossible to divide N ′ into atoms or even just into ex-
cluded subsets nj which form a partition of N ′ =

⊔
j nj ; in

other words, processors are being redesigned permanently
and they can appear and disappear and ever change own
features; (ii) V ′ is a set of tuples {(it, jt) : it, jt ∈ N ′} whose
elements are connections between filament it and filament



Figure 8: The stress fibers of Amoeba proteus.

Figure 9: The FREDKIN gate for Amoeba proteus
with the three inputs A = 1, G = 1, E = 1 and the
three outputs C = 1 (the cell zone C moves forward),
D = 1 (the cell zone D moves forward), B = 1 (the
cell zone B moves backward).

jt at time step t; hence, the set V ′ is non-well-founded, too,
as its cardinality can change during the time t; (iii) w′ is
a function from V ′ to ∗R, where ∗R is a set of hyperreal
numbers such that w′((∗i, ∗j)), where ∗i = i0i1i2i3, . . . and
∗j = j0j1j2j3 . . . , for short w∗i,∗j , is called the weight of
the connection between filament ∗i and filament ∗j at each
time step t = 0, 1, 2, 3, . . . ; notice that a filament ∗i can be
hidden (not present) at actual time.

This network is more general than artificial neural net-
works. The main difference is that in the latter the proces-
sors (‘neurons’) do not disappear, because they are fixed, but
in the actin filament networks the processors (‘filaments’)
appear and disappear permanently.

It is worth noting that the actin filaments are responsible
for remodeling neurons in many-cellular organisms possess-
ing the nervous system, also. In this system the actin fila-
ments change the shape and structure of dendritic spines in
the same way as they do it for the amoeba motility. G-actin
is distributed throughout the whole axon and the whole den-
drite and it can be polymerized into F-actin to form new
spines as well as to stabilize the spine volume. As a re-
sult, the actin filaments form new synapses to increase the
cell communication. The filament polymerization promotes

Figure 10: The FREDKIN gate for Amoeba proteus
with the three inputs A = 1, G = 1, E = 0 and the
three outputs C = 1 (the cell zone C moves forward),
D = 0 (the cell zone D does not move), B = 1 (the
cell zone B moves backward).

Figure 11: The FREDKIN gate for Amoeba proteus
with the three inputs A = 1, G = 0, E = 1 and the
three outputs C = 1 (the cell zone C moves forward),
D = 1 (the cell zone D moves forward), B = 0 (the
cell zone B does not move).

long-term potentiation increasing the spine volume and the
cell communication. The filament depolymerization leads to
a long-term depression decreasing the spine volume and the
cell communication.
In the actin filament networks we find out all the basic

properties of the neural networks [17]:

• Lateral inhibition. In neurons, a presynaptic cell ex-
cites inhibitory interneurons and they inhibit neigh-
boring cells in the neural network. As a result, the
contrast of the signal is made more visible. In actin fil-
aments, neighboring bundles are inhibited to increase
the intensity of the signal.

• Lateral activation. In neurons, a presynaptic cell ex-
cites activation interneurons and they activate neigh-
boring cells in the neural network. As a consequence,
the contrast of the signal is made less visible. In actin
filaments, neighboring bundles are activated to decrease
the intensity of the signal.

• Feedback/recurrent inhibition. In neurons, a presynap-
tic cell transmits the signal to a postsynaptic cell, and



Figure 12: The FREDKIN gate for Amoeba proteus
with the three inputs A = 1, G = 0, E = 0 and the
three outputs C = 1 (the cell zone C moves forward),
D = 0 (the cell zone D does not move), B = 0 (the
cell zone B does not move).

Figure 13: The FREDKIN gate for Amoeba proteus
with the three inputs A = 0, G = 1, E = 1 and the
three outputs C = 0 (the cell zone C does not move),
D = 1 (the cell zone D moves forward), B = 1 (the
cell zone B moves backward).

the postsynaptic cell in turn transmits it to an in-
terneuron, which then inhibits the presynaptic cell.
Due to this circuit there is a limitation for the exci-
tation and the rhythmic changing in the transmission
of the signal is possible. The same takes place for the
actin filament bundles causing the generating of rhyth-
mic behaviors.

• Feedback/recurrent excitation. A presynaptic cell ex-
cites a postsynaptic neuron and the postsynaptic neu-
ron excites in turn the presynaptic cell. It is used for
learning and memory processes. In actin filaments, re-
current excitation accumulates the external stimuli as
a positive feedback to continue the same pattern of
behaviour.

• Feedforward inhibition. A presynaptic neuron excites
an inhibitory interneuron that inhibits the next neu-
ron. The actin filaments ignore some signals.

• Feedforward excitation. A presynaptic neuron excites
a postsynaptic neuron. In actin filaments, we have a
direct action in changing the actin filaments caused by
one external stimulus.

• Convergence/Divergence. A postsynaptic neuron re-

Figure 14: The FREDKIN gate for Amoeba proteus
with the three inputs A = 0, G = 1, E = 0 and the
three outputs C = 0 (the cell zone C does not move),
D = 1 (the cell zone D moves right), B = 0 (the cell
zone B does not move).

Figure 15: The FREDKIN gate for Amoeba proteus
with the three inputs A = 0, G = 0, E = 1 and the
three outputs C = 0 (the cell zone C does not move),
D = 0 (the cell zone D does not move), B = 1 (the
cell zone B moves forward).

ceives a convergent input from a number of different
presynaptic neurons and this postsynaptic neuron ma-
kes further divergent connections to other postsynaptic
neurons. Convergence allows a cell to receive a signal
from many cells and divergence allows a cell to trans-
mit the signal further. Secreting a cyst wall of the
amoeba is an example of this effect for the actin fila-
ment bundles in Amoeba proteus.

As we see, the actin filament networks are more complex
than neural networks and the basic neuronal properties are
connected to appropriate properties of actin filaments. Nev-
ertheless, the actin filament networks are not studied well
recently from the point of view of mathematics.

5. P-ADIC VALUED ARITHMETIC FUNC-
TIONS IN ACTIN FILAMENT
NETWORKS

Let us consider the discrete time t = 0, 1, 2, . . . assuming
that at each time step t the actin filaments of the amoeba
face not more than n attractants or repellents and react to
n stimuli. Then the amoeba motion can be examined as an
arithmetic function f2n(x) = y, where x, y ∈ {0, 1, . . . , 2n −
1}, e.g. in the Fredkin gate (Fig. 9 – 16) we deal with
the arithmetic function f23 , where the inputs and the out-
puts of Table 1 are rewritten as natural numbers: x0x1x2 =



Figure 16: The FREDKIN gate for Amoeba proteus
with the three inputs A = 0, G = 0, E = 0 and the
three outputs C = 0 (the cell zone C does not move),
D = 0 (the cell zone D does not move), B = 0 (the
cell zone B does not move).

∑2
i=0 xi ·2i. For example, 000 = 0 and 111 =

∑2
i=0 1·2i = 7.

Hence, if we have n signals at the time step t, then Amoeba
proteus calculates an arithmetic function f2n at this t. What
f2n is in fact, depends on the topology of n stimuli (their
intensity, localization, combination, etc.). For instance, the
combination of inputs AGE, where G is an attractant or its
absence and AE are barriers or their absence, gives us the
FREDKIN gate.

Thus, if the amoeba meets not more than n stimuli at
t = 0, 1, 2, . . . , then we obtain a sequence of functions:

f t=0
2n f t=1

2n f t=2
2n . . . , (1)

where at each t = i the arithmetic function f t=i
2n can be

different. Let us denote this sequence by f . It can be con-
sidered a p-adic valued function for p = 2n:

f(α) = β, (2)

where α = α0α1α2... and β = β0β1β2 . . . such that we have
f t=i
2n (αi) = βi for each i = 0, 1, 2, . . . The numbers α and β
are p-adic, because

α =

∞∑
i=0

αi · pi, β =

∞∑
i=0

βi · pi

and αi, βi ∈ {0, . . . , p−1} for each i = 0, 1, 2, . . . Hence, the
amoeboid long-time locomotion can be simulated by p-adic
valued arithmetic functions of the form of (2).
In the paper [19] there was proposed the p-adic valued

logic for simulating the locomotion of Physarum polycepha-
lum plasmodia. The same logic can be used for simulating
the Amoeba proteus locomotion as well as actin filament re-
actions of other cells. In this logic we can combine many
trajectories of the form of (1) by which different amoebas
have navigated.
Let us notice that arithmetic operations in p-adic val-

ued logic can be defined corecursively. Assume that [] is
an empty list and a:s is an infinite list of integers from
{0, . . . , p − 1} with a head a and a tail s. If the tail is a
constant, it means that this constant repeats for ever. For
example, a:0 means that after a there is an infinite list of
0. The list a:s can be defined as a:b:s’, the list a:b:s’

as a:b:c:s’’, etc. Meanwhile, b is the first element of the
tail s, c is the first element of the tail s’, etc. So, each tail

the number of output string at t
input strings

i0 p − 1 p − 1 p − 1 p − 1 p − 1 p − 1 . . .
i1 p − 2 p − 1 p − 2 p − 1 p − 2 p − 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
in 0 p − 1 0 p − 1 0 p − 1 . . .
in+1 p − 1 p − 2 p − 1 p − 2 p − 1 p − 2 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 2: The Cantor’s diagonalization showing that
the set of all outputs is uncountable in the p-adic uni-
verse. Let us take the diagonal (p− 1, p− 1, p− 3, . . . )
from the table and change it as follows: (0, 0, 1, . . . ).
This new p-adic integer does not occur in the enu-
meration.

is an infinite list in turn: s = b:s’, s’ = c:s’’, etc. Let
next(a:b:s)= b:s. Let us define the p-adic valued sum as
follows:

sum (a,c):[] = sum (a:[], c:[])

next (sum (a:b:s, c:d:s’)) = sum (b:s, d:s’)

The p-adic valued product:

prod (a,c):[] = prod (a:[], c:[])

next(prod (a:b:s, c:d:s’)) = sum (prod (a:0, d:s’),

prod(b:s, c:d:s’))

Now, let us assume that 0:0 is a minimal p-adic integer
(it is an infinite list of 0) and p-1:p-1 is a maximal p-adic
integer (it is an infinite list of p− 1). Then let us define the
p-adic valued conjunction corecursively:

min (a,c):[] = min (a:[], c:[])

next (min (a:b:s, c:d:s’)) = min (b:s, d:s’)

as well as p-adic valued disjunction:

max (a,c):[] = max (a:[], c:[])

next (max (a:b:s, c:d:s’)) = max (b:s, d:s’)

The negation is defined as follows:

not(a):[] = p-1- (a:[])

next (not(a:b:s)) = p-1:p-1 - (b:s)

In this way we obtain the ring of p-adic integers, Zp, where
p = 2n, with the p-adic valued conjunction, disjunction, and
negation. For t → ∞ the amoeba motility implements arith-
metic functions on Zp. The field of p-adic numbers, Qp, ex-
ists just for the prime p, but our p is equal to an even number
2n. So, we cannot obtain the field for p = 2n, only the ring.
Another important feature is that Zp contains infinite inte-
gers and the set Zp is uncountable (see Table 2). Due to
this fact Zp differs from the ring of integers, Z, a lot (the
cardinal number of Zp is larger, than the cardinal number of
Z, i.e. than ℵ0). In particular, some arithmetic functions on
Zp are undecidable by definition. The matter is that Zp is a
codata set (non-inductive set, i.e. corecursive or coinductive
data) with non-Archimedean properties. For Zp, there are
no algorithms for calculating all arithmetic functions by def-
inition, because their objects are defined coinductively, not
inductively.
Now, we can enumerate all the arithmetic functions which

are implementable in actin filament networks as follows. Let
us take a partition of all arithmetic functions on Zp for differ-
ent p in the way of Table 2. For each p there is the following
enumeration of all arithmetic functions for the fixed t. Each
function f t

2n ∈ F t
p=2n is a t-th permutation of the numbers



1-st n (n = 1) 2-nd n (n = 2) 3-rd n (n = 3)
1-st p (p = 2) 2-nd p (p = 4) 3-rd p (p = 8) . . .

t = 0 ft=0
21

∈ Ft=0
p=2 ft=0

22
∈ Ft=0

p=4 ft=0
23

∈ Ft=0
p=8 . . .

t = 1 ft=1
21

∈ Ft=1
p=2 ft=1

22
∈ Ft=1

p=4 ft=1
23

∈ Ft=1
p=8 . . .

t = 2 ft=2
21

∈ Ft=2
p=2 ft=2

22
∈ Ft=2

p=4 ft=2
23

∈ Ft=2
p=8 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

t → ∞ f∞
21

∈ F∞
p=2 f∞

22
∈ F∞

p=4 f∞
23

∈ F∞
p=8 . . .

Table 3: The partition of the set of all p-adic valued
arithmetic functions, F , into the subsets F t

p, where
t = 0, 1, 2, . . . , p = 2, 4, 8, 16, 32, . . .

(0, 1, . . . , 2n − 1) and can be distinguished by the following
code:


f t
2n� =

t∑
i=0

(

2n−2∑
j=0

cji · j!) · ((2n − 1)!)i,

where cji counts the number of positions in the i-th permu-
tation that are to the right of value j and that contain a
value less than j. For instance, for the FREDKIN gate we
have the permutation (0, 1, 2, 3, 4, 6, 5, 7). This means that

23−2∑
j=0

cj · j! = 0 ·0!+0 ·1!+0 ·2!+0 ·3!+0 ·4!+0 ·5!+1 ·6! =

= 720.

Let us assume that the FREDKIN gate was applied two
times and t = 1. As a consequence:

1∑
i=0

(

23−2∑
j=0

cji · j!) · ((23 − 1)!)i = 720 + 720 · 7! = 3629520.

For the function f∞
2n , its code is as follows:


f∞
2n� =

∞∑
t=0

(

2n−2∑
j=0

cjt · j!) · ((2n − 1)!)t. (3)

This code is (p− 1)!-adic.
Hence, each p-adic valued arithmetic function (2) coded by

(3) denotes just an infinite trajectory of one amoeba under
the conditions of not more than n inputs at each time step t.
These trajectories can be combined by arithmetic and logical
operations of the p-adic valued logic defined in [19]. In this
way we can simulate a colony of amoebas, their common
locomotion, their ongoing divisions and deaths.

6. UNDECIDABLE FUNCTIONS IN ACTIN
FILAMENT NETWORKS

Let us remind that a set A is called computable (decidable
or solvable) if there exists a Turing machine M that behaves
as follows:

M(x) =

{
1, if x ∈ A;
0, otherwise.

So, we assume that each F t
p is decidable. LetM1, M2, . . . , be

a standard list of Turing machines that includes all programs

for Fp for a fixed p and from the index i it is possible to
extract a code i = 
f t

2n� such that Mi decides that f
t
2n ∈ A.

It means, we suppose that there is a Turing machine M that
takes an input (i, x) and gives an output Mi(x).

The set K0 = {〈x, y〉 : Mx(y) halts} is called a halting set.
If the computation halts, then we know that 〈x, y〉 ∈ K0.

Theorem 1. The set K0 is not decidable.

Proof. We can appeal to diagonalization to prove this
statement. Let us assume that K0 is decidable and let M0

be a Turing machine that decides K0. We can define M0 as
follows:

M0(x) =

{
1, Mx halts;
0, otherwise.

Since M0 is a Turing machine, it has a code e, therefore
Me = M0. Now, we can define A = {i : Mi(i) �= 1}. This set
is undecidable for any i. Then the set K0 ⊇ {〈i, i〉 : Mi(i) �=
1} is undecidable, too.

Let us consider an example of A from theorem 1. Take the
following machine:

D(M) =

{
accept, M(f t

2n) does not accept M(
f t
2n�);

reject, otherwise.

Then let us define the diagonalization:

D(D) =

{
accept, D(M) does not accept D(
M�);
reject, otherwise.

The actin filament networks are too sensitive to the cel-
lular surroundings. We have assumed that the amoeboid
motility programmed by the actin filament networks is a
kind of the reversible logic gates, i.e. for n inputs it gives
just n outputs. However, the situation of the real amoeboid
reactions is much more difficult. In reality, it looks like as
follows. All the external signals have a scaling that is too dif-
ferent from the actin filament networks. The point is that
the networks have a much better zooming than any outer
stimulus. This fact allows them to react continuously to all
possible signals at any point of the shape. The amoeba is
an analog computer.
The latter feature can be formulated as the situation when

the number of outputs is larger, than the number of inputs.
The amoeboid reactions with the n inputs and the m > n
outputs can be considered a hybrid action [20]. The set of
hybrid actions can have an infinite set of labels [20]. So, it is
unsolvable by definition. The hybrid actions are undecidable
in the meaning of theorem 2. Let us define them:

d(f t
2n) =

⎧⎪⎪⎨
⎪⎪⎩

accept, the amoeba accepts g such that
g > f t

2n for any f t
2n

at t with the n inputs;
reject, otherwise.

Thus, we can implement undecidable arithmetic functions
in the actin filament networks, too.

7. DISCUSSION
The main problem of designing the actin filament net-

works consists in controlling the signal transmission through
the actin filaments. It is known that the actin filaments are
involved in signal processing, as well as in memory and learn-
ing mechanisms of neuronal cells. The point is that the actin



filaments support propagation of voltage pulses and, there-
fore, it is possible to explain the signal transmission through
the actin filaments by an interaction between voltage pulses,
where 1 (‘true’) is assigned to the presence of a voltage pulse
in a given location of the actin filament, and 0 (‘false’) is as-
signed to the pulse’s absence, so that Boolean logical gates
and a one-bit half-adder with interacting voltage pulses can
be constructed well [23].

Furthermore, each actin filament is a double chain of nodes,
which take state 0 (resting) or 1 (excited). These states are
updated in parallel in discrete time depending on states of
two closest neighbours in the node chain and two closest
neighbours in the complementary chain. In this way it is
possible to represent the actin filaments as an automaton of
finite states with transition rules that support traveling and
mobile localizations [3], [24], [25]. Also, we can assume that
states of nodes depends not only on the current states of
neighbouring node but also on their past states so that we
assess the effect of memory of past states on the dynamics
of acting automata [1].

As we see, there are possible different approaches to for-
malizing the signal transmission through the actin filaments.

8. CONCLUSIONS
The actin filament networks are responsible for cellular

intelligent reactions to all the external stimuli. So, if it is
possible to create an artificial protein broth which will be
a robot solving the complex of various tasks (learning, ori-
entation in space, decision making about transitions etc.),
then this broth will consist of actin filaments controlled by
us.
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