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ABSTRACT

This paper proposes a mean-centric crossover to improve the ef-
fectiveness of the directed mating utilizing useful infeasible solu-
tions in evolutionary constrained multi-objective continuous opti-
mization. The directed mating selects a feasible solution as the
first parent and a solution dominating the first parent in the objec-
tive space from the population involving infeasible solutions as the
second parent. Since infeasible solutions having better objective
values than feasible ones have useful variables, it helps to improve
the search performance. So far, the commonly used simulated bi-
nary crossover (SBX) have been employed to generate offspring
from two parents selected by the directed mating. However, it is
not clear that the commonly used SBX is appropriate also for par-
ents selected by the directed mating. When the Pareto front ex-
ists on the boundary between the feasible and the infeasible re-
gions in the variable space, a mean-centric crossover generating
offspring around intermediate area of two parents would be more
effective than SBX which is a parent-centric crossover generating
offspring around two parents. This work proposes the polynomial
mean-centric crossover (PMCX) and combines it with the directed
mating. The experimental results show that the proposed PMCX
achieves higher search performance than SBX on several test prob-
lems.
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1. INTRODUCTION

Real-world optimization problems often involve multiple con-
flicting objectives and become multi-objective optimization prob-
lems (MOPs). The goal of MOPs is to approximate the Pareto
front, the optimal tradeoff among objectives, with a set of solutions.
Evolutionary algorithms are suited to solve MOPs since they use a
solution set called the population and obtain multiple solutions to
approximate the Pareto front from the population in a single run.
Therefore, multi-objective evolutionary algorithms (MOEAs) have
been intensively studied [1, 2] and successfully applied to real-
world optimization problems so far [3]. Also, real-world optimiza-
tion problems often involve several constraint conditions and be-
come constrained MOPs (CMOPs). For solving CMOPs, we need
to optimize the multiple objectives of solutions while satisfying the
multiple constraints. To handle generated infeasible solutions not
satisfying constraints during the search, several approaches have
been studied and proposed so far [4, 5, 6, 7, 8]. To solve CMOPs,
since infeasible solutions may have useful variable information to
enhance the search, it is important to utilize them in the search
to improve the search performance. As a MOEA employing this
concept, this work focuses on TNSDM (Two-Stage Non-dominated
Sorting and Directed Mating) algorithm [9] using the solution rank-
ing based on both constraint violation values and objective values
and the mating to utilize infeasible solutions useful for the search.

General MOEAs just discard infeasible solutions from the pop-
ulation, and they are not able to become parents since they do not
satisfy constraint conditions. On the other hand, the directed mat-
ing in TNSDM selects a feasible solution as the primary parent
and a solution dominating the primary parent in the objective space
from the entire population involving infeasible solutions as the sec-
ondary parent. The previous work showed that the parent selec-
tion in the directed mating improves the search performance by
enhancing the convergence of solutions toward the Pareto front by
utilizing useful variable information of infeasible solutions on sev-
eral discrete and continuous CMOPs [9]. In our previous studies
about the directed mating [9, 10, 11], we have focused on ways to
select parents so far. Therefore, to generate offspring from the se-
lected parents, we just employ commonly used crossover and mu-
tation operators. Concretely, we have used the simulated binary
crossover (SBX) [12] for continuous CMOPs. However, it is not
clear that whether the commonly used SBX is useful also for par-
ents selected by the directed mating or not. In other words, little is
known about appropriate crossover operator for parents selected by
the directed mating.

This work focuses on continuous CMOPs and studies about crossover



operators appropriate for parents selected by the directed mating.
Since the conventional SBX is a parent-centric crossover, offspring
are distributed around two parents with high probability in the vari-
able space. For CMOPs having the Pareto front on the boundary be-
tween the feasible and the infeasible regions in the variable space,
a mean-centric crossover generating offspring around intermedi-
ate area of two parents in the variable space would enhance the
search for the Pareto front. This work proposes the polynomial
mean-centric crossover (PMCX) using two parents and the similar
probability density function to SBX and the polynomial mutation
[12], and verify its effectiveness of the directed matings on several
continuous test CMOPs.

2. EVOLUTIONARY CONSTRAINED MULTI-

OBJECTIVE OPTIMIZATION

2.1 Constrained Multi-objective Optimization

Problems
Constrained MOPs (CMOPs) are concerned with finding solu-
tions & minimizing m objective functions f; (¢ = 1,2,...,m)

subject to satisfy k constraint functions g; (j = 1,2, ..., k). CMOPs

are defined as

Minimize f;(x)
subjectto  gj(x) >0

(i=1,2,...,m)

G=1.2....k) W

Solutions satisfying all k£ constraints are said to be feasible, and
solutions not satisfying all k£ constraints are said to be infeasible.
The constraint violation vector v(x) is defined as

v (x) :{ |gj(§7$)|,

In MOPs, generally, there is not an ideal solution minimizing all m
objective functions due to the trade-off among objectives. There-
fore, the concept of Pareto dominance is introduced. Pareto domi-
nance between @ and y is defined as follows: If

Vi fi(x) < fi(y) A Fi: fi(e) < fily) (i=1,2,...,m) (3)

is satisfied, & dominates y on objective function values, which is
denoted by = > y in the following. Also, a feasible solution =
not dominated by any other feasible solution is said to be a non-
dominated solution. The set of non-dominated solutions in the
solution space is called Pareto optimal solutions (POS), and the
trade-off among objective functions represented by POS in the ob-
jective space is called Pareto front. The goal of solving MOPs with
MOEAs is to approximate the Pareto front with non-dominated so-
lutions obtained during the solution search.

2.2 Constraint-handling in MOEAs

When we solve CMOPs by using evolutionary algorithms, in-
feasible solutions are generated during the search. To handle in-
feasible solutions in evolutionary algorithms, the death penalty ap-
proach discarding all infeasible solutions from the population, the
repair approach transforming infeasible solutions into feasible ones
by using previous knowledge of each optimization problem, and
the penalty approach modifying objective function values based
on constraint violation values have been studied so far [4, 5, 6].
Also, there is the comprehensive solution ranking approach evolv-
ing infeasible solutions to feasible ones based on solutions ranking
individually considering the constraint violation values and the ob-
jective values [4, 5, 6]. From the last approach, this work focuses
on TNSDM algorithm using the two-stage non-dominated solution
ranking and the directed mating utilizing the useful variable infor-
mation of infeasible solutions [9].
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Figure 1: Conceptual figure of directed mating

3. TNSDM

TNSDM (Two-stage Non-dominated Sorting and Directed Mat-
ing) introduces Two-stage non-dominated sorting to rank solutions
based on constraint violation values and objective function values
and Directed mating to enhance convergence toward the Pareto
front. TNSDM is designed based on the framework of NSGA-II
[7]. The entire population R consists of the parent population P
and the offspring population Q,i.e. R =P U Q.

3.1 Two-Stage Non-dominated Sorting

Firstly, TNSDM classifies R into several fronts _7_—1f , }'g ,... by
using the two-stage non-dominated sorting based on constraint vi-
olation values v; (j = 1,2,...,k) and objective function values
fi (i = 1,2,...,m). As the result, upper front ]-'f with small
index 4 includes solutions having lower constraint violation values
and higher objective function values.

Next, the half of R is selected as a parent population P from up-
per fronts while simultaneously considering the crowding distance
(CD) [7].

3.2 Directed Mating

A conceptual figure of directed mating is shown in Fig. 1. In this
figure, solutions in the entire population R are distributed in the
objective space and classified into F{, 7, ..., F{. Solutions be-
longing to F; lf are selected as the parent population 7 since they are
upper half solutions in term of the front rank. To generate one off-
spring, first, a primary parent p is selected from the parent popu-
lation P by tournament selection. In the tournament, two solutions
are randomly chosen from P, and the solution belonging to the up-
per front (with a lower front index number) becomes parent pq. If
both of them belong to the same front, the solution having a larger
crowding distance (CD) [7] becomes parent p,. Next, we pick a
set of candidate solutions M (= {& € R | @ >¢ pa}) dominating
Pa in the objective space from the entire population R including
infeasible solutions. If the primary parent p, is feasible and the
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number of solutions in M is more than or equal to two (JM| > 2),
the directed mating is performed. Otherwise, both parent selected
from the parent population P and it is called conventional mating
in this paper.

In Fig. 1, four solutions dominating the primary parent p, are
candidate solutions M. Solutions belonging to ]-'g and F respec-
tively is randomly chosen from M and then compare their front
index numbers. As the result, the solution belonging to F, 4{ is se-
lected as a secondary parent p;,. Secondary parents p; selected by
directed mating are mainly infeasible solutions. However, since it
dominates the primary parents p, in the objective space, there is a
possibility that pp has valuable genetic information to enhance the
convergence of primary p, toward Pareto front.

3.3 Simulated Binary Crossover (SBX) [12]

In our previous studies of TNSDM, we have employed the sim-
ulated binary crossover (SBX) commonly used in MOEA commu-
nity to generate offspring from parents. SBX varies each variable
values of two parents and then copies each variable value from pri-
mary parent or secondary parent with the equal probability to their
offspring.

For each variable ¢, first we generate a random number u; €
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in the two dimensional variable space

[0, 1] and calculate 3; (: = 1,2, ...

1
3 (2u;) neF1 ifu; <0.5,
i = 1 .
ﬁ) met1  otherwise,

,mn) as

“4)

where, 7. is the user-defined distribution parameter. Next, for each
variable i, we respectively vary variable values ¢ and x%* of two
parents p,, and p, with 3; as

o = 05{(1 + Bal" + (1= B)al"},

/Pb (5)
zi" = 0.5{(1 = Bi)xf" + (1+ Bi)z" }.
Finally, we exchange each variable of «'?* and =”* with a proba-
bility of 0.5, and the exchanged variable vector become offspring.
In SBX, the amount of variation in each variable value is stochas-
tically determined with the distance between two parents in the
variable space and the distribution parameter 7.. Fig. 2 shows ex-
amples of probabilistic density of offspring’s variable value. Fig. 2
(a) shows the case of distant parents, and Fig.2 (b) shows the
case of close parents. Also, both figures involve three probabilistic
densities with different distribution parameters . = {5,15,25}.
From the example, we can see that offspring tends to be distributed
close to parents when two parents are close and a large distribution
parameter 7). is used.



Furthermore, to observe the effects of variable exchange mech-
anism in SBX, we conduct a simple experiment to show the distri-
bution of offspring generated by SBX in a two-dimensional vari-
able space. In the experiment, two parents x”* = (0.75,0.75)
and P = (0.25,0.25) are used and repeatedly generates 1,000
offspring by SBX with a distribution parameter . = 15. Fig.3
shows the result of the simple experiment. From the result, we can
see that offspring generated by SBX are distributed around parents
or area combining the parents’ variable values.

4. FOCUS ISSUE: APPROPRIATE
CROSSOVER FOR DIRECTED MATING

In our previous work about the directed mating, we have focused
on only selection methods of useful infeasible solutions [9, 10, 11].
After the selection of a pair of infeasible and feasible parents by
the directed mating for solving continuous CMOPs, we have used
SBX to generate offspring. Although SBX is a commonly used
crossover operator for crossing feasible parents especially in gen-
eral MOEAs, it might be not appropriate for feasible and infeasible
parents selected by the directed mating.

In CMOPs having the Pareto front lying on a boundary between
infeasible region and feasible one, it can be expected that the Pareto
optimal solutions exist between an infeasible solution and a feasible
one selected by the directed mating. However, since SBX is a par-
ent centric crossover, offspring tend to be distributed around each
parent with high probability, and we cannot expect to obtain off-
spring intermediate area of two parents by SBX. Especially for par-
ents selected by the directed mating, a mean-centric crossover gen-
erating offspring in intermediate area of two parents in the variable
space would be effective to search the Pareto optimal solutions. As
mean-centric crossovers, the unimodal normally distributed crossover
(UNDX) [14] and the simplex crossover (SPX) [15] seem to fit our
purpose in this work, however they use more than three parents to
generate one offspring. Since the directed mating select two solu-
tions as parents, we cannot easily combine them with the directed
mating. Therefore, we will study a novel mean-centric crossover
operator using two parents and generating offspring in intermediate
area of parents with high probability to improve the effectiveness of
the directed mating. In other words, we study a crossover operator
to promote the further utilization of the useful genetic information
of infeasible solutions.

5. PROPOSED METHOD: POLYNOMIAL
MEAN-CENTRIC CROSSOVER

5.1 Overview

To improve the effectiveness of the directed mating and the search
performance on continuous CMOPs, In this work, we propose a
crossover operator appropriate for parents selected by the directed
mating. The proposed crossover is a mean-centric crossover and
generates offspring in intermediate area of two parents in the vari-
able space with high probability. The probabilistic density function
is designed based on the polynomial mutation [16] and SBX. We
call the proposed crossover operator the polynomial mean-centric
crossover (PMCX).

5.2 Method

For each variable ¢, first we generate a random number u; €
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[0,1] and calculate 6; (¢ = 1,2,...,n) as

_J uymm 1

- 1
ol - {200 - )}
where, 7). is the user-defined distribution parameter. Next, for each

variable i, we calculate variable value z§ (1 = 1,2,...,n) of off-
spring o as

ifu; > 0.5,

otherwise,

(6)

o abe 4 al?

where, 27 and 2 are i-th variable values of two parents p, and
Do, respectively.

Fig. 4 shows examples of probabilistic density of offspring’s vari-
able value in cases with different distance between two parents
and 7.. Fig.4 (a) shows the case of distant parents, and Fig. 4
(b) shows the case of close parents. Also, both figures involve
three probabilistic densities with different distribution parameters
ne = {5,15,25}. From the example, we can see that offspring
is distributed close to the mean of variable values of two parents.
Also, we can see the probabilistic density is changed by the dis-
tance between two parents x;’¢ and x;”*. Offspring distribution
close to the mean of two parents is emphasized when the distance
between two parents is short and a large distribution parameter 7.
is used. Thus, although the probabilistic density of the proposed
PMCX is derived from the polynomial mutation [16], note that the
probabilistic density of the proposed PMCX is varied by the dis-
tance between two parents in the variable space even if the same
distribution parameter 7). is used while the probabilistic density of
the polynomial mutation is always constant.

5.3 Expected Effects

In the same manner as Fig. 3, we conduct a simple experiment
to show the distribution of offspring generated by PMCX in a two-
dimensional variable space. In the experiment, we use two par-
ents P+ = (0.75,0.75) and P* = (0.25,0.25) and repeatedly
generate 1,000 offspring by PMCX with a distribution parameter
n. = 15. Fig. 5 shows generated offspring and the parents in the
variable space. From the result, we can see that offspring generated
by PMCX are distributed around intermediate area between the two
parents. In CMOPs having the Pareto front lying on the boundary
between infeasible region and feasible one in the variable space,
it is expected that the directed mating with the proposed PMCX
enhances search the Pareto front effectively since the Pareto front
would exist between two feasible and infeasible parents.

+ (|27 —23*)), @)

6. EXPERIMENTAL SETUP

6.1 Algorithms

To verify effects of the proposed PMCX used with the directed
mating, this work compares search performances of two algorithms.
The one is TNSDM algorithm with SBX, and the other is TNSDM
algorithm with the proposed PMCX.

Note that the proposed PMCX is performed only for parents se-
lected by the directed mating in this work. In TNSDM, if candidate
solutions of secondary parent dominating each primary parent is
less than two, the conventional mating selecting both parents from
the parent population P is performed. In this case, SBX is per-
formed to generate offspring in both algorithms.

6.2 Benchmark Problems

In this work, we use continuous function optimization problems,
TNK [17], OSY [18] and mCDTLZ [11] as benchmark problems.
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The Pareto fronts of these problems lying on the boundary between
the feasible region and the infeasible one. mCDTLZ has scalability
to vary correlation complexity between the objective space and the
variable one by problem parameters.

TNK

TNK [17] is a minimization problem involving two objectives and
two constraints. The Pareto front is discontinuous. TNK is defined
as follows.

Minimize fi(x) = z1
f2(x) = 22
Subject to g1 (x) = 27 + 23 — 1 (8)

—0.1cos(16arctan £1) > 0
g2(x) = (1 — 0.5)% + (z2 — 0.5)> < 0.5.

A solution (variable vector) & consists of two variables (x1,22),
and both variables are real parameters in the range [0, 7].

osY

OSY [18] is a minimization problem involving two objectives and
six constraints. OSY is defined as follows.

Minimize fi(z) = —[25(z1 — 2)% + (22 — 2)?
+(zs — 1)* + (24 — 4)* + (25 — 1))

fa(®) = 21® + 2% + 23 + 4 + 25° + w6°
Subjectto g1 () = x1 + 22 —2 >0

g2(x) =6 —x1 —x2 >0

gs(@)=2—a24+21 >0

ga(x) =2 —x21 — 322 >0

gs(x) =4 — (3 —3)> —24>0

ge(x) = (x5 — 3)2 + 26 —4 >0

©

A solution (variable vector) x consists of six variables (z1, z2, .. .,
z6), and all the variables are real parameters. The value ranges of
variable values are 0 < x1,z2,26 < 10,1 < z3,25 < 5 and
0<zx4<6.
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mCDTLZ

mCDTLZ (modified constrained DTLZ) [11] is a minimization prob-
lems involving m objectives and m constraints. mCDTLZ is de-
fined as follows.

- i) a
Minimize f;(x) = @ Zl:L(ifl)%J xy
Subject to gi(x) = fi(®)? +43°", ., filz)? =1>0
(i=1,2,...,m)
(10

A solution (variable vector) & consists of n variables (z1, 2, . . .,
Zn), and all the variables are real parameters in the range [0, 1].
Each bound g; = 0 (¢« = 1,2,...,m) becomes a part of Pareto
front. In this problem, the numbers of objectives, constraints and
variables are user-defined parameters. However, the number of
constraints is equivalent to the number of objectives. Note that
mCDTLZ defined in the literature [11] is a case with o = 0.5.
The exponent is parameterized as the problem parameter « in this
work. Solution distribution bias toward the central area of the ob-
jective space is emphasized by decreasing «. Also, the number of
variables n and the problem parameter « influence the correlation
between the objective and the variable space.

6.3 Parameters

This work uses mCDTLZ problems with m = 2 objectives (con-
straints), n = {2, 4, 6, 8,10, 12} variables and the problem param-
eters a = {1.00,0.75,0.50}.

As genetic parameters, for both the proposed PMCX and SBX,
the crossover ratio is set to P. = 0.8, and the distribution parameter
is set to 1. = 15. After crossed variables, we also use the polyno-
mial mutation with the mutation rate P,,, = 0.2 and the distribution
parameter 7,, = 20. As the termination criterion of algorithms, the
total number of generations is set to 7" = {1000, 1000, 5000} for
TNK, OSY and mCDTLZ, respectively. The population size is set
to [R| = 200 (|P| = |Q| = 100). Experimental results are shown
by the average (mean) values of 100 runs.

6.4 Performance Metric

To evaluate the obtained non-dominated set of solutions, we use
Hypervolume (HV') [19]. HV measures m-dimensional volume
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covered by obtained non-dominated set and a reference point 7 in
the objective space. Higher H'V values denote better search perfor-
mance in term of both the convergence and the diversity of obtained
solutions toward the Pareto front. We use = (1.2, 1.2) for TNK,
r = (—30,80) for OSY and r» = (1.1, 1.1) for mCDTLZ.

7. RESULTS AND DISCUSSION

7.1 Results on TNK
First, we observe the results on TNK problem. Fig. 6 shows

transitions of H'V obtained by TNSDM with proposed PMCX and
TNSDM with SBX, and error bars in every 200 generations indi-
cate the 95% confidence intervals. From the results, we can see that
TNSDM with the proposed PMCX shows lower HV than one with
SBX from about 100 to 500 generations. However, TNSDM with
the proposed PMCX achieves higher V' than TNSDM with SBX
after about 500 generations. In TNK problem, since the objective
space and the variable space are matched, offspring generation in
intermediate area of two parents selected by the directed mating is
effective to enhance the search the Pareto optimal solutions, and it
contributes to the search performance improvement.
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7.2 Results on OSY

Next, Fig. 7 shows the transitions of H'V obtained by TNSDM
with proposed PMCX and TNSDM with SBX, and error bars in ev-
ery 200 generations indicate the 95% confidence interval. From the
reusults, we can see that TNSDM with proposed PMCX is inferior
to TNDM with SBX in the view point of mean H V" value, though
the difference is not statistically significant at the final generation.
Thus, the effectiveness of the proposed PMCX cannot be observed

on OSY problem.

7.3 Results on mCDTLZ

Finally, we observed results on mCDTLZ problems. Fig. 8 and
9 show the transitions of HV on mCDTLZ problems with n =
{2, 8} variables and the problem parameters & = {1.00,0.75,0.50}.

From the results on problems with n = 2 variables shown in
Fig. 8, we can see that both HV values obtained by the conven-
tional SBX and the proposed PMCX are converged in early gen-
erations, and the proposed PMCX achieves higher HV than the
conventional SBX. Also, we can see that the transitions of HV
is not effected by decreasing the problem parameter « since these
problems has n = 2 variables, the objective space and the variable
space are matched, and these problems are relatively easy to op-
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timize. Next, from the results on problems with n = 8 variables
shown in Fig. 9, we can see that the convergence of HV is slower
than the case with n = 2 variables shown in Fig. 8. The tendency
becomes significant especially on the proposed PMCX, and the de-
crease of «v also has influence for it. However, the proposed PMCX
achieves higher H'V' than the conventional SBX at the final gener-
ation on problems with o = {1.00,0.75} and obtains solutions to
finely approximate the Pareto front.

Next, Fig. 10 shows the results of HV at the final generation on
problems with n = {2,4,6,8,10,12} variables and the problem
parameters o« = {1.00,0.75,0.50}. The error bars indicate 95%
confidence intervals.

Fig. 10 (a) shows the results on problems with « = 1.00. In
the case of the problem with n = 2 variables, the objective space
and the variable space are matched such as TNK problem. The re-
lation between the objective space and the variable space becomes
complicated as the number of variables 7 is increased. From these
results, we can see that the proposed PMCX achieves the higher
HYV than the conventional SBX on problems with & = 1.00 and
any number of variables n. Also, we can see the tendency that
HYV achieved by the proposed PMCX is decreased with increas-
ing the number of variables n. On the other hand, we can see that
HYV achieved by the conventional SBX is increased with increas-
ing the number of variables n. The search difficulty is generally
increased with increasing the number of variables n, however, the
conventional SBX improves the search performance by increasing
the number of offspring distribution areas in the variable space with
the variable exchange mechanism employed in SBX as shown in
Fig. 3. Fig. 10 (b) and (c) show the results on problems with the
problem parameters v = {0.75,0.50}, respectively. In mCDTLZ
problems, solution distribution bias for the central area of the ob-
jective space is strengthen by decreasing the problem parameter cv.
In problems with small number of variables, we can see that the
proposed PMCX achieves higher HV than the conventional SBX.
However, HV obtained by the proposed PMCX is deteriorated as
decreasing .. As the results, HV of the proposed PMCX is lower
than the conventional SBX on several problems with small . This
is because the proposed mean-centric crossover faces difficulty to
obtain spread solutions to approximate a wide range of the Pareto
front when the solution distribution bias for the central area of the
objective space is strengthen as decreasing a.

These results reveal that the convergence of H V' obtained by the
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proposed PMCX is slower than the conventional SBX but the pro-
posed PMCX achieves higher HV than the conventional SBX at
the final generation especially on problems having a strong corre-
lation between the objective space and the variable space.

8. CONCLUSIONS

To improve the effectiveness of the directed mating and improve
the search performance of TNSDM on continuous CMOPs, in this
work, we proposed the crossover method appropriate for parents
selected by the directed mating. The proposed polynomial mean-
centric crossover (PMCX) generates offspring distributed in the in-
termediate area between two parents in the variable space with high
probability. The mean-centric crossover is able to effectively search
the Pareto optimal solutions locates between the feasible and the
infeasible regions compared with the conventional parent centric
SBX. Experimental results using TNK, OSY and mCDTLZ prob-
lems showed that the proposed PMCX achieved higher search per-
formance than conventional SBX on problems having strong corre-
lation between the objective space and the variable space.

Since the proposed PMCX changes variable values of two par-
ents drastically compared with the conventional SBX, useful vari-
able information of two parents selected by the directed mating
might be destroyed. To overcome this problem and improve the
search performance especially in early stage of optimization, as a
future work, we will develop the crossover operator involving both
parent mean-centric and parent-centric offspring generations.
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