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ABSTRACT

In this paper, we present an efficient algorithm for the clustering
of speech data. The algorithm based on regulating a similarity
measure to set the number of clusters and the cluster boundaries,
thus overcoming the shortcomings of conventional clustering
algorithms such as k-Means and Fuzzy C-Means, which require
a priori knowledge of the number of clusters, the use of
similarity measure that follows the data distribution, and are
sensitive to the choice of initial configuration, The algorithm
performance was tested in an HMM/MLP automatic speech
recognition system, with the results were compared with those
obtained when using a combination of Fuzzy C-Means and
genetic algorithms to do the clustering, showing better
performance.
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1 INTRODUCTION

Cluster analysis is a main task of exploratory data mining,
and a common technique for statistical data analysis. It is used
many  fields, including machine learning, pattern
recognition, image analysis, data compression, information
retrieval, bioinformatics, and computer graphics, and it plays an
important role in understanding various phenomena and
exploring the nature of obtained data.

The widely used clustering algorithms (k-means [1], fuzzy c-
means [2], and their variants) have many shortcomings, i.e., the
need to set the number of clusters a priori, the sensitivity to
initial conditions, and the definition of a suitable distance
measure for the data. So, one major difficulty of these
algorithms is how to set and initialize them, since the used
parameters are crucial for successful clustering outcome [3].

In this paper, we describe a clustering approach for speech
acoustic vectors that overcomes the previous limitations. Il is
based on the unsupervised algorithm proposed by Wong et al. in
[3], which will be referred to as UA. This algorithm is easier to
implement than other unsupervised alternatives such as the self-
organizing map (SOM) [4] or the adaptive resonance theory
(ART) network [5].

The algorithm is integrated in an automatic speech
recognition system using the J-RASTA-PLP (J-RelAtive
SpecTrAl-Perceptual Linear Prediction) method [6] for acoustic
parameters extraction, and using the hybrid HMM/MLP
(Hidden Markov Models /Multi-Layer Perceptron) model [7] for
learning the acoustic vectors quantified using the proposed
clustering algorithm.

The balance of this paper is organized as follows: in Section
2, we describe the principle of the algorithm proposed for
speech data clustering. Sections 3 presents the validation of the
clustering algorithm, we will show that the unsupervised
clustering of the speech data prior to decoding by a conventional
HMM/MLP model leads to improved system performance in

in

comparison to no clustering or to using clustering by a Fuzzy C-
Means (FCM) algorithm, which the result used as initial
population of genetic algorithm (GA). Finally, section 4
concludes this work.



2 UNSUPERVISED CLUSTERING
ALGORITHM

Fig. 1, shows the block diagram of a typical automatic

speech recognition system. We present the unsupervised
algorithm for clustering the preprocessed input data next.
As mentioned, we used the unsupervised clustering algorithm of
Wong et al. [3] to enhance the discriminative power of the
speech feature vectors, and to reduce the input space size for
faster processing. The algorithm requires no initial setting of the
number of clusters or cluster centers, and no distance measure
tuned to the data distribution (spherical, ellipsoidal, etc.).

Given a set of feature vectors to cluster, UA starts with each
feature vector taken as cluster center and replaces it by the
weighted average of all similar vectors according to a starting
distance threshold. Then the threshold is increased and the
process is repeated until a single cluster is formed, at which
point the results of the different iterations are compared in terms
of a performance index to select the one offering the best cluster
distribution. A Gaussian radial function measures vector
similarity and its variance o sets the range of data that may
contribute to a cluster; as ¢ increases, the number of clusters
decreases. Since each value of 6 may lead to different results for
the number of clusters and the cluster centers, a performance
index is used to evaluate the obtained partitions.

Frame processing and PLP extraction
J-RASTA PLP

l

Feature vector clustering and context screen creation
Unsupervised algorithm

l

Decoding
HMM/MLP

!

Recognition

Figure 1: Block diagram of our ASR system showing the
different stages and the main methods to implement them.

The performance index PI at the end of the ™ iteration is
defined as:
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where d specifies a cluster, % is the number of created clusters,
ny is the number of feature vectors aggregated in the d™ cluster,
N is the size of the dataset and S, is a metric that evaluates
cluster tightness, defined as:
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where 71, and 77; denote the centers of the d" and ;" clusters
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and X; is the /™ vector in cluster . A close analysis of equation
(2) reveals that a large value of S, reflects a dense and well-
isolated cluster. Thus, the larger PI* is, the better the / clusters
defined during the 4™ iteration are. The final number of clusters
and cluster centers, and the ensuing classification process are
determined by the minimum width o that has the best
performance index. It should be emphasized again that the
algorithm operates without the need to set the number of
clusters a priori, or to set a distance measure that follows the
data distribution.

After completion of the UA learning stage, the number of
clusters that are determined sets the size of a binary vector
where each bit position stands for a cluster. Then, each feature
vector from a preprocessed acoustic frame will result in a ‘1’ set
at the bit position of the cluster it belongs to, and ‘0’ otherwise.

3 VALIDATION EXPERIMENTS AND
RESULTS

The clustering efficiency of the unsupervised algorithm was
tested against a genetic algorithms alternative in a regular
HMM/MLP model environment. The experiments were
executed on a PC station equipped with an Intel core 17 CPU
running at 4.0 GHz, 3.2 GB of RAM, and a SoundBlaster 64
AWE sound card, all running under Microsoft Windows 7, 64
bits edition, with service Pack 3. The MATLAB (R2014a)
environment was used for coding the experiments.

We begin by describing the HMM/MLP model, followed by
the speech data that was used and the parameters of the J-
RASTA PLP preprocessing. Then, the various experiments will
be covered.

3.1 Reference HMM/MLP model for testing

We used a ten-state HMM with a discrete observation
symbol density. The number of states was determined
empirically. A MLP with one hidden layer and 2880/1728 input
neurons (numbers explained in the next sub-section), 170/131
hidden neurons (equ. 6 below) and ten output neurons —one for
each of the ten states of the HMM— was trained by stochastic
gradient descent, using the conditional entropy as error criterion.
A sigmoid function was applied to the hidden layer units, and
softmax (exponential of the unit’s weighted sum normalized by
the sum of exponentials for the entire layer) was used as the
output nonlinearity. The number of hidden neurons n, was

chosen with the following heuristic:
1
np = (n; *n,)?

3)

where n; and n, stand for the numbers of input neurons and
output neurons, respectively.



3.2 Test data

The test corpus, referred as (AD), contained continuous
speech in Arabic and was composed of 4000 sentences
pronounced by 50 speakers, using the following vocabulary:

- Dbl: The ten digits 0, 1,2, 3,4, 5, 6,7, 8 and 9.
- Db2: The last name, first name, city of birth and city of
residence of each speaker.

- Db3: 13 control words (e.g.; View/new, save/save as/ save
all).

The speech recordings were sampled by microphone at 11
kHz. The training and test data were defined as follows: two
thirds of the sentences for training and the rest for testing. The
training sentences were pronounced by 40 speakers and the test
sentences by 10 speakers (5 men and 5 women).

3.3 Preprocessing and features extraction with
J-RASTA PLP

Each processed frame represented 25 ms of speech, with
12.5 ms frame overlap. After pre-emphasis (factor 0.95) and
application of a Hamming window, the twelve cepstral
coefficients plus energy generated by J-RASTA PLP were
normalized by the corresponding standard deviations measured
on the training frames, and the frame’s 26-dimensional feature
vector was built with the obtained cepstral parameters, their first
derivatives, and the first and second derivatives of the frame’s
energy.

J-RASTA was configured to incorporate high-pass filtering
and slight spectral subtraction. A constant J of le-6 was used for
training. Multiple-regression J mapping was used during testing.

Nine frames of contextual information were used as input to
the MLPs after clustering.

3.4 UA clustering evaluation

We evaluated the merit of using UA to cluster the feature
vectors by comparing it to a generic algorithm.  The
HMM/MLP model was used to decode both. The choice of GA
as reference was motivated by the fact that, in a previous work
to AD recognition, we found that clustering by GA yielded
better results than other popular algorithms such as k-means and
FCM [7.8].

3.4.1 Input clustering by GA. The result of FCM clustering
was used as initial population. We varied the number of
chromosomes from two to fifty and noticed that the correct
recognition rate increased progressively before stabilizing for
eight chromosomes. Therefore, a population of eight
chromosomes was used. The acoustic feature vectors were
quantized into four independent codebooks as done by [9]
Erreur ! Source du renvoi introuvable. and others. These
consisted of 128 clusters for the J-RASTA PLP vectors, 128
clusters for the first time derivative of the cepstral vectors, 32
clusters for the first time derivative of energy and 32 clusters for
the second time derivative of energy (all values selected
empirically). There was one set of codebooks for each of the 9
frames of quantized acoustic vectors used as input to the MLPs,
leading to a 2880'-component, real valued input vector. The

12880 = (128+128+32+32)%9
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component values were the membership values of the acoustic
vectors to the codebook classes as determined by the FCM
algorithm, for example:

Chromosome 1 | Cluster; | Cluster, Cluster,ggo
0.200 0.008 0.064

Chromosome § | Cluster; | Cluster, Cluster,ggo
0.075 0.239 0.150

The following merit function was used to assess the fitness
of a chromosome:

w=> > pd(x.g)

I=1 x;€G

“4)

where p; is the weight of the i™ acoustic vector and g, the center
of gravity of cluster C,, / referring to one of the M clusters. We
have:

1
“ ‘Cl‘ Z"'Eq i )

We followed [10] for parameter setting and chose a value >
0.5 for the probability of crossover and a value inversely
proportional to the size of the population for the probability of
mutation. Since the fitness function reached a minimum
between 90 and 100 iterations, we used the latter value (Fig. 2)
as stop criterion and the chromosome with the lowest fitness
value was then input to the decoding stage.

We report in Table 1 the values of the posterior probability
P(O|%), where O = O,0,...0r is the observation sequence and A
the HMM model, obtained for different values of crossover
probability P. and a fixed value for mutation probability P,,.
The GA parameters were as follows:chromosome size = 2880
(the number of clusters), stopping criterion = 100 iterations, P,
=0.01 and P, between 0.5 and 0.9. From Table 1, we see that
the maximum value of the posterior probability was obtained for
P.=0.9.
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Figure 2: Convergence of the classification process.

3.4.2 Input clustering by UA. the best
parameter values, arrived at empirically, were 64 clusters for the
J-RASTA PLP vectors, 64 clusters for the first time derivative
of cepstral vectors, 32 clusters for the first time derivative of
energy and 32 clusters for the second time derivative of energy.

In this case,



With 9 frames of quantized acoustic vector as before, clustered
input to the decoding stage had 1728 components?.

To illustrate UA’s operation, Fig. 3, plots the performance
index PI with respect to o=kdo for three values of the
increment, when clustering three digit sounds from AD®.

Table 1: GA parameters for HMM training.

Number of Number of P, P, PO/ )
clusters Iterations
0.5 0.3630
0.6 0.5838
2880 100 0.01 0.7 0.1423
0.8 0.9134
0.9 0.9422

As the curve shows, using the second and third choices for do
leads to fewer clusters for the same performance index. The
curves indicate that an optimal partition of the data was obtained
with three clusters.

Fig. 4, illustrates the progression of the cluster centers (white
triangles) at each iteration when do =0.1241. Fig. 5, shows the
necessity of gradually increasing the value of ¢ for the algorithm
to work. In Fig. 5a, the acoustic vectors are classified correctly
when using an incremental value of ¢ for the clustering process.
On the other hand, in Fig. 5b, several data points are
misclassified when using the approach with a fixed width.

Fig. 6, shows the result of clustering the same dataset by GA,
with an initial partition of three clusters by FCM and the use of
a Euclidean distance. As one can see, many patterns were
clustered improperly.

The previous figures clearly show the effectiveness of UA to
cluster complex speech patterns such as those of AD. The next
subsection shows that UA clustering also yields better ASR
accuracy in comparison to using GA clustering, regardless of
the database considered.

3.4.3 UA versus GA clustering results. Table 2 reports the
average recognition accuracy obtained by the basic HMM/MLP
model when the feature vectors are clustered by UA or by GA,
and when there are not clustered (WC). The clustering by UA
consistently offered better recognition performance, leading to
its adoption in subsequent experiments.

Table 2: Average recognition accuracy (%) by the basic
HMM/MLP model with no clustering (WC), and with GA
and UA clustering of the acoustic feature vectors.

wC GA UA
Train 78.5 85.1 86.0
Test 773 83.1 834

2 1728 = (64+64+32+32)*9. Notice that 64 clusters led to the best
results in our experiments, in comparison to the 128 cluster and 2880
components when using the GA clustering approach.

* The data was from the digits sub-corpus (Db1) and consisted of 579
acoustic vectors belonging to 9 sounds: 3 occurrences of digit "One", 3
occurrences of digit "Two", 3 occurrences of digit "Three" (the vectors
were selected randomly).
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Figure 3: Plot of the performance index PI* at the &™
Iteration with respect to width ¢ =kdo for: a) do =0.1544, b)
do =0.1241, and c¢) do =0.1066 (The number next to each
data point indicates the number of clusters created).

Figure 4: Estimated cluster centers at the end of each
iteration for do =0.1241: a) k=1, b) k=2, c¢) k=3, and d)
convergence k = 12.

3.5 Discussion

Using a more basic perspective, this work addressed two
questions related to developing more efficient HMM/MLP
systems:

How to improve reducing the number of inputs to the MLP
component?

- How to improve the performance of the HMM/MLP model
to make it closer to state-of-the-art HMM models— especially
for large speech corpora?



Our results show that clustering the acoustic data by UA is a
better choice than using FCM alternative clustering technique.
Unfortunately, even with an optimization of the FCM results
with GA, its performance is always lower than that of the UA.
However, in the validation section, it was shown that the
improvement in performance brought by the UA over the
combined FCM/GA clustering approach is not as large, only
0.3% for test corpora and 0.9% for train data. Better yet, the
results shown in Table 2 point to a new direction to improve the
recognition accuracy, where UA may provide better results.

In this work, we only applied the GA with FCM clustering to
a HMM/MLP model, but we intend to apply the optimization
process of GA to the UA clustering in the near future. A finding
that a genetic optimization of UA clustering results yields better
performance than a regular UA. This allows training the GA
with a population of empirically generated UA chromosomes
and not randomly initialized.

(a) (b)

Figure 5: Classification Results by: (a) incremental o,
(b) 6=0.5.

o 2 4 & & 10

Figure 6: Classification results by AG/FCM algorithm.

4 CONCLUSION

This paper proposes an unsupervised clustering algorithm for
a hybrid HMM/MLP speech recognition system. The features of
the proposed algorithm are: (1) It relies an unsupervised
algorithm to cluster a data set based on the underlying data
structure; (2) It can efficiently process the acoustic vectors with
clusters of various sizes, shapes and orientations; (3) It does not
need to determine a suitable similarity measure according to the
shapes of the data; (4) It does not require a predetermination of
the number of clusters; and (5) It does not need to determine the
appropriate cluster centers in the initial step like conventional
clustering algorithms. The validation experiment with an

HMM/MLP model for ASR, and a comparison with an
alternative clustering approach that uses a hybrid FCM/GA
showed improved recognition accuracy with the proposed
clustering technique for the speech data.
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