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ABSTRACT
We present here a simple cellular model of random motion
and social interaction of young honeybees making swarm
intelligent decisions in complex dynamic temperature fields.
We model also behaviors of stationary robots that affect
those bees. Our study looks for a first as-simple-as-possible
approach towards modeling such a bio-hybrid system. Our
model predicts observed collective behaviors qualitatively
very well by modeling a correlated random walk and a sim-
ple social interaction mechanism. We found that even a
very simple 2-dimensional cellular model with a limited state
space of 16 bit per cell suffices. Ultimately, the simplicity of
the model allows fast and distributed computation. This will
allow us to search for interesting swarm intelligent robotic
algorithms for creating novel bio-hybrid systems composed
by real animals and autonomous rule-driven cellular robots
by using stochastic optimization techniques.

CCS Concepts
•General and reference → General conference pro-
ceedings; •Computing methodologies → Multi-agent
systems; Artificial life; Mobile agents; Agent / discrete
models; Cooperation and coordination;
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1. INTRODUCTION
Temperature plays a crucial role in the collective physi-

ology of a honeybee colony. It allows rapid brood growth
and is thus a fundamental aspect for the population dynam-
ics of a honeybee colony [17, 3]. It was found that young
honeybees show a complex behavior in heterogeneous tem-
perature fields similar to the thermal conditions found in the
brood nest area of honeybee colonies. For example, a group
of young honeybees can locate itself at the optimal temper-
ature spot among several options containing also local op-
tima [25]. This is achieved without individually visiting and
comparing all these places, thus it is achieved collectively
as a result of swarm intelligence [5], [14]. Interestingly, it
was found that these collective behaviors can be produced
by a very simple set of individual rules, known as the agent-
based BEECLUST algorithm [22], as it is depicted in Figure
1a. These rules are based on temperature-mediated resting
behaviors that bees exhibit after bee-to-bee collisions. It
allows the group (the ‘swarm’) to pick the optimum from
multiple choices without explicit communication, without
global self-localization of agents and without using explicit
memory inside of the agents [15]. This algorithm has been
implemented in robot swarms [23, 12] and agent-based mod-
els [4, 13]. Its main advantage is that the agents themselves
(e.g., through their placement in the environment) act as
collective memory and communicate indirectly via modulat-
ing collision probabilities at various places in the habitat.

Research question: Here we aim to maximally simplify
the BEECLUST model. We look for a cellular model [10], in-
spired by cellular automata [27], requiring a minimum num-
ber of bits (states) per cell, to achieve collective behaviors
that resemble those observed in real honeybees. To validate
such a rule set we compare it to observed honeybee behav-
iors in several different sets of environmental conditions.

This is an important endeavor in the project ASSISIbf
[2], which associates an array of locally interacting spatially
fixed ‘robots’ to allow interaction with the bees (Figure 1b).
In ASSISIbf, these non-moving robots are called CASUs
(Combined Actuator and Sensor Units). Although they are
immobile they exhibit autonomous agency, e.g. by sensing,
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Figure 2: Experimental setups with bees and their repre-
sentation in the cellular model. (a) Circular arena with
two passive heat spots on each side produced by ceramic
heat lamps. (b) Representation of this setting in our model.
(c) Circular arena containing a 3x3 CASU robot array. (d)
Representation of this array setting in our cellular model.
(b and d) Black colored patches: Walls/obstacles. Grey
patches: Empty fields, shades of grey indicate local temper-
ature: The darker the color is, the colder it is there. Black
boxes with white ‘X’: running bees. Grey boxes with white
‘X’: resting bees. (d) Each CASU robot is represented as an
obstacle surrounded by a local heat spot (see also Figure 8).

by computing and by actuating. The robots sense nearby
bees with infrared sensors and they perform estimates of lo-
cal bee numbers or densities [21]. Besides sharing these data
with local neighbors they can also act on bees by locally pro-
ducing temperature or by cooling down. This is known to
affect the behaviors of bees, as it is already expressed in the
BEECLUST algorithm (Figure 1a). In fact, an array of CA-
SUs can act as a heat-modulating cellular automaton that
interacts with an embedded swarm of real bees (Figure 1bc).

1.1 The model
Our model is a 2-dimensional cellular model. Its basic

structure is a lattice or array C consisting of Nx by Ny

cells that represent possible locations of honeybees in an
experimental arena. We assume that each cell can hold one
bee, thus each cell represents an area of approx. 1.0 cm2. We
assume that each bee can move by one cell length every time
step. Assuming the speed of an average bee at 1.0 cm/sec,
this shows that our model uses a time resolution of Δt = 1.0
sec. One run in our model was lasting for 1800 or 5400 time
steps, what corresponds to 30 or 90 min. For our model
validation we emulated the following experiments conducted
with real bees: Observations of aggregation behaviors in flat
temperature fields of various temperatures and aggregation
at a global optimum with and without local optima (Figure
2ab). We varied population sizes of bees in most of those
experiments. Later, we also emulated a 3x3 CASU array in
a circular arena (Figure 2cd). The configuration of each cell
i at each time step t is expressed by the following cell states:

• wall(i) ∈ {False, True} indicates whether or not this

cell represents a wall or an obstacle.
• bee(t, i) ∈ {False, True} indicates whether or not this

cell holds a bee.
• orientation(t, i) ∈ {N,NW,W,SW,S, SE,E,NE} in-

dicates the orientation of a bee at cell i.
• spot(i) ∈ {False, True} indicates whether or not this

cell is a designated heat spot area.
• τwait(t, i) ∈ {0, 1, . . . , 30, 31} indicates the waiting time

of a bee according to the locally sensed temperature.
• temperature(t, i) ∈ {28.0, 28.5, . . . , 37.5, 38.0} indicates

the local temperature at cell i at time step t. Thus we
assume a very coarse temperature sensing of bees that
is able to discriminate temperatures in Δtemperature =
0.5◦C steps. This is a conservative assumption, several
studies indicated the ability to discriminate differences
down to Δtemperature = 0.25◦C, e.g., see [7].

In total the model requires 5 bit to encode the tempera-
ture information, 5 bit to encode the waiting time informa-
tion and 6 bit to encode the local presences and orientation
of bees, walls and heat spots. This yields a total amount of
information of 16 bit per cell as cell state space. However, in
most of our experiments we use only two or three different
temperatures. This further reduces the required amount of
info per cell to 13 bit per cell. Two of these binary states do
not change over time (wall(i) and spot(i)), further decreas-
ing the required state space to 11 bits per cell for dynamic
data. Several pieces of info (τwait(t, i), temperature(t, i) and
orientation(t, i)) are not evaluated for every cell but only for
those cells that actually hold bees, thus the relevant total
state space further reduces to the following equation 1

total state space(t) = 8bit ·Nx ·Ny + 8bit ·Nbees. (1)

1.2 The initialization of the cellular automa-
ton model

• Set for each cell i in C: bee(0, i) = False, wall(i) =
False, temperature(0, i) = AmbientTemp, τwait(t, i) =
0, spot(i) = False.

• Then set for all cells j which fulfill the boundary con-
ditions of our experiment: wall(j) = True.

• Then set for all cells k which represent heat spot areas:
spot(k) = True.

• Then select those cells m that belong to each temper-
ature spot (spot(i) == True) and set there:
temperature(0,m) = CorrespondingSpotTemp.

• Select randomly (uniform probability distribution) a
set of Nbees cells (l) with (bee(0, l) == False) and
(wall(l) == False) and (spot(l) == False) and set
there: bee(0, l) = True. The sampling is done without
replacement, the number of chosen cells Nbees corre-
sponds to the number of bees used in experiments with
real bees.

1.3 The honeybee behavior model
Figure 3 shows the flow of logic in our cellular model in a

python-like pseudo code. The basic idea is that we select all
cells (line (l.) 01 ) and check whether or not they contain a
bee (l. 02 ). If a cell contains a bee we check if the bee is
in resting state (τwait(t, i) > 0, l. 03 ). In this case we will
just reduce the waiting counter τwait(t, i) by a value of 1 (l.
04 ). Otherwise, if τwait(t, i) is already zero, we will try to
move the bee to a new cell(l. 05 ).
Next, we determine, through drawing a random (uniform)



Figure 1: (a) The agent-based BEECLUST algorithm that is to be represented by a set of cellular model rules. (b) Array of
CASU robots with bees moving between them. (c) A group of bees aggregating around one CASU robot because it warms
up the local environment above the ambient room temperature.

number between 0.0 and 1.0 and a probability threshold α,
whether the bee will continue to move in its current direction
or pick a new direction randomly (l. 06 - 09 ). In the first
case we select the cell to which orientation(t, i) points from
the 8 neighbor cells as new TARGET (l. 10 ). In the second
case, we select a random cell from the 8 neighboring cells as
TARGET and adjust the value of orientation(t, i) accord-
ingly (l. 08 ). The higher the value of α, the more likely the
bee will choose always a newly randomized direction. Thus,
with α = 1.0 the bee will perform an uncorrelated random
walk (like brownian motion) and with α = 0.0 the bee will
always move in a straight line until it bumps into a wall (l.
12 - 15 ) or into another bee(l. 16 ).

Then we randomly select σ other cells from the remaining
7 neighborhood cells (l. 11 ). At these cells and also at the
TARGET cell we check whether or not another bee is there
(l. 16 ), assuming that a bee can detect the local presence of
other bees not only when directly bumping into it head-on,
but also based on other random body contacts, e.g. at its
antennae or feet.

If one of the selected neighborhood cells (including the
cell TARGET ) contains another bee, the focal bee switches
to the resting (waiting) mode. The duration of the resting
is dependent on the local temperature (temperature(t, i))
based on a stimulus-response function: We set τwait(t, i) =
f(temperature(t, i)) (l. 17 ). From empirical data we know
that bees do not wait after meeting another bee in cold areas
and that they wait longer with increasing temperatures up
to 36◦C - 38◦C . Thus we modeled the f() according to
equation 2 as

f(T ∗) =

⎧⎪⎨
⎪⎩

τmin
wait if T ∗ < T ∗

min

τmax
wait if T ∗ > T ∗

max

τmin
wait + T ∗ · (τmax

wait−τmin
wait)

(T∗
max−T∗

min)
else

(2)

which floors the waiting time at τmin below T ∗
min, ceils

it at τmax
wait above T ∗

max and scales it linearly increasing from
τmin
wait to τmax

wait between T ∗
min and T ∗

max according to the local
temperature T ∗. This partially linearized stimulus-response
function roughly mimics the sigmoid function described in
([15], [18]).
Finally, in case our bee did not detect another bee, it will

Figure 3: Pseudo-code of our model’s core control logic.

move to the selected TARGET cell by setting bee(t, i) =
False (l. 19 ) and bee(t+ 1, TARGET ) = True (l. 20 ) and
orientation(t+ 1, TARGET ) = orientation(t, i) (l. 21 ).

1.4 Experimental procedures
In order to validate our model against empirical data, we

simulated 5 types of experiments that were conducted with
real bees in a circular arena:
In those experiments we used ceramic heat lamps to heat

selected areas of an arena to desired temperatures. We kept
those temperatures stable with PID controllers and floor
sensors [26]. We parameterized our model accordingly to
those conditions and ran a set of experiments to gather cor-
responding model predictions.
Then we perform a model analysis especially focusing on

our free parameters σ (social parameter) and α (correlated-
ness of the random-walk). This analysis checks for model
sensitivity to our free parameters and informs us about the
effect of those parameters on predicted collective behaviors.
Finally, we perform one simulation experiment in which

we simulate an array of 9 CASU robots organized in a 3x3
array that perform a pre-programmed change of their tem-
perature production profile and predict the corresponding



behaviors of a group of bees in such a CASU robot array.
In all our simulations we used a specific set of default

parameter values (see Table 1). In most runs we used only
those parameter values. In specific parameter sweeps we
varied one of those parameters systematically.

2. EXPERIMENTS AND THEIR RESULTS

2.1 Model validation
For model validation against empirical data we conducted

the following sets of simulation runs with our model:
Experiment 1: Two group sizes (Nbees = 24 and Nbees

= 128) run in a homogeneous temperature field of 29 ◦C
(N = 30 repetitions/group size, runtime = 1800 steps).
Our cellular model predicts the emergence of almost no clus-
ters for 24 bees and the emergence of a few small clusters
for 128 bees in this environment after 1800 time steps, corre-
sponding to 30 min with real bees. All these clusters emerge
(randomly) distributed across the arena.

See Figure 4a-d for a comparison of typical real bee results
and typical model results. Concerning the ratio of lonely
bees to bees in small (2-3 bees per cluster) and in large
clusters (4+ bees per cluster) our model predicts a similar
qualitative distribution of cluster sizes compared to the ob-
servations with real bees in the same environment (Figure
5a, left two columns).

Experiment 2: Two group sizes (Nbees = 24 andNbees =
128) run in a homogeneous temperature field of 36 ◦C (N =
30 repetitions/group size, runtime = 1800 steps). Model
predictions show a high degree of similarity compared to
empirical data, see Figure 4e-h: With 24 bees only few large
clusters emerge while with 128 bees several large clusters
emerge at random places across the arena. The numerical
comparison of the ratio of lonely bees to bees in small and
in large clusters shows a high agreement to the empirical
observed data with real bees (Figure 5a, right two columns).

Experiment 3: A group of bees (Nbees = 64) runs in
a temperature gradient field produced by one heat spot of
36◦C on the left side of the arena with an ambient temper-
ature (pessimum) of 31◦C (N = 30 repetitions, runtime =
5400 steps). Our model predicts the emergence of large clus-
ters preferentially in the warm left zone in this environmen-
tal configuration (see Figure 5b), what is in accordance to
empirically observed data.

Experiment 4: Five group sizes of bees (Nbees ∈ 1, 6, 24,
64, 128) run in a complex temperature field of two overlap-
ping gradients produced by two differently warm heat spots
(36◦C left spot, 31◦C pessimum, 32◦C right spot; N = 30
repetitions/group size, runtime = 5400 steps). Figure 6
shows a strong accordance of our simulation to observations
of real bees: In both cases the agents prefer to aggregate
on the left side (global optimum) and there is also slight
aggregation on the right side (local optimum). With in-
creasing numbers of bees, the aggregation of the bees first
grows stronger on the left side, until the group size of Nbees

= 128 bees is reached. At this group size the local optimum
on the right side starts to attract bees to the cost of the left
side aggregation.

Figure 5c shows that the time budget of single bees in all
3 zones closely resembles the Uniform random Distribution
Model (UDM). Contrary, in runs with groups of bees the
fraction of bees across those 3 zones strongly deviates from
this pure random-choice model prediction. This suggests

that the observed distributions of bees in groups are non-
random, agreeing with findings in real bees [25].

2.2 Analysis
A preliminary version of our model contained only an un-

correlated random walk (like brownian motion) where agents
didn’t have any directionality and also interacted only if a
bee selected an already occupied cell as a new movement
target. This preliminary model failed to be validated as it
showed qualitatively similar behavior compared to bees but
all dynamics of collective choices were happening very slow
(more than one order of magnitude slower than in the real
honeybee system). Thus we introduced a correlated walk
(controlled by the parameter α) and a stronger local social
interaction (controlled by the parameter σ) to our model.
The original model is still a special case of our final model

presented here, just with α = 1.0 and σ = 0. In order to
analyze the importance and effects of these two free param-
eters we conducted the following parameter sweeps:
Experiment 5: Systematic parameter sweep of the social

parameter σ from 0 to 7 with Nbees ∈ {6, 24, 64, 128} bees in
the complex temperature field (see experiment 4). N = 100
repetitions/step/group size, runtime = 5400 steps.
Figure 7a shows that the parameter σ has a huge effect on

aggregation behavior and collective choice: The higher the
number of bees is, the sharper this effect appears: values
of 3 <= σ <= 4 yield the highest aggregation success after
5400 time steps, while with higher bee populations a value
of σ = 2 is more efficient. With higher population densities
it becomes more likely to trigger a bee-to-bee contact in our
model, thus a lower σ value suffices.
Experiment 6: Systematic parameter sweep of the cor-

relatedness of the random-walk (α ∈ {0.00, 0.05, . . . , 1.00}
with Nbees = 64 simulated bees in complex temperature
fields (see experiment 4). N = 100 repetitions/step, runtime
= 5400 steps.
Figure 7b shows that also the parameter α has a signif-

icant effect on collective decision making: A value of α =
0.1, which is making an agent change its direction every 10
time steps on average, yields the sharpest collective decision
making. This value allows the agent to cross the arena in
short time but still prevents it from getting stuck at the wall,
like it is the case with α = 0.0. Higher values of α decrease
choice quality, as the diffusion of agents across the arena is
slowed down and thus collective discrimination of both sides
gets more and more slowed-down or even impaired.

2.3 First test application with emulating a pre-
programmed CASU robot array

Experiment 7: In this experiment we used an array of
3x3 CASU robots to ‘guide’ the bees along a path: One
of the CASU robots is always presenting a global optimum
temperature (36◦C) while another CASU robot is always
presenting a local optimum temperature (32◦C) to test the
bees’ collective discrimination ability for moving aggregation
targets: The two optima move across the array, as after
some time the CASU robots that produce heat cease their
activities and neighboring CASU robots pick up their work.
This way we generate a dynamic environment in which heat
spots change over time.
Figure 8 shows, that the bee aggregations predicted by our

model closely resemble the collective behaviors observed in
real bees in such an experiment.



Table 1: Default parameter settings.

Parameter/Constant Value(s) Unit Source/Reasoning
Nx, Ny 60, 60 [cells] Dimension of our real world experimental arena
Nbees 64 [bees] Standard setting also in real bee experimentation
AmbientTemp 31 [◦C] Standard setting also in real bee experimentation
α 0.1 dimensionless Free parameter
σ 3 [cells] Free parameter
tmax 5400 [time steps] Represents 90 minutes of real time
T ∗
min, T

∗
max 29, 37 [◦C] Lower and upper limit of simplified waiting time curve

τmin
wait, τ

max
wait 0,19 [time steps] Minimum and maximum waiting time

Figure 4: Exemplary snapshots of the final distribution of bees in honeybee experiments (N = 10 repetitions/group size,
runtime = 30 min) and simulated bees (N = 30 repetitions/group size, runtime = 1800 steps) in flat temperature fields.
Experiment 1 (a)-(d): 24 and 128 bees at 29◦C; Experiment 2 (e)-(h): 24 and 128 bees at 29◦C.

Figure 5: (a) Cluster analysis: Percentage of free bees, bees in small clusters (2-3 bees/cluster) and bees in big clusters
(4+ bees/cluster) with real honeybees and with simulated bees at the end of the experiments (30 min and 1800 time steps)
for homogeneous temperatures of 29◦C (Experiment 1) and 36◦C (Experiment 2). (b) Percentage of bees in the global
optimum (36◦C) after 30 min for real bee experiments and simulated bees (Experiment 3). (c) Comparison of the results of
Experiment 1 to the UDM (Uniform random Distribution Model) and empiric data with real honeybees. Graph shows the
median percentage of honeybees (HB) and modeled bees (M) in the three different zones (global optimum, local optimum
(suboptimum), outside the optima (pessimum)) at the end of the experiments for single bees and groups of bees (all group
sizes accumulated) compared to the UDM.



Figure 6: Median percentage of bees in the three different temperature zones (Red: global optimum at 36◦C; Blue: local
optimum (suboptimum) at 32◦C; Green:outside of these optima (pessimum) at 31◦C for (a) experiments with real honeybees
(N = 8 repetitions/group size) and (b) simulated bees (N = 30 repetitions/group size) for all group sizes (6, 24, 64, 128 bees).
The dashed line indicates the predicted values by the UDM for these zones. Deviations from this line indicate non-random
collective behavior.

Figure 7: Systematic sweeps of α and σ in a temperature field with a global optimum (36◦C), a pessimum (31◦C) and a local
optimum (32◦C) (see also Experiment 4). (a) Sweep of the social parameter σ from 0 to 7 with different group sizes (6, 24,
64 and 128 simulated bees). Each panel shows a connected interpolated boxplot: Median (solid lines) and IQR (filled areas)
of 30 repetitions after 5400 time steps. (b) Sweep of the random-walk correlation parameter α from 0.0 to 1.0 in 0.05 wide
steps with 64 simulated bees. Connected interpolated boxplot: Median (solid lines) and IQR (filled areas) of 30 repetitions
after 5400 time steps. Red: bees in optimum, green: bees in pessimum, blue: bees in local optimum



Figure 8: Snapshots of the 3x3 CASU robot array set with robots actively heating at different time steps and their repre-
sentation in our cellular model. The behavior of CASUs at runtime is: One CASU always produces a global optimum at
36◦C while another CASU produces a local optimum at 32◦C. All 7 other CASUs heat to 29◦C, producing additional local
optima. Temperatures are indicated by a color map overlay in (a),(c) and (e) and by a grey-scale map in (b), (d) and (f).
(a) Screenshot after 15 minutes of runtime, global optimum: bottom left CASU, local optimum: top right CASU. (b) Model
representation of CASU array setting of (a). (c) Screenshot after 30 minutes of runtime, global optimum: mid left CASU,
local optimum: mid right CASU. (d) Representation of CASU array setting of (c). (e) Screenshot after 45 minutes of runtime,
global optimum: top left CASU, local optimum: bottom right CASU. (f) Representation of CASU robot array setting of (e).

3. DISCUSSION & CONCLUSION
Our model captures collective behaviors of honeybees by

closely resembling observations of real honeybees in compa-
rable situations. All major aspects of emergent collective
behaviors are captured by our simple cellular model.

We first validated our model against empirical data col-
lected with honeybees with two population sizes and two
homogeneous temperature settings (Figures 4, 5a). Then
we validated the model against empirical data with hetero-
geneous environments with one or two temperature spots
(global & local optima, Figures 5b,c, 6). Then we analyzed
the importance of the two free parameters α and σ, show-
ing a strong density dependence of σ (social interaction).
The collective discrimination ability is sensitive to α, show-
ing a decrease in choice quality with higher values (Figure
7). Finally, we demonstrated the potential of the model for
predicting environments that are dynamic, e.g., by being
changed through autonomous robots that socialize with the
animals (Figure 8). In this setting we could also demon-
strate (with real bees and with our cellular model) that in a
setting of one global optimum and 8 local optima with dif-
fering quality, the BEECLUST behavior is still capable to
select the global optimum.

For the sake of simplicity, we abstracted away many fea-
tures of the real system: We assumed that all honeybees
move by a correlated random walk, where the parameter α
models the correlatedness of this random walk [6]. In fact
it was shown that honeybees tend to keep their direction
for some time (inertia, correlated random walk [11]). Sev-
eral other motion strategies are reported to exist for moving

young honeybees, like ‘wall followers’, ‘sitters’, ‘goal seekers’
[11]. We purposely restricted ourselves from going into such
level of detail in our model building to find the simplest pos-
sible model that can describe the main features observed in
the system. Also the environmental model was kept as sim-
ple as possible: For example, we assumed that heat spots are
having sharp edges, building ‘plateaus’ in the temperature
fields instead of appearing as smooth temperature gradients.
In addition, we showed here a first approach to model au-

tonomous robots that modulate bee behavior by heating or
cooling. Later, we will also incorporate these robots’ sensing
capabilities and their autonomous agency into the model.
Similar representations of animal behaviors have been used

in [24] to model older honeybees in self-organized tempera-
ture clusters. In contrast to our work, which models young
honeybees, the model of [24] was focused on a full-hive con-
text and on older bees that produce heat by themselves.
Thus it was more complex, for example, a diffusion-and-
insulation model of heat flows was included there. Simple
animal interaction models following a cellular approach were
also used to model food-transportation in ant trails [1] and
the water storage and exchange in paper wasps [9].
The simplicity of the rules and the high-speed compu-

tation, that results from this model simplicity, will in fu-
ture allow us to conduct exhaustive searches for individual
behaviors that lead to interesting swarm-level behaviors by
stochastic optimization methods, e.g., machine learning [19],
genetic programming [16] or evolutionary computation [8],
[20]. By doing so, we can allow the robotic nodes in the sys-
tem to perform learning at run-time, what will allow them



to integrate themselves smoothly into the honeybee soci-
ety and then to act as ‘probes within the swarm’ for us to
further investigate this swarm intelligent honeybee system.
The model presented here is a crucial ingredient in this scien-
tific plan, as it is computationally slim, allowing exhaustive
searches of the parameter space. In addition, it is very open
to extensions and elaborations to satisfy future demands.
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