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ABSTRACT

Wireless communication is an increasingly ubiquitous and impor-
tant aspect of the digital ecosystem. In the face of rapid growth
in the population of Internet of Things reached 4+ billion devices
in 2014, and is expected to continue to grow, reaching 25 billion
by 2020, the limited capacity of radio spectrum is likely to reach
saturation. In this paper, we show that evolutionary pressures in
CR societies necessarily drive the emergence of more advanced
sensing capabilities, and correspondingly more sophisticated mod-
els of resource sharing. We put forth four evolutionary stages for
CR societies, based on well-established biological analogues, and
demonstrate that at each stage of CR evolution, a subpopulation
that is able to engage more advanced sensing capabilities and co-
use strategies is able to better extract greater utility from spectrum
resources. In this manner, we see that each stage of CR evolu-
tion prepares the way for the next: the present societies of non-
foragers facilitate the emergence of foragers; foragers give way to
contention-sensing rational CR societies; these, in turn, will likely
facilitate the emergence of sociality. Each evolutionary stage is
enabled by advances in sensory capabilities, and gives rise to new
sophisticated resource sharing schemes that yield more efficient
utilization of radio spectrum for secondary users, regardless of pri-
mary user activity.
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1 INTRODUCTION

Opportunities afforded by cheaper hardware, more ubiquitous wire-
less services, and increased demand for end-user applications, to
gether have led to rapid population growth in the Internet of things

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
BICT 2017, March 15-16, Hoboken, United States

ISBN 978-1-63190-148-5

DOI: 10.4108/eai.22-3-2017.152395

Copyright © 2017 EAI

Bilal Khan
Department of Sociology
University of Nebraska-Lincoln
Lincoln, NE 68583, U.S.A
bkhan2@unl.edu

Ala Al-Fugaha

Computer Science Department
Western Michigan University
Kalamazoo, MI 49008, U.S.A
ala.al-fuqgaha@wmich.edu

Mohammad Abu Shattal

Electrical and Computer Engineering

Western Michigan University
Kalamazoo, MI 49008, U.S.A
mohammad.a.shattal@wmich.edu

(IoT). This trend is expected to significantly impact device coexis-
tence due to limited spectrum availability. Although IoT most of-
ten is thought of as low power sensors with limited hardware capa-
bilities, the need to support Big Data transmission is inevitable. As
wireless devices become more sophisticated, Dynamic Spectrum
Access (DSA) networks [15] using Cognitive Radio (CR) technol-
ogy offers a potential solution to relieve over-crowded wireless
channels as has been argued in [40], [45], [66], [14].

Current spectrum assignment policies have resulted in subopti-
mal use of spectral resources [55]—over-utilization in some bands
and under-utilization in others [3, 23, 24]. Few segments of spec-
trum remain for new services, and yet, the licensed spectrum ap-
pears to be underutilized. The reason for this apparent paradox is
that licensed (“primary”) users are idle within their bands for sig-
nificant fraction of time [22] leaving behind a “spectrum hole” [31].
This phenomenon has motivated spectrum policy reforms by the
U.S. Federal Communications Commission (FCC), including DSA.
The objective of DSA—resolving suboptimal spectral resource utili-
zation—is to be realized through recently proposed Cognitive Ra-
dio (CR) concepts [1, 39]. CR nodes dynamically identify and op-
portunistically forage for unused spectrum bands, adjusting trans-
mission/reception parameters accordingly [1, 7, 15, 16, 25, 29].

The most important constraint on spectrum foraging is that CR
nodes must not interfere with the primary user who is the license
holder of the band; that is, upon the primary user’s return, CRs
must switch to another band. Modulo this constraint, multiple
CR networks operated by a multitude of WSPs compete with each
other as secondary users (SUs) of limited spectrum, seeking effi-
ciency and quality of service (QoS). Although the FCC reforms “al-
low unlimited numbers of unlicensed [secondary] users to share
frequencies”, it “does not provide any right to protection from in-
terference” [23, 24]. Since there are many secondary users, each
SU’s selection of band and decision to transmit, potentially impacts
other secondary users, whose channel bandwidth degrades when
greater numbers of SUs share a channel.

Taken together, channel scarcity, usage dynamism, and “no right
to protection from interference” present serious challenges to self-
coexistence and performance for CR units in secondary DSA net-
works [5, 12, 26, 51]. Given that CR networks in DSA environments



are autonomous and (at least in theory) capable of sensing, learn-
ing, and adaptation, they may evolve over time, much as humans
and other social animal species have in analogous contexts of re-
source sharing/conflict [9, 27, 28, 61]. Mapping the most plausible
evolutionary trajectories of IoT CR societies is subject of inquiry
in the present work.

2 PRIOR WORK

Given that the FCC’s open access paradigm only mandates that sec-
ondary users (SUs) do not interfere with primary user (PU) trans-
mission, most prior research has focused on the interaction of PUs
with SUs. In particular, spectrum sensing has been applied in this
context, to detect primary user arrival and departure (see [65] for a
survey of results). By sensing spectrum holes (frequencies where
the primary user is presently inactive), secondary users can find
bands that are available for opportunistic use [57]. While many
researchers have developed solutions for spectrum sensing [31, 64,
65] in the context of PU-SU dynamics, relatively few researchers
have looked at the implications and issues surrounding SU-SU in-
teractions (see [62, 67]). Non-cooperative game theory has been
used extensively in prior work, to describe the competition be-
tween secondary users over a limited amount of resources [42, 52].
Unfortunately (see Xu et. al., and others), a frequent limitation of
these approaches is that the game is repeatedly played for just one
step [63].

Computer science research on resource allocation in networks
recognizes the potential relevance of knowledge on resource use
in human and animal societies; for a recent survey of bio-socially
inspired approaches, see [21, 38, 41], and books [43, 60]. There has
been considerable prior work seeking to apply models of animal
foraging strategies (and derivative theories of marginal use) to the
design of protocols in the Internet [36, 44, 58], towards routing and
management in mobile ad-hoc networks [8, 11, 13, 20, 34, 35, 49],
within sensor networks [6, 10, 30, 50], and now most recently, in
the domain of cognitive radio (CR) networks [2, 19, 37, 47, 48]. Pre-
vious bio-inspired approaches have depended on inductive anal-
yses of biosocial foraging, wherein idealized formal models are
proposed for animal societies (e.g. termites, ants, birds, bacteria,
etc.)—a strategy whose weakness was recognized long ago [54].
These inductively derived models of resource consumption were
then applied to the design of networking protocols, e.g. termites
[49], ants [46], birds [18], bacteria [11] etc. In assuming an induc-
tively derived model of behavior, previous bio-inspired advances
assume a basic level of coordination, namely that the individuals
in the networked society abide by a parametrized set of rules of
resource-sharing that have been agreed upon beforehand. As such,
these approaches fail to recognize the long-term evolutionary op-
timization processes that underlie and give rise to the observed
structural patterns of co-use within specific instances of bio-social
collectivities—our perspective here precisely addresses this omis-
sion.

3 OUR APPROACH

In this paper, we evaluate the hypothesis that CR evolution could
plausibly be expected to parallel the evolution of animal species in
conditions of resource sharing and conflict [28, 61]. Towards this,

we put forward four successively more sophisticated biologically
inspired evolutionary stages of CR capabilities: non-foraging, for-
aging, contention-sensing, and sociality. The four stages are listed
briefly below, and described at length in the next section.

e Evolutionary Stage 1: “Consuming”. SUs are always
consuming bandwidth in some spectrum hole, and auto-
nomously decide when to switch channels (e.g. when a
PU arrives).

e Evolutionary Stage 2: “Foraging”. SUs can either con-
sume a channel’s bandwidth or be silent (“forage”). They
autonomously decide when to transition between these
two states and when to switch channels.

e Evolutionary Stage 3: “Contention-Sensing”. SUs can
estimate the number of other SUs that are concurrently
consuming the channel. This environmental data biases
their decision on when to transition between forage/consume
states and when to switch channels.

e Evolutionary Stage 4: “Sociality”. SUs can sense some
characteristics of other SUs that are concurrently consum-
ing the channel. This social data biases their decision on
when to transition between forage/consume states and when
to switch channels.

First, we develop a general parametric behavioral model which
encompasses the four evolutionary stages above; for each stage,
a concrete instance of CR society can be obtained by specializing
this general model.

The resulting CR societies and their associated strategies are
then rendered as parametrized non-cooperative mixed-strategy
games, extending the ideas put forth by Tan et al. [56]. In contrast
to formal analysis of repeated one step game play [63], our evalu-
ation here is based on simulation experiments that determine the
performance profiles of secondary users who continuously apply
the prescribed strategies over long time intervals.

Finally, by considering heterogeneous societies consisting of two
different types of SUs (a majority with more primitive capabilities,
and a minority with more advanced capabilities), we quantify the
anticipated evolutionary pressures in SU societies facing resource
challenges. This makes it possible to deduce the plausibility of
the above 4-stage evolutionary trajectory for distributed uncoor-
dinated CR societies, under the standard assumption that its con-
stituent individuals seek to maximize their utility [4, 32].

4 MATHEMATICAL MODEL

In our model, SUs are either consuming or foraging, and transi-
tion stochastically between these two states. Depending on the
evolutionary stage being considered, transition probabilities may
be fixed, or biased over time by instantaneous environmental and
social factors.

We assume a discrete time stochastic system of n secondary
users S = {z1, 22, ..., zp} and m orthogonal spectrum bands 8 =
{b1,b2,...,bm} in which individuals operate according to a two-
state finite state machine (FSM) shown in Figure 1 (following [59]).
The FSM consists of two states Q = {qc, qf} and one state variable,
the band of interest (Bol) which takes a time varying value b € 8.

State g, represents a “consume” state, during which the SU is
transmitting in the Bol; g7 represents a “forage” state, during which
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Figure 1: A general behavioral finite state machine for SUs.

the SU is tuned to a Bol but it is not consuming any bandwidth.
To keep track of instantaneous state, we introduce a time indexed
function

ye : S = gy, qc} (1)
where y;(z) indicates the state of SU z at time ¢. At time ¢, each
SU z € 8 is either foraging or consuming some band p;(z) € B;
this implicitly defines a set of time-indexed maps

pr:S— 8

assigning SUs to bands. At time ¢, each SU z € S faces a decision
to switch states. If z is consuming at time ¢ (i.e. y;(z) = qc), then
att+ 1:
e With probability P, it switches to a new band p;+1(2)
chosen uniformly at random, and starts foraging.
e With probability Pcc = 1 — Py, it continues to consume
its present band p;41(z) = pt(z).
If z is foraging at time ¢ (i.e. yz(z) = qy), thenat ¢ + 1:
o With probability Py, it starts consuming its present band
pr+1(2) = pt(2).
o With probability Py = 1 — P, it switches to a new band
pr+1(z) chosen uniformly at random, and continues for-

aging.
4.1 Behavioral Models

The above mathematical model can be specialized to capture four
evolutionary stages of SU capabilities, non-foraging, foraging,
contention-sensing, and sociality, discussed in the following sub-
sections.

4.1.1  Evolutionary Stage 1: “Non-foraging”. In this stage, SUs
are always consuming bandwidth in some spectrum hole, and au-
tonomously decide when to switch channels (e.g. when a PU ar-
rives). This model is widely used in cognitive radio literature (see
e.g. [56], [59, 63]).

A stage 1 behavioral model is obtained by tying Py, = 1 (and
hence Pgr = 0), yielding the FSM of figure 2 in which the SU will
switch directly between bands and, essentially, consume continu-
ously. We refer to this concrete stage 1 society as Non-Foraging
(NF).

4.1.2  Evolutionary Stage 2: “Foraging”. In this stage, SUs can
either consume a channel’s bandwidth or be silent (“forage”) and
autonomously decide when to transition between these two states
and when to switch channels. A stage 2 behavioral model is ob-
tained by allowing Py (and hence Pfr) to be set to any value in

Re

Figure 2: A behavioral finite state machine for SUs in stage 1.

the interval [0, 1], so that SU’s can inhabit the forage state rather
than continuously consume. We refer to this concrete stage 2 be-
havioral model as Foraging-Blind (FB).

4.1.3  Evolutionary Stage 3: “Contention-Sensing”. In this stage,
SUs can estimate the number of other SUs that are concurrently
consuming the channel, and this environmental data (which in
practice may be obtained at the physical or MAC layers) biases
their decision on when to transition between forage/consume states
and when to switch channels. Having richer capabilities of this
stage, SUs are faced with a range of new spectrum co-use etiquettes,
based on the manner in which they react to knowledge of their
physical environment.

Foraging with Contention-Sensing is a behavioral model for
Stage 3 SUs, obtained by allowing the transition probabilities
Pge,Pep € [0,1] to be biased by contention level in the band of
interest:

pe(z) = Ip7 (p(2)) Ny (ge)l. )

Rather than assuming that an SU z is able to measure the pre-
cise number y;(z) of other SUs consuming p(z), we only require
that it be able to determine whether the band’s occupancy is “low”
ur(z) < tor “high” s (z) > t (for the fixed system-wide inte-
ger threshold parameter 7). If the band has high occupancy, the
FSM probabilities are biased by a system-wide parameter € € [0, 1],
making it less likely to be in the consume state and more likely to
be in forage state; the reverse bias is manifested when bands have
low occupancy (see Figure 3).

We consider three different etiquettes determined by the choice
of 7:

e In the Foraging-Rational (FR) etiquette, each FR con-
sumer is aware of the number of resources m and con-
sumers n, taking the rational estimate of the threshold oc-
cupancy T = .

o In the Foraging-Apathetic (FA) etiquette, each FA con-
sumer takes 7 > [ and is thus apathetic to the presence
of co-users.

e In the Foraging-Intolerant (FI) etiquette, each FI con-

sumer takes 7 = 0 and is thus intolerant to contention.

The choice of the variable ¢ and 7 serve to control how ratio-
nal, intolerant, or apathetic secondary users are to contention with
other SUs at a spectrum hole. If € is high or 7 is low, the SUs will be
more discriminating and thus spend more time scanning for low
occupancy bands, and will be more reluctant to leave low occu-
pancy bands.
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Figure 3: Behavioral FSMs for SUs in stage 3.

4.1.4  Evolutionary Stage 4: “Sociality”. In this stage, each SU is
additionally capable of sensing some characteristics of the other co-
consumers of its current Bol, and this social data biases its decision
on when to transition between forage/consume states and when
to switch channels. Having richer capabilities at this stage, SUs
are faced with a range of new spectrum co-use etiquettes, based
on the manner in which they react to knowledge of their social
environment.

Towards analyzing the fundamental implications of sociality,
we assume that stage 4 SUs have a single differentiating charac-
teristic y, and an enhanced sensing capability 41} (z) by which they
estimate the number of the co-consumers that share the same char-
acteristic value. For example, if y represented vendor, then each
SU would be assumed capable of estimating the number of co-
consumers in the band that are from its own vendor. Other candi-
dates for y might be organizational affiliation, task, network car-
rier, etc. — the precise choice is not material to the arguments that
follow. Determining such contention levels could be implemented
in a distributed manner or through a centralized entity [31, 64, 65,
67] the details of which are beyond the scope of this paper.

In this work, we consider one concrete etiquette governing how
an SU z chooses to react to the knowledge 115 (z) of their social en-
vironment, splitting based on diversity. In the Diversified (D)
behavioral model for Stage 4 SUs, a population S of n SUs splits
into two independent subsystems based on the value of the char-
acteristics y (see Figure 4). For simplicity, in this work, we assume
that

x:S—1{0,1}
is binary-valued. Each SU z is assumed to have intrinsic charac-
teristic y(z), and can measure the number of co-consumers of its
band of interest that share the characteristic value:

1i(2) = |pr (pe(2) Ny Hge) Nt (x(2)]- )
If the n SUs are sharing m channels each with bandwidth B,
the system splits into two independent subsystems: Sp = {s €

S | x(s) = 0} consuming m bands, each of capacity @B, and
81 = {s € S| x(s) = 1} consuming m bands, each of capacity
%B. Figure 4 shows a system of 8 SUs (where 4 have character-
istic y = 0 and 4 have y = 1) and m = 3 bands of capacity B.

The system undergoes a 2-way split, yielding two subsystems of

N SUs m bands of cap B

QOOOOOOO

band
IS BN EE—

N/2 SUs ¥
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m bands of cap B/2

Figure 4: 2-way splitting of consumers/resources.

half the scale (in terms of the number of SUs and channel capac-
ity). The characteristic y plays a central role in the differentiation
of SUs, making it possible for splitting to occur.

4.2 Benefit, Costs, and Net Utility

Since benefit is only obtained when an SU z is in the consume state
qc, the total system utility is captured by

m:;mmmm. ()

where

ke (i) = 1p7 ' () Ny (ge)| )
and
G:P,

d
R(K) Y B log, I —— =
& GoyPy+ o

(6)

This definition of benefit (6) is drawn from information theoretic
considerations (i.e. Shannon’s formula [53]), and is consistent with
a significant body of prior work on spectrum sharing [17]. In ex-
pression (6), the transmission power for SU z (resp. y) are denoted
P (resp. Py); B is the channel bandwidth; G represents the chan-
nel gain for the transmissions by z, G,y represents the channel
gain for the transmission between z and y, and w is the power
level of the ambient white Gaussian noise. To isolate the impact of
the proposed paradigms, here we do not consider path losses, and
consider a homogeneous network wherein all SUs send (to a base
station) at the same power P and experience the channel gain G.

When an SU switches transmission bands on entering (or re-
entering) g, transmitter reconfiguration is required. We assume
this to be an expensive operation compared to the receiver recon-
figurations required upon entering (or re-entering) 5. To capture
this, our model charges each SU a fixed cost ¢ whenever it switches
transmission bands by moving from the forage state gy to the con-
sume state g.. Function M; captures the number of SUs charged
for switching at time ¢ > 2

My ={s €S |ye-1(s) = qr Aye(s) = qc} (7)
so the switching cost paid by the system at time ¢ is
Cr = cIM;| 8

and the instantaneous average utility (per SU) at time ¢ is
1

I =~
n

(Wr = Cy) ©)



and the average utility (per SU per unit time) up to time T is

1T
Ur == I 10
T T;t (10)

Note that even though the SUs that are in the forage state are ex-
cluded from W, the utility function implicitly incorporates a zero
reward for each SU in the forage state since in (9), the quantity
(W; = Cy) is divided by n, the total number of SUs in the system.

Remark: We note that given the performance metric incorpo-
rates switching cost as a kind of disutility, the utility Ur measured
in this way is only useful in making relative assessments. That
is, one may use Ur to make inferences about the relative perfor-
mance of behavioral scheme A versus B in different regimes, but
the absolute numerical values of Ur are not directly interpretable
in isolation.

4.3 Emergence and Evolutionary Pressures

To understand evolutionary pressures on the emergence of new SU
capabilities and etiquettes, we evaluate a range of heterogeneous
CR societies in which each SU follows one of two distinct behav-
ioral models. The heterogeneous society (X, Y), one in which an
SUs operate according to model Y, while (1 — «)n operate accord-
ing to model X1 where X, Y are one of e.g. NF, FB, FR, FL, FA,, etc.
and 0 < a < 1. By varying « from 0 to 1, we can evaluate the in-
centives for or against the emergence of a subsociety following be-
havioral model Y within an ambient society following behavioral
model X.

5 EXPERIMENTAL RESULTS

We use a stochastic discrete event simulator [33] to obtain utility
measurements for different SU societies over time. Typically, in
the graphs below, each plotted data point is an experiment, which
is repeated for 10 independent trials. Error bars indicate the stan-
dard deviation of the measured value. Consumers transition asyn-
chronously according to the appropriate previously defined finite
state machines (FSM). To facilitate comparison with the work of
Tan and others [56, 59] in many experiments, we use the same
parameter values as these previous researchers. These values are
listed in Table 1 below:

Table 1: Baseline Parameters

Parameter ‘ Description ‘ Value
n Number of SUs 30
m Number of bands 5
P, Transmission power of node z 4w
B Capacity per band 20 MHz
C Switching cost 0.3-B
Pre Prob. of commencing consume 0.12
Per Prob. of commencing foraging 0.21
€ Bias based on occupancy 5%
T Rational occupancy threshold n/m

!Note that (X, Y) is equivalent to (Y, X)1—¢, we limit this ambiguity by adopting
the ordering convention that Y is at least as advanced as X (in terms of evolutionary
stages and corresponding SU capabilities).

5.1 The Emergence of (Blind) Foraging

To begin, we describe the circumstances under which foraging ca-
pabilities might plausibly emerge within societies of non-foragers
and show that this etiquette shift is related to population size. Fig-
ure 5 shows the utility achieved in a (NF, FB)g.1 society where
10% of the population is foraging and 90% is not. We see that when
the population grows (but resources are held constant at the base-
line values listed in Table 1) there is a critical size at which a blind
foraging strategy (FB) outperforms non-foraging behavior (NF). In
the specific experiment we conducted, this breakpoint occurred at
n = 220.

When n < 220, the adoption of foraging behavior is penal-
ized, and hence is expected to be selected against in evolutionary
terms. This phenomenon is seen in Figure 6, which considers a
population of n = 30 SUs, of which [30 - «] are blind foragers
(while the rest are non-foragers); all other experiment parameters
are set as specified in the baseline (see Table 1). We see that for
low values of @ (e.g. when the first forager emerges) the utility at-
tained by the foraging minority subpopulation (2.9) is significantly
smaller than that which is enjoyed by non-foraging majority sub-
population (6.5). The dotted curves in Figure 6 represent a system
in which the primary user decides to return to the band 30% of
the time. We can see that even with primary user interruption,
non-foragers continue to outperform as the foraging population
emerges.

In contrast, when n > 220, the adoption of foraging behavior
is systemically rewarded, and hence is expected to be selected in
evolutionary terms. This phenomenon is seen in Figure 7, which
considers a population of n = 300 SUs, of which |« - 300] are
blind foragers (and the rest are non-foragers). We see that for low
values of a, in particular, at the moment when the first foragers
emerge, the utility attained by the foraging minority subpopula-
tion is greater (-0.13) than that enjoyed by non-foragers (-0.31)2.
As long as @ < 0.55, foraging outperforms non-foraging. When
n = 400 this critical « value rises from 0.55 to 0.85. Thus, the
longer a growing society waits to move from non-foraging to forag-
ing behavior, the more a widespread change of behavior promises
to be in the rational self-interest of individuals therein.

Regardless of n, monotonic positive first derivatives with re-
spect to a (Figures 6 and 7) imply a differential increase in utility
for both non-foragers and foragers. From this we may conclude
that once foraging behavior arises, each individual (regardless of
their behavior model) experiences an increase in utility if a greater
percentage of the population adopts the foraging model. This pos-
itive differential (in populations greater than a critical threshold
size), is evidence of the evolutionary pressure towards the emer-
gence and widespread adoption of foraging behavior in CR soci-
eties of non-foragers.

5.2 The Emergence of Sensing and Rationality

We describe the circumstances in which contention-sensing ca-
pabilities (i.e. the FR behavioral model) might plausibly emerge
within societies of blind foragers and show that foraging-rational
etiquette is advantageous to the first deviating SU in a population

2See remark at the end of section 4.2 concerning interpretations of utility.
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size of 30 and continuous to be advantageous as the size of follow-
ers grows. In Figure 8, we consider a population of n = 30 SUs,
of which [30 - ] are sensing their environment and responding
according to the rational etiquette (FR), while the rest are blind
foragers (FB). We see that for low values of § (e.g. when the first
rational forager appears) the utility attained by FR nodes is sig-
nificantly greater (11.0) than the mean utility attained by blind
foragers (7.6). This systemic reward is experimental evidence of
evolutionary pressure towards the emergence of sensing capabil-
ities and rational etiquettes in CR societies of blind foragers. As
B increases, each SU that changes behavior from blind foraging to
rational foraging experiences a benefit (albeit at the expense of ev-
eryone else, as implied by the monotonic negative first derivatives
with respect to ). The observation continues to hold in a system
where the primary user decides to return to the band 30% of the
time (dotted line in Figure 8).

As the population size n increases, foraging-rational continues
to outperform foraging-blind in terms of utility and is expected
to be selected in evolutionary terms. Figure 9 shows the utility
achieved in a (FB, FR)g.1 society where 10% of the population is
sensing and following a rational etiquette while 90% is foraging
blindly. We see that the subpopulation that follows a rational eti-
quette consistently outperforms the larger ambient population of
blind foragers at all population sizes. We also see that as the pop-
ulation grows (but resources are held constant) the relative advan-
tage of the FR model increases. For example, when n = 30 the
advantage was 145% (11.0/7.6); by the time the population grows
to n = 300 the minority’s advantage from using the FR model
(compared to the ambient population using the FB model), is 250%
(0.5/0.2). This indicates that the evolutionary pressure to adoption
a rational sensing model increases as the total population grows
larger. The above analysis demonstrates that at some scale, there
will be evolutionary pressure to transition from foraging blindly to
foraging in a rational manner based on band occupancy sensing.

5.2.1  Dynamic Estimation of Population Size. In FR societies,
the etiquette of “rationality” mandates that each SU set its occu-
pancy threshold to 7 = n/m, and thus requires each SU to know

0.4
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Figure 7: The rise of foraging among non-
foragers (n = 300)

(through offline knowledge) both the size of the population n and
the number of resources m. This can be a problematic assumption
in growing SU societies. Here we consider a dynamic estimation
scheme for n based on random sampling of channel occupancies.
Estimation scheme. Each SU dynamically estimates the total
number of consumers 7 over a time window A by taking:

| Al
ng=m- A (;)llt—a(z)

and then setting its threshold occupancy level to 7; = % Fig-
ure 10 shows that such dynamic estimation of population sizes is
successful in quickly converging to the performance of systems
that are pre-configured with offline knowledge about the true pop-
ulation size n. The dynamic FR scheme has the advantage that it
requires less startup configuration and can be used in situations
where the population size is either unknown or time varying.

5.3 Alternative Etiquettes in Societies with
Sensing

In what follows, we consider the evolutionary pressure for or against
the emergence of sub-populations that deviate from the rational
etiquette, within an FR society. We show that foraging-intolerant
(FI) and foraging-apathetic (FA) strategies are not advantageous
in a foraging-rational (FR) society and will be selected against in
evolutionary terms. Recall that “rationality” of FR behavior is de-
fined in terms of SUs taking the threshold occupancy 7 = n/m
(where n may be dynamically estimated as described in the previ-
ous section). Here we consider extreme deviations from this value.
For simplicity, we consider two cases: first, the “Apathetic” eti-
quette, in which the threshold is taken to be much higher than
rational r = 2n/m; second, we consider the emergence of “Intoler-
ant” etiquette, in which 7 = 0. These two alternative etiquettes are
treated in subsections (a) and (b) below, respectively. As we shall
see, based on evolutionary considerations, neither is expected to
emerge.
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Figure 8: The emergence of sensing and ra-

tionality. ing populations.

The Etiquette of Apathy. Figure 11 shows the change in utility for
rational and apathetic societies as the proportion of apathetic con-
sumers increases. As can be seen, regardless of their proportion
within the population, apathetic SUs do not gain any advantage
over rational consumers (7.5) by choosing a higher than rational
threshold.

The Etiquette of Intolerance. In the intolerant etiquette, an SU
chooses to set their occupancy threshold 7 to be lower than ratio-
nal. Here we consider the extreme case, when 7 = 0.

As the population grows to a certain size, foraging-intolerant
continues to be selected agains in evolutionary terms. Figure 13
shows the utility achieved in a (FR, FI)g.1 society where 10% of
the population is following an intolerant etiquette while 90% is
foraging rationally. We see that a rational etiquette consistently
outperforms the minority of intolerant foragers at all population
sizes. We also see that as the population grows (but resources are
held constant) the relative advantage of the FR model over the FI
model, increases. For example, when n = 30 the advantage was
210% (7.6/3.4); by the time the population grows to n = 300 the
minority’s advantage from using the FR model (compared to the
ambient population using the FI model), is 4500% (0.45/0.01). This
indicates that the evolutionary pressure against an intolerance eti-
quette increases as the total population grows larger. The above
analysis demonstrates beyond some scale, there will be significant
evolutionary pressure against deviations from rational etiquette.
We note that in the baseline experiment (see Figure 12), the utility
for FI does eventually exceed FR but only after a very substantial
fraction of the population has switched to FI behavior, > 0.9.
This threshold exhibits a significant evolutionary barrier against
transitions from FR to FI. We note the same behavior in a system
where the primary user decides to return to the band 30% of the
time (see dotted curves in Figure 12).

The structural explanation for why the transition to FI is im-
peded can be best understood by examining Figure 14. Here we
consider a minor perturbation of the baseline experiment settings
(see Table 1). Specifically, we consider a society of 29 standard

Figure 9: The merits of rationality in grow-

Figure 10: FR with dynamic estimate of
population size.

FR nodes (who set rational threshold 7 = n/m = 30/5 = 6), to-
gether with one non-standard deviant player who chooses to set
their threshold 7 autonomously. The graph shows what the utility
of the deviant player is (compared to the utility of the law-abiding
standard FR majority), for each possible nonstandard setting of 7
that might be used. Utilities obtained when 7 = 0 (intolerant) and
7 = 12 (apathetic) are consistent with figure 12 and figure 11 for
low values of n and & respectively. What we see is that any unilat-
eral deviation from the rationally determined value may result in
a performance penalty and never yields an advantage.

5.4 The Emergence of Diversity for Subdivision

In this section, we consider the potential benefits of SU diversity,
assuming that CR nodes each have an intrinsic characteristic y,
which can be sensed, and used to implement splitting. We show
that emergence of SU diversity in the splitting context is only ben-
eficial for specific population sizes. There are of course countless
other ways in which diversity could be harnessed socially—here
we consider whether splitting, by itself, presents enough advan-
tages to predict the plausible emergence of SU diversity. In effect,
we view splitting as the analogue of ecological niche formation in
the CR domain. The question we are asking then is: Does niche
formation produce advantages which would justify the emergence
of species diversity y among CRs?

How is the benefit obtained by splitting impacted by the sys-
tem’s size? Figure 15 shows the performance advantage of split-
ting a society of n nodes into two societies of n/2 nodes each re-
ceiving m bands of capacity B/2 (normalized by the performance
attained in societies which do not choose to split). For example,
when m = 10 and B = 20 there is a critical value of system size
n = 80 beyond which splitting yields a marginal advantage — but
this advantage which is maximal (9% at n = 120) vanishes for
n > 80. The same qualitative behavior is seen for other exper-
iment settings (m = 15 and m = 5), albeit with different local
maxima and rates of asymptotic convergence to 1. We conclude
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Figure 14: A non-standard forager in an FR society.

that splitting only makes sense in a critical range of society size—
if a society is too small, or too large, no benefit is derived from
splitting.

6 CONCLUSIONS

In this paper, we considered an evolutionary sequence of increas-
ingly sophisticated capabilities for CR nodes in societies of sec-
ondary users of radio spectrum as the IoT population adjusts to
saturated resources.

We showed that:

e In asociety of SUs which are constantly consuming (stage
1), when the capability to forage for spectrum emerges,
there is an evolutionary pressure for a subpopulation to
switch to a foraging etiquette, and this subpopulation is
expected to grow. This was shown in Section 5.1.

Proportion of FI consumers (among FR) n

Figure 12: The disincentives to intolerance

Number of consumers

Figure 13: Disincentives to intolerance in
growing populations.

Relative advantage of a 2-way split

80 100 120 140 160 180 200 220
Number of consumers

40 60

Figure 15: Benefit of a single 2-way split versus society
size.

We saw that at a critical population size it becomes advantageous
(with respect to utility) for an SU to unilaterally adopt the more ad-
vanced strategy. This “first conversion” acts as a seed, since any in-
crease in the fraction of SUs following the new strategy yields a dif-
ferential improvement in the utility of all SUs (regardless of strat-
egy) thus driving the “upgrading” of the entire population. Next,
we saw that:

e In a society of foraging SUs (stage 2), when the capabil-
ity to sense channel characteristics emerges, there is an
evolutionary pressure for a subpopulation to bias transi-
tion probabilities accordingly to rational expectations of
contention levels. This was shown in Section 5.2.

Regardless of population size, we saw that it becomes advanta-
geous (with respect to utility) for an SU to unilaterally adopt the
more advanced strategy.

o In a population of contention sensing foragers, it is not ad-
vantageous for a subpopulation to deviate from the ratio-
nal contention threshold by adopting an attitude of apathy
or intolerance to contention. This was seen in Section 5.3.



Additionally, in Section 5.2.1 we demonstrated that the ra-
tional threshold can be estimated dynamically by the SUs,
making FR viable in growing populations.

Although many etiquettes based on sociality are conceivable,
here we considered one based on splitting.

e Division based on a boolean differentiating characteristic
is marginally profitable up to a certain population sizes;
larger diverse societies do not profit by splitting into ho-
mogeneous subsocieties. This was seen in Section 5.4.

In practice of course, the evolutionary selection of device capa-
bilities and behavioral strategies arises from consumer pressure on
manufacturers to deliver increased bandwidth for a rapidly grow-
ing IoT device population. Taken together, the projections pre-
sented in this paper determine a quantifiably plausible evolution-
ary trajectory for IoT devices adopting cognitive radio capabilities
(and corresponding behavioral strategies) that one might expect to
see implemented by manufacturers as they compete for increasing
numbers of consumers with increasing bandwidth requirements.

6.1 Future Work

We seek to ascertain the extent to which the phenomena reported
in this paper are replicable in real hardware testbed of software-
defined radio systems. Our plan is to experiment with the different
evolutionary stages using ns-3 in conjunction with different chan-
nel models to provide more insight into the practical implications
of the evolutionary stages. In addition, we plan to experiment with
actual IoT nodes that utilize a low power microcontroller with the
capability to switch the Wi-Fi channel to study the evolution be-
havior experimentally.

The general question on whether the emergence of CR diversity
is evolutionarily selected for remains open. Answering it requires
deeper exploration of social structures by which CR societies might
harness node diversity in a manner that benefits its members. The
study of more complex social structures supported by differentia-
tion and sensing is an area of active research.

6.2 Acknowledgements

This project was supported by a grant from the National Science
Foundation program for Enhancing Access to Radio Spectrum
(#1443985), supported by the Directorates for Mathematical and
Physical Sciences (MPS), Engineering (ENG), and Computer and In-
formation Science and Engineering (CISE). The opinions, findings,
and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect those of the
National Science Foundation. The authors would like to thank Dr.
Spiros Bakiras, Dr. Shweta Jain, and Dr. Shamik Sengupta for
their feedback and discussion relating to the ideas underlying this
research, at various stages during its development.

REFERENCES

[1] I Akyildiz, W. Lee, M. Vuran, and S. Mohanty. Next generation/dynamic spec-
trum access/cognitive radio wireless networks: a survey. Computer Networks,
50(13):2127-2159, 2006.

[2] B. Atakan and O. B. Akan. Biologically-inspired spectrum sharing in cognitive
radio networks. In Wireless Communications and Networking Conference, 2007.
WCNC 2007. IEEE, pages 43-48, 2007.

(3]

[7]

[8]

(9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[28]

[29]

[30]

[31]

[32]

C.Bazelon. Licensed or unlicensed: The economic considerations in incremental
spectrum allocations. New Frontiers in Dynamic Spectrum Access Networks, 2008.
DySPAN 2008. 3rd IEEE Symposium on, pages 1-8, Oct. 2008.

G. Belovsky. Insights for caribou/reindeer management using optimal foraging
theory. Rangifer, 11(4):7-23, 2010.

K. Bian and J.-M. Park. A coexistence-aware spectrum sharing protocol for
802.22 wrans. pages 1 —6, aug. 2009.

M. Britton, V. Shum, L. Sacks, and H. Haddadi. A biologically-inspired approach
to designing wireless sensor networks. In Proceeedings of the Second European
Workshop on Wireless Sensor Networks, 2005, pages 256—266, 2005.

S. Buljore, H. Harada, S. Filin, P. Houze, K. Tsagkaris, O. Holland, K. Nolte,
T. Farnham, and V. Ivanov. Architecture and enablers for optimized radio re-
source usage in heterogeneous wireless access networks: The ieee 1900.4 work-
ing group. Communications Magazine, IEEE, 47(1):122-129, january 2009.

O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, and ]. Soria. Compara-
tive study of bio-inspired algorithms applied to the optimization of type-1 and
type-2 fuzzy controllers for an autonomous mobile robot. Information Sciences,
192:19-38, June 2012.

K. Challapali, C. Cordeiro, and D. Birru. Evolution of spectrum-agile cognitive
radios: first wireless internet standard and beyond. 2006.

C. Charalambous and S. Cui. A biologically inspired networking model for wire-
less sensor networks. IEEE Network, 24(3):6—13, 2010.

J. Chen and A. Sayed. Bio-inspired cooperative optimization with application
to bacteria motility. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5788-5791, 2011.

T. Chen, H. Zhang, M. Hoyhtya, and M. Katz. Spectrum self-coexistence in
cognitive wireless access networks. pages 1 -6, 30 2009-dec. 4 2009.

F. Chiang, J. Agbinya, T. A. T.N. Zealand), and A. C. (New. Bio-inspired topology
convergence algorithms in resource-constrained VANETS. 2007.

T. Chiwewe, C. Mbuya, and G. Hancke. Using cognitive radio for interference-
resistant industrial wireless sensor networks: An overview. 11(6):1466-1481.
C. Cordeiro, K. Challapali, D. Birru, and S. Shankar. IEEE 802.22: The first world-
wide wireless standard based on cognitive radios. Proc., IEEE Symposium of New
Frontiers in Dynamic Spectrum Access Networks (DySPAN’2005), pages 328-337,
Nov. 2005.

C. Cordeiro, K. Challapali, D. Birru, and S. Shankar. IEEE 802.22: the first world-
wide wireless standard based on cognitive radios. IEEE International Symposium
on Dynamic Spectrum Access Networks, pages 328-337, Nov. 2005.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, July 2006.

P. Di Lorenzo and S. Barbarossa. Distributed resource allocation in cognitive ra-
dio systems based on social foraging swarms. In 2010 IEEE Eleventh International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pages 1-5, 2010.

P. Di Lorenzo, S. Barbarossa, and A. Sayed. Bio-inspired decentralized radio ac-
cess based on swarming mechanisms over adaptive networks. IEEE Transactions
on Signal Processing, Early Access Online, 2013.

F. Dressler and O. Akan. Bio-inspired networking: from theory to practice. IEEE
Communications Magazine, 48(11):176-183, 2010.

F. Dressler and O. B. Akan. A survey on bio-inspired networking. Computer
Networks, 54(6):881-900, Apr. 2010.

A.Durantini and M. Martino. The spectrum policy reform paving the way to cog-
nitive radio enabled spectrum sharing. Telecommunications Policy, 37(2-3):87-
95, Mar. 2013.

FCC. Spectrum policy task force report. pages 02-155, Nov 2002.

FCC. In the matter of unlicensed operation in the TV broadcast bands. Second
Report and Order and Memorandum Opinion and Order, (FCC-08-260A1), Nov.
2008.

G. Ganesan and Y. Li. Cooperative spectrum sensing in cognitive radio networks.
in Proc. of IEEE DySPAN, pages 137 —143, 2005.

V. Gardellin, S. Das, and L. Lenzini. A fully distributed game theoretic approach
to guarantee self-coexistence among wrans. pages 1 —6, march 2010.

F. Ge, Q. Chen, Y. Wang, C. Bostian, T. Rondeau, and B. Le. Cognitive radio:
From spectrum sharing to adaptive learning and reconfiguration. pages 1 -10,
march 2008.

S. Haykin. Cognitive radio: brain-empowered wireless communications. Se-
lected Areas in Communications, IEEE Journal on, 23(2):201 — 220, feb. 2005.
K.Hong, S. Sengupta, and R. Chandramouli. Spiderradio: An incumbent sensing
implementation for cognitive radio networking using ieee 802.11 devices. IEEE
International Conference on Communications (ICC), pages 1 -5, may. 2010.

S. Iyengar, H.-C. Wu, N. Balakrishnan, and S.-Y. Chang. Biologically inspired
cooperative routing for wireless mobile sensor networks. IEEE Systems Journal,
1(1):29-37, 2007.

C. Jiang, Y. Chen, Y. Gao, and K. J. R. Liu. Joint spectrum sensing and access
evolutionary game in cognitive radio networks. IEEE Transactions on Wireless
Communications, 12(5):2470-2483, May 2013.

H. Kaplan, P. Hooper, and M. Gurven. The evolutionary and ecological roots
of human social organization. Philosophical Transactions of the Royal Society B:



(34]

(35]

[36]

S
=

[38]

[39

[40]

[47]

[48]

[49]

[50

o
=2

(52

[53]
[54]

[55]

[56]

(57]

[58]

Biological Sciences, 364(1533):3289-3299, 2009.

B. Khan, K. Dombrowski, and M. Saad. A stochastic agent-based model of
pathogen propagation in dynamic multi-relational social networks. SIMULA-
TION,Transactions of SCS, 90(4):460-484, 2014.

Z. Liu, M. Kwiatkowska, and C. Constantinou. A biologically inspired conges-
tion control routing algorithm for MANETs. In Third IEEE International Con-
ference on Pervasive Computing and Communications Workshops, 2005. PerCom
2005 Workshops, pages 226-231, 2005.

Z. Liu, M. Kwiatkowska, and C. Constantinou. A biologically inspired QoS rout-
ing algorithm for mobile ad hoc networks. International Journal of Wireless and
Mobile Computing, 4(2):64-75, Jan. 2010.

Q. Mahmoud. Cognitive Networks: Towards Self-Aware Networks. John Wiley &
Sons, Aug. 2007.

X. Mao and H. Ji. Biologically-inspired distributed spectrum access for cognitive
radio network. In 2010 6th International Conference on Wireless Communications
Networking and Mobile Computing (WiCOM), pages 1-4, 2010.

M. Meisel, V. Pappas, and L. Zhang. A taxonomy of biologically inspired re-
search in computer networking. Computer Networks, 54(6):901-916, Apr. 2010.

J. Mitola and G. Maguire. Cognitive radio: Making software radios more per-
sonal. IEEE Personal Commun., 6(4):13-18, Aug. 1999.

M. Murroni, R. Prasad, P. Marques, B. Bochow, D. Noguet, C. Sun, K. Moessner,
and H. Harada. IEEE 1900.6: spectrum sensing interfaces and data structures
for dynamic spectrum access and other advanced radio communication systems
standard: technical aspects and future outlook. 49(12):118-127.

T. Nakano. Biologically inspired network systems: A review and future
prospects. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, 41(5):630-643, 2011.

D. Niyato and E. Hossain. Competitive pricing for spectrum sharing in cognitive
radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion.
IEEE Journal on Selected Areas in Communications, 26(1):192—-202, Jan. 2008.

S. Olariu and A. Y. Zomaya, editors. Handbook of Bioinspired Algorithms and
Applications. Chapman and Hall/CRC, 1 edition, Sept. 2005.

K. Park and W. Willinger. The Internet As a Large-Scale Complex System. Oxford
University Press, 2005.

H. Pohls, V. Angelakis, S. Suppan, K. Fischer, G. Oikonomou, E. Tragos,
R. Diaz Rodriguez, and T. Mouroutis. RERUM: Building a reliable IoT upon
privacy- and security- enabled smart objects. In 2014 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW), pages 122-127.

C.R Reid, D. J. T. Sumpter, and M. Beekman. Optimisation in a natural system:
Argentine ants solve the towers of hanoi. The Journal of Experimental Biology,
214(1):50-58, Jan. 2011. PMID: 21147968.

T. Renk, C. Kloeck, D. Burgkhardt, F. K. Jondral, D. Grandblaise, S. Gault, and J.-
C. Dunat. Bio-inspired algorithms for dynamic resource allocation in cognitive
wireless networks. Mobile Networks and Applications, 13(5):431-441, Oct. 2008.

C. J. Rieser. Biologically inspired cognitive radio engine model utilizing
distributed genetic algorithms for secure and robust wireless communica-
tions and networking. http://scholar.lib.vt.edu/theses/available/etd-10142004-
023653/, Oct. 2004.

M. Roth and S. Wicker. Termite: ad-hoc networking with stigmergy. In IEEE
Global Telecommunications Conference, 2003. GLOBECOM ’03, volume 5, pages
2937-2941 vol.5, 2003.

S. Selvakennedy, S. Sinnappan, and Y. Shang. A biologically-inspired cluster-
ing protocol for wireless sensor networks. Computer Communications, 30(14—
15):2786-2801, Oct. 2007.

S. Sengupta, R. Chandramouli, S. Brahma, and M. Chatterjee. A game theoretic
framework for distributed self-coexistence among IEEE 802.22 networks. IEEE
Global Telecommunications Conference (GLOBECOM), pages 1 —6, nov. 2008.

S. Sengupta, R. Chandramouli, S. Brahma, and M. Chatterjee. A game theoretic
framework for distributed self-coexistence among IEEE 802.22 networks. In
Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages
1-6, 2008.

C. E. Shannon. Communication in the presence of noise. Proc. Institute of Radio
Engineers, 37(1):10-21, 1949.

E. A. Smith. Anthropological applications of optimal foraging theory: a critical
review. Current Anthropology, 24(5):625-651, 1983.

Y. Tan, S. Sengupta, and K. P. Subbalakshmi. Competitive spectrum trading in
dynamic spectrum access markets: A price war. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, pages 1-5, 2010.

Y. Tan, S. Sengupta, and K. P. Subbalakshmi. Human society inspired dynamic
spectrum access networks: The effect of parochialism. In Global Telecommuni-
cations Conference (GLOBECOM 2011), 2011 IEEE, pages 1-5, 2011.

B. Wang and K. J. R. Liu. Advances in cognitive radio networks: A survey. IEEE
Journal of Selected Topics in Signal Processing, 5(1):5-23, Feb. 2011.

M. Wang and T. Suda. The bio-networking architecture: a biologically inspired
approach to the design of scalable, adaptive, and survivable/available network
applications. In 2001 Symposium on Applications and the Internet, 2001. Proceed-
ings, pages 43-53, 2001.

10

[59]

[60]
[61]

(62

[63]

[64]

[66]

[67]

A. Wisniewska and B. Khan. Contention-sensing and dynamic spectrum co-use
in secondary user cognitive radio societies. In Wireless Communications and
Mobile Computing Conference IWCMC), 2014 International, pages 157-162, Aug.
2014.

Y. Xiao. Bio-Inspired Computing and Networking. CRC Press, 1 edition, Mar.
2011.

Y. Xing and R. Chandramouli. Human behavior inspired cognitive radio network
design. Communications Magazine, IEEE, 46(12):122 —127, december 2008.

Y. Xing and R. Chandramouli. Human behavior inspired cognitive radio network
design. IEEE Communications Magazine, 46(12):122-127, Dec. 2008.

Y. Xu, A. Anpalagan, Q. Wu, L. Shen, Z. Gao, and J. Wang. Decision-theoretic
distributed channel selection for opportunistic spectrum access: Strategies, chal-
lenges and solutions. IEEE Communications Surveys & Tutorials, pages 1-25,
2013.

F. R. Yu, M. Huang, and H. Tang. Biologically inspired consensus-based spec-
trum sensing in mobile ad hoc networks with cognitive radios. Network, IEEE,
24(3):26-30, 2010.

Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang. A review on spectrum sensing
for cognitive radio: Challenges and solutions. EURASIP Journal on Advances in
Signal Processing, 2010:1-16, 2010.

P. Zhang, Y. Liu, Z. Feng, Q. Zhang, Q. Li, and D. Xu. Intelligent and effi-
cient development of wireless networks: A review of cognitive radio networks.
57(28):3662-3676.

J. Zhao and X. Wang. Channel sensing order in multi-user cognitive radio net-
works. In Dynamic Spectrum Access Networks (DYSPAN), 2012 IEEE International
Symposium on, pages 397-407, 2012.



