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Abstract 

As an emerging distributed computing paradigm, fog computing provides low-latency and real-time interactive services to 

end-user or Internet of Things(IoT) devices at the edge of the network. One of the main challenges of fog computing is to 

select the right fog node to deploy and run IoT application services, which is commonly referred to as the fog service 

placement problem (FSPP). However most schemes model FSPP as a single objective optimization problem. These single-

objective optimization schemes usually cannot meet the needs of increasingly complex engineering practice. In this study, 

we model the fog service placement problem as a constrained multi-objective optimization problem, which aims to 

improve the resource utilization of the system and reduce network latency and service placement costs. Secondly, the 

elitist nondominated sorting genetic algorithm II (NSGA-II) is used to optimize the constrained multi-objective service 

placement problem. Experimental results show that the proposed scheme is superior to the existing schemes in terms of 

overall performance. 

Keywords: Fog computing, Fog service placement, Multi-objective optimization, NSGA-II. 

Received on 02 January 2022, accepted on 08 February 2022, published on 22 February 2022 

Copyright © 2022 Jiamin Niu et al., licensed to EAI. This is an open access article distributed under the terms of the Creative 

Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work 

is properly cited. 

doi: 10.4108/eai.22-2-2022.173492 

*Corresponding author. Email: gliu@xidian.edu.cn

1. Introduction

With the rapid development of the IoT, traditional cloud 

computing can no longer meet the needs of applications for 

low latency, real-time interaction and mobility awareness. 

For this reason, some scholars have introduced a more 

efficient distributed computing paradigm, which can avoid 

network bottlenecks, overcome traffic loads and reduce data 

transmission latency, usually called Fog Computing (FC) 

[1]. Due to the heterogeneity, resource limitation, and wide 

geographical distribution of fog devices, how to efficiently 

organize and manage the resources in fog devices has 

become a hot research area in the field of fog computing.  

One of the challenges of fog computing is to determine 

which services each fog node should host to meet user 

requirement , commonly referred to as the Fog Service 

Placement Problem (FSPP) [2]. It is necessary to consider 

the heterogeneity of fog nodes, the special attributes of 

applications, and the diversity that users expect in FSPP. For 

example, with the increasing complexity of scientific 

research and engineering practice, it is required to consider a 

set of optimal balanced solutions among several mutually 

exclusive objectives to meet the needs of practical 

applications when formulating of fog service placement 

strategy. These aspects complicate the placement problem, 

and also make the solution of the placement problem a 

challenging problem.  

Due to these challenges, existing researches on fog 

service placement usually have limitations in terms of 

practicability and performance. These researches mainly 

optimize service placement in terms of the cost, resource 

utilization, latency, QoS and power consumption 

[3][4][5][6]. Most of them model FSPP as a single objective 

optimization problem, only focusing on optimizing a 

performance indicator of the fog service placement. 

Although a few researches have considered multi-objective 
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optimization of FSPP, they usually use linear summation 

function to convert multiple objective functions into single 

objective optimization problems. Other multi-objective 

evolutionary algorithms with higher efficiency and better 

performance have not attracted extensive attention from 

researchers, such as NSGA-II. Salaht et al. [20] also pointed 

out that the modeling and optimization of the multi-

objective fog service placement problem is one of the 

important research directions in the field of fog computing. 

This paper models the service placement problem in a 

multi-objective optimization in the fog computing 

environment, and proposes a fog service placement 

optimization algorithm based on NSGA-II to solve this 

problem. The main contributions are as follows: 

(1) We build a multi-objective mathematical model of the

fog service placement problem, set up three

optimization objectives of the system: resource

utilization, service placement cost and network latency,

and take the total amount of resources required by all

services placed on the fog equipment must be less than

or equal to the resources owned by the equipment as

the constraint condition.

(2) This paper proposes an optimization algorithm for fog

service placement based on NSGA-II. The

experimental results show that the performance of the

proposed solution is greatly improved compared with

the existing weighted sum genetic algorithm.

The remainder of this paper is organized as follows. 

Section 2 reviews the related work on fog computing. 

System model and problem modeling are presented in 

Section 3. The fog service placement optimization algorithm 

based on NSGA-II is described in Section 4. Section 5 

discusses our simulation results and result analysis. Finally, 

Section 6 summarizes the whole research work.  

2. Related work

Regarding the problem of service placement in the fog 

computing environment, most of the existing optimized 

service placement algorithms focus on minimizing the delay 

perceived by users, reducing the cost of service placement, 

or improving the resource utilization of the fog layer. 

Whether the quality of service can be improved as the 

evaluation standard of the algorithm. In order to optimize 

the fog service placement problem, the existing research 

uses a variety of optimization algorithms, such as linear 

programming [3][7][8], complex network theory [9], 

Markov process[10], genetic algorithm [11][12] and Petri 

net [13], etc. 

To our knowledge, only a few researches have focused on 

the modeling and optimization of multi-objective FSPP. 

Skarlat et al. [12] introduced the concept of fog community, 

and proposed the optimal service placement scheme 

between communities. This scheme takes response time and 

service quality as the optimization objectives, and uses a 

genetic algorithm to determine whether to place the service 

in the community or to transmit the service to the adjacent 

community for each community. Yang et al. [15] 

constructed a mathematical model of cost-aware service 

placement problem, and the problem was solved based on 

genetic algorithm, integer linear programming and heuristic 

greedy algorithm. Although the above-mentioned solutions 

model a multi-objective FSPP, they use a weighted sum 

genetic algorithm to optimize the proposed model, which is 

a single-objective optimization problem essentially. The 

weighted-sum genetic algorithm performs poorly in solving 

FSPP, as shown in the following experiments.  

In order to explore other heuristic algorithms with higher 

solving efficiency, Moallemi et al. [11] proposed a meta-

heuristic algorithm based on NSGA-II to solve the service 

placement problem. The proposed scheme not only 

maximizes the service range of each edge node, but also 

minimizes the waste of resources by reducing the overlap 

area between these nodes. However, the proposed scheme 

does not take network latency as the optimization objective. 

Zhang et al. [16] defined the optimal controller placement 

problem as a multi-objective optimization problem, 

optimizing network reliability, load balance among 

controllers, and low delay between controllers and switches. 

The adaptive bacterial foraging optimization algorithm is 

proposed to optimize the problem, but the resource 

utilization and service placement cost of the fog layer are 

not considered in the proposed scheme. The FSPP problem 

was represented as a multi-objective optimization problem 

by Natesha et al. [17], who applied a genetic algorithm 

based on an elite approach to solve it. They optimized the 

energy consumption, service time, and cost, but the 

proposed scheme failed to account for fog layer resource 

usage. 

3. System model

This section first describes two models related to the FSPP 

problem: the IoT application model based on microservice 

and the system model of fog computing. The mathematical 

model of the multi-objective fog service placement problem 

is built on the foundation of these two models. Based on 

these two models, the mathematical models of optimization 

objectives and constraints of FSPP are proposed. 

3.1. An Application Model of IoT based on 
Micro-service 

Some existing researches have processed the placement of 

virtual machines(VM), virtual data centers or services. The 

placement of services is different from the other two, which 

represents a more fine-grained level of the same problem 

[26], so it is well suited to fog computing environments with 

limited resources. We use an IoT application model based 

on microservice, which is composed of a set of small 

stateless services. These small stateless services 

communicate with others via messages, and they transmit 

messages to collaborate on complex tasks [18]. 
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Figure 1. An application model based on micro-
services 

Each application in the system is modeled as a directed 

acyclic graph 𝐷𝐺 = (𝑆,𝑀) . The set of points in 𝐷𝐺  is 

represented by 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑘} , denoting that the

application consists of 𝑘 small stateless services, and 𝑠𝑘  is

the 𝑘 -th service of the application. A service will be 

executed only when it receives the request message from the 

forward service. Following the execution of the service, the 

application will generate 0 or more new request messages to 

request new services until no new request messages are 

generated. According to the various service request sources 

in reference [19], there are two types of service: 1) entrance 

service, which is usually initiated by end users or IoT 

devices; 2) internal service, only requested by other services. 

In Figure 1, 𝑠1 is an entrance service, while other services

are internal services. This article assumes that each 

application has only one entrance service. 
Edge M  in DG  represents the message passing 

relationship between services, which is denoted by Mso, st ,

where so  is the source service and st  is the target service.

The end user, in particular, is the source service of the 

entrance service. In this paper, M∅,st  is used to represent the

request message between the user and the entrance service. 

The request message Mso, st  has two important characteristic

parameters: MSMso,St
 and MIMso,St

 represent the size of the

message requesting the target service and the workload that 

the target service needs to execute, respectively. The former 

determines the transmission time of the request message in 

the network, while the latter is defined as the number of 

instructions to be executed [19]. In this paper, we use binary 

variables xo,t  to describe the consumption relationship

between the source service so and the target service st. If the

source service consumes the target service, it is 1. Otherwise 

it is 0. As a result, the consumption relationship between k 

small stateless services in an application APPa  can be

represented by an adjacency matrix A of dimension k × k, 

which is expressed as follows 

A = (

x1,1 ⋯ x1,k
⋮ ⋱ ⋮
xk,1 ⋯ xk,k

)    (3-1) 

Furthermore, we use Csk  to denote the quantity of

resources required to instantiate the service sk.

3.2. Fog computing model 

In Figure 2, we consider a hierarchical edge infrastructure 

structure, which usually contains three layers: cloud layer, 

fog layer, and end end-user layer. Like the traditional cloud 

data center, the cloud layer has powerful computing and 

storage functions and provides various IoT application 

services. The end-user layer is composed of a series of IoT 

devices (sensors and actuators) or users. These devices or 

users make requests and get responses to IoT applications. 

The terminal device or user in this article is static, and its 

mobility is ignored. The fog layer is composed of network 

devices between the cloud layer and the end-user layer. 

These devices have functions such as computing, storage, 

and communication and can execute service instances. 

Figure 2. Fog infrastructure structure 

In this paper, the fog infrastructure is modeled as an 

undirected graph G = (D, E) . The set of points in G  is 

represented by D = {d1, d2, . . . , dn}. There are n fog devices,

and di represents the i-th fog device in the set. E = {ei,j} is

the set of edges in the undirected graph G, and ei,j represents

the network communication links between the two directly 

connected fog devices di and dj. We use Rdi to represent the

number of resources owned by the device di. Rdi is usually a

vector, which contains some physical properties of the fog 

device (for example, the number of cores for the CPU, 

memory size). In order to reduce the complexity of the 

model, this paper uses a scalar value to represent the number 

of resources owned by the device. Another important 

characteristic parameter of the fog equipment is the 

processing speed IPTdi, measured by the number of millions

of instructions executed per unit of time. The network 

communication links is denoted by ei,j , and each

communication link has two important characteristic 

parameters PRei,j  and BWei,j , which respectively represent

the propagation latency and the network bandwidth of ei,j.

Therefore, the network delay Lei,j(size)  for data

transmission between two directly connected fog devices di
and dj is calculated as following formula [9]:
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Lei,j(size) = PRei,j +
size

BWei,j

                      (3-2) 

 

where size represents the size of the data packet to be 

transmitted between the two devices. 

The data transmission network latency Ddi,dj  between any 

two fog devices di and dj in the fog computing network is 

the sum of the network delays for data transmission in the 

shortest path between the two fog devices. Dijkstra's 

Algorithm found the shortest path between two fog devices 

with the shortest data transmission latency. Its mathematical 

expression is as follows: 

 

Ddi,dj(size) = ∑ Leg,h(size)∀eg,h∈shortestPath(di,dj)
     (3-3) 

 

We use the binary placement decision variable pi,k  to 

define whether the service sk is placed on the fog device di. 
The formula is as follows: 

 

pi,k = {
1
0
If service S is assigned to fog node d

Other situations
              (3-4) 

 

We suppose that the system contains t  different IoT 

applications with m  various services. The placement of 

service instances on the fog device is represented by a two-

dimensional matrix P of size n × m, where n is the number 

of fog equipment in the system and m  is the number of 

various services. The service placement matrix P  is as 

follows: 

 

P =

(

 
 

p1,1 p1,2 ⋯ p1,m
p 2,1   p2,2     ⋯    p2,m

p3,1    p3,2      …   p3,m

⋮     ⋮    ⋮    ⋮
pn,1 pn,2 … pn,m)

 
 
   , pi,k ∈ [0,1]          (3-5) 

3.3. Optimization model 

We optimized the system from three different perspectives: 

1) minimize network latency, 2) maximize the system 

resource utilization, and 3) minimize the service placement 

costs. This section will describe in detail the mathematical 

model of the optimization objective we selected, and the 

mathematical model of the constraints of the FSPP. 

Network latency 
Fog computing's ability to lower service response time is 

one of the key reasons for its widespread adoption in 

numerous areas. Therefore, the first optimization objective 

is to minimize the network latency Latency, defined as the 

average value LAPPa  of the average response time of each 

application APPa in the system. The calculation formula is as 

follows: 

 

Latency =
∑ LAPPa
t
a=1

t
                       (3-6) 

 

where t  is the number of IoT applications in the system, 

LAPPA  represents the average response time of the 

application APPa. The calculation formula is as (3-7). 

 

LAPPa =
∑ F(useru,APPa)
|numa

user|
u=1

|numa
user|

                    (3-7) 

 

where |numa
user| represents the number of users requesting 

the application, F(useru, APPa) represents the response time 

of the application APPa  to the user useru , Its value is the 

interval between the sending time of the user's request to the 

APPa and the completion time of the last service in the APPa. 
As shown in the application model in section 3.2, the 

response time of APPa  to the user useru  is determined by 

communication latency among services contained in the 

application and calculation delay of the service instance on 

the fog device. Calculate the response time of the service 

using the APPa's entry service as an example. When a user 

requests APPa, the gateway di
gw

 sends the request to the fog 

device di nearest to the user, which is deployed with sk for 

processing. The shortest distance between two fog devices is 

calculated by Dijkstra's algorithm, meaning that the user 

requests the closest service. The network latency of the user 

request message can be expressed as the network latency 

Ddi
gw
,di
(MSM∅,st

) required to transmit the request message 

M∅,st  between di
gw

 and di, and its value can be calculated by 

formula (3-3). The execution time ET(sk, di) of service sk 

on fog device di is calculated as follows: 

 

ET(sk, di) =
MIM∅,st

IPTdi

                         (3-8)  

 

Therefore, the response time of entry service sk  is 

RS(sk) = Ddi
gw
,di
(MSM∅,st

) + ET(sk, di) . After the 

execution of sk is completed, the matrix A can be queried to 

find the service set consumed by sk , and then for each 

service sk
∗  in the set, the Dijkstra’s algorithm is used to find 

the fog device that is nearest to the fog device di and the 

service sk
∗  is deployed. Then sk sends a new request message 

Msk,sk
∗  to the service sk

∗ , and the response time of sk
∗  is 

calculated in the same way as sk . Repeat the the process 

until a service no longer generates a request message or the 

last service of the APPa completes a response. 

Resource utilization 
An essential issue in fog computing is to optimize resource 

utilization while maximizing the number of services placed 

on fog equipment [20]. The second optimization objective is 

to maximize resource utilization. It is defined as the ratio of 

the total resources required by all services deployed in the 

system to the total amount of resources provided by all fog 

devices. The mathematical expression is as follows: 

 

Resource Usage =
∑ ∑ pi,k×Csk

m
k=1

n
i=1

∑ Rdi∀di∈D
                (3-9) 

 

EAI Endorsed Transactions on 
Internet of Things 

04 2021 - 02 2022 | Volume 7 | Issue 26 | e5



Service Placement Optimization Based on Evolutionary Algorithm in Fog Computing 

 

 

 

5 

We transform the problem max(ResourceUsage) into a 

minimization problem. The value of the resource utilization 

of the objective function is less than or equal to 1, so we 

convert maximizing the resource utilization of the system 

into minimizing the idle resource ratio of the system via 

formula (3-10). The idle resource ratio has the following 

definition: 

 

Free Resource = 1 − Resource Usage        (3-10) 

Service cost 
Cost-related factors are becoming increasingly important in 

fog resource management, whether from the perspective of 

service providers or end users.  Therefore, the third 

optimization objective is to minimize the service cost Cost. 
The total cost Cost  of the service mainly depends on the 

storage cost β per unit time of the fog device, the number of 

service instances deployed in the fog layer, and the time τ of 

the service placement. Cloud data center and fog equipment 

have the same β  [21]. The proposed service placement 

strategy will solve FSPP periodically, and the life cycle τ of 

service instance on fog device will end with the deployment 

of new service placement scheme. Therefore, in this article, 

τ is the cycle that the service placement strategy solve the 

fog service placement problem. In summary, the calculation 

method of service cost is as follows: 

 

Cost = βτ(∑ Csk
m
k=1 + ∑ ∑ pi,k × Csk

m
k=1

n
i=1 )       (3-11) 

Constraint condition 
The constraint condition of FSPP is that the resources 

consumed by the services in the fog device must be less than 

or equal to the resources owned by these devices. The 

mathematical expression is as follows: 

 

(∑ pi,k × Csk
m
k=1 ) ≤ Rdi , ∀di ∈ D               (3-12) 

 

In summary, our goal is  min(Free Resource) ∧
min(Cost) ∧ min(Latency) . we solve the optimal service 

placement matrix P under the constraints of formula (3-12). 

Therefore, the fog service placement problem in this paper 

can be described as follows: 

 
P: min(Free Resource, Cost, Latency)

Subject to (3 − 12)
        (3-13) 

4. Fog service placement optimization 
algorithm based on NSGA-II 

Because the service placement problem in the fog 

computing environment is NP-hard [27], heuristic 

algorithms can study a larger search space and give feasible 

solutions in polynomial time. Therefore, we use NSGA-II 

proposed by Deb et al. [22] to solve the FSPP. We will 

describe the implementation details of fog service placement 

algorithm based on NSGA-II in this section. 

4.1. Individual representation and population 
initialization 

In the implementation of the algorithm, the service 

placement matrix P  of size n × m  is regarded as a 

chromosome, as shown in formula (3-5). The initial 

population consists of N randomly generated chromosomes. 

4.2. Genetic operator 

Crossover operator 
The single-point crossover method is used between the two 

parents for crossover operation. The crossover probability Pc 
is one of the parameters the crossover process. When a 

crossover operation is performed, a random value will be 

generated in the range of [0,1]. Only when the value is less 

than or equal to the crossover probability Pc  will the 

crossover operation be performed. When performing the 

crossover operation, the algorithm randomly selects a 

crossover point r  in the matrix defined by formula (3-5), 

where r  is between 1 and n . The crossover point 

corresponds to the starting number of the row to be 

exchanged in the matrix, and new offspring are generated by 

exchanging the r-th row and subsequent rows of the two 

service placement schemes. Figure 3 shows the structure 

diagram of the chromosome structure of the two offspring 

Pi
∗  and Pj

∗  produced by the two fathers Pi  and Pj  after 

performing the crossover operation, where r represents the 

crossover point, and Pn,m
i  is the service placement decision 

variable of solution Pi, indicating whether the fog device d 

instantiates service sm in solution Pi. The meaning of Pn,m
j

 is 

similar. 

 
Figure 3. The offspring chromosomes after the 

crossover operation 

Mutation operator 
In this paper, the mutation operators in genetic operations 

can expand the search space and avoid falling into local 

optima. The mutation operation consists of two parts: 

randomly increasing or decreasing the number of each 

service instance by iterating each row of the individual's 

chromosome that needs to be mutated; randomly selecting a 

subset of the service in the system and instantiating it in all 

fog devices. 

Modified operator 
The individuals in the initial population and the individuals 

obtained after mutation may violate the constraint (3-12); 

EAI Endorsed Transactions on 
Internet of Things 

04 2021 - 02 2022 | Volume 7 | Issue 26 | e5



 
Jiamin Niu et al. 

  6      

that is, the total number of resources required for the 

services placed on the fog device exceeds device capacity. 

We define a modified operator to modify it. This operator is 

an iterative process that randomly deletes deployed service 

instances from fog devices that violate constraints until the 

resources consumed by the placed services are less than or 

equal to the device capacity. 

4.3. Fog service placement optimization 
algorithm based on NSGA-II 

The pseudo code of the fog service placement optimization 

algorithm based on NSGA-II is given in algorithm 1. The 

input parameter  of this algorithm is used to generate the 

initial population. Since there may be illegal solutions in the 

randomly generated initial population , it is necessary to 

correct the illegal solutions in the population using a 

modified operator (line 1). 

Individual fitness is expressed as a vector fitness =
[f1(x), . . . , fm(x)]

Tin Algorithm 1, which is composed of the 

value of the individual's objective function. Sorting 

individuals in the population according to their fitness is the 

core of the NSGA-II algorithm. In order to screen out the 

elite individuals to construct the next-generation population, 

Algorithm 1 introduces two fundamental concepts in the 

NSGA-II algorithm: fast non-dominated sorting operator 

and crowded distance.  

The fast non-dominated sorting operator [22] divides the 

population into multiple non-dominated levels and assigns 

each individual a non-dominated order value(lines 2 and 

14). The basic steps of the fast non dominated sorting 

operator are as follows: 

(1) Let ∂ = 1, then calculate the Pareto optimal set of the 

population, and set the non-dominated order value of 

each individual in the Pareto optimal set to ∂, where 

∂ = ∂ + 1; 

(2) Remove individuals from the population that have been 

assigned a non-dominated order value, calculate the 

Pareto optimal set in the current population, and set the 

non-dominated order value to ∂ for each entity in the 

set, where ∂ = ∂ + 1; 

(3) Repeat step 2 until the population is empty. 

After executing the fast non-dominated sorting operator, 

each individual in the population has a non-dominated order 

value. The lower a non-dominant order value of an 

individual, the more adaptable it is to the environment, and 

the more probable it is to be selected to join the next-

generation population. 

 

Algorithm 1 calculates the individual crowding distance 

on line 14 to sort the individuals in the same non-dominated 

level. Crowding distance, which represents the density of 

individuals at a non-dominated level, is defined as the 

Euclidean distance between the current individual and two 

adjacent individuals. In order to maintain the population 

diversity, the individuals with large crowding distances are 

preferred to enter the next generation population when the 

non-dominated order values of individuals are equal. 

After the operation of the non-dominated sorting operator 

and the crowding distance operator, each individual has two 

attributes: the non-dominated order value rank(p) and the 

crowded distance distance(p) . The individuals in the 

population are sorted according to the following rules: when 

either rank(p1) < rank(p2)  or ( rank(p1) = rank(p2)  and 

distance(p1) > distance(p2) ) is established for any two 

individuals p1 and p2 in the population, the individual p1 is 

better than p2, that is, the fitness of individual p1 is higher 

than p2. 

For the next generation parent population, algorithm 1 

uses an elite selection strategy. That is, a new population is 

created by merging the generated offspring Poff  with the 

previous parent population Pt , and the new population is 

sorted according to the individual's non-dominated order 

value and crowding distance (line 14). Then the first 

populationSize  individuals are selected from the ordered 

population to establish the parent population of the next 

generation (line 15). 

5. Performance analysis 
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5.1. Simulation settings 

(1) Network topology: The paper uses the randomly 

generated Albert-Barabasi network as the network 

infrastructure in the experiment. This network model is 

widely used in the research of fog resource 

management [23]. In the study, the concept of 

betweenness centrality is introduced to distinguish the 

devices in the network, and the node with the highest 

betweenness centrality is selected as the cloud data 

center. On the contrary, the gateway device is selected 

from the nodes with low betweenness centrality. The 

network scale in the experiment is set to 100, and 25 

fog devices with low betweenness centrality are 

selected as the gateway. Users must use the gateway to 

send requests to IoT applications. Users connected to 

each gateway follow a uniform distribution. 

(2) Network and device parameters: In the experiment, we 

assume that the propagation delay among fog devices 

is U(1,2)ms, and that propagation delay between fog 

devices and cloud data centers is U(15,30)ms [24]. 

The bandwidth size in the network link is set to 

7500bytes/ms [9]. The resource capacity Rdi  of each 

fog device is U(4,10)MB, and the processing speed 

IPTdi  of the fog device is U(100,1000)MIPS [9]. In 

particular, the resource capacity of dcloud  is infinite, 

and its processing speed is 10000 MIPS. The service 

instance in the cloud data center and fog equipment has 

a storage cost per unit time β of 0.004Mb/s, and the 

optimization cycle τ of FSPP is 2min [24]. 

(3) IoT application parameters: Each IoT application is 

composed of U(2,10) small stateless services, each of 

which requires U(1,5)MB of resources to place. The 

number of instructions to be executed by each service 

is U(20000,60000), and the size of messages to be 

transferred between services is U(1500000,4500000) 
[9]. 

(4) Evolutionary algorithm parameters: the population size 

is 100, the probability of crossover is set as 1.0, the 

probability of mutation is set as 0.1, and the number of 

iterations is set as 200. 

Furthermore, the Pareto optimum set, which is a 

collection of non-dominated solutions, is the output result of 

the fog service placement optimization algorithm based on 

NSGA-II. We assign a weight to each objective function in 

the multi-objective optimization problem and then sum them 

to choose the optimal individual from the Pareto optimal set 

for experimental analysis. The sum value is taken as the 

criterion to select the best individual from the Pareto optimal 

set. The general form is as follows: 

 

f = ∑ wi × fi(x)Ω                              (5-1) 

 

where wi ∈ [0,1] is the weight, and Ω denotes the number 

of objective functions. fi(x)  is the value of the objective 

function. 

 

 

Each individual objective function value needs to be 

normalized before using formula (5-1), and the normalized 

objective function value is bring into the formula 5-1 to 

calculate the fitness value of the individual. Combining 

formulas 3-9, the value of the optimization objective 1 −
Resource Usage is between 0 and 1, so it does not need to 

be normalized. The formula of normalization of Cost  and 

Latency is as follows: 

f ′i(x) = {
fi(x) − fi

min(x)

fi
max(x) − fi

min(x)

0

, fi
max(x) ≠ fi

min(x)

, fi
max(x) = fi

min(x)
 

where fi(x)  is the objective function value ( Cost  or 

Latency ), fi
max(x)  is the largest fi(x)  in the current 

population size, and fi
min(x)  is the smallest fi(x)  in the 

current population size. 

It is worth noting each optimization objective is assigned 

the same weight of 1/3. 

5.2. Analysis of experimental results 

The effect of population size on the proposed 
scheme 
We explored the effects of various population sizes on the 

experimental results first. In order to reduce the error of the 

experimental data, the experimental data are the average 

values after running 10 times in this article. Figure 4 shows 

the change of the sum of the weights of the optimal 

individuals in the Pareto optimal set in each iteration when 

the population size is 50, 100, and 150, respectively. The 

larger the population size, the fewer iterations the algorithm 

reaches convergence. This paper focuses on the 

minimization process, so the sum of the weights is 

proportional to the optimization effect. 

Figure 5 shows the variation in the time required for each 

iteration of the scheme proposed in this paper with the 

number of iterations when the population size is 50, 100, 

and 150 respectively. The time required in each iteration 

will increase as the population size increases. This is due to 

the time complexity of NSGA-II is O(MN2) [22], where M 

is the number of optimization objectives and N is the size of 

the population. The weight sum value of the optimal 

individual and the iteration time of the algorithm are both 

good when the population size is 100, as shown in Figs. 5.1 

and 5.2, so the population size is set to 100 in the next 

experiments. 

Scheme comparison 
In order to verify the performance of our scheme, we use the 

weighted sum genetic algorithm (WSGA) to optimize the 

multi-objective fog service placement problem constructed 

in this paper. This solution is the most widely used 

optimization algorithm to solve multi-objective optimization 

problems in existing studies [12][25]. The main idea is as 

follows: each objective function in the multi-objective 

optimization problem is assigned a weight, and the weight 

sum is used as the individual scalar fitness value. In the 

following, we compare the NSGA-II algorithm with the 

WSGA algorithm.   
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Figure 4. The effect of population size on the sum of weights

 
Figure 5. The effect of the population size on the iteration time

 

Figure 6. Comparison of the weighted sum value 

 

Figure 6 shows the change of the weighted sum value of 

the optimization objectives of the two optimization 

algorithms in optimal schemes under different iterations. 

The optimization target weighted sum value of the optimal 

solution changes more slowly and requires the most 

iterations to converge for the WSGA algorithm. As for 

NSGA-II algorithm, the weighted sum value of the 

optimization objective of the optimal scheme is the 

minimum when the algorithm converges. Therefore, from 

the perspective of weighted sum value of optimization 

objective of the optimal scheme, NSGA-II algorithm has 

better performance than WSGA algorithm. 

In order to further analyze the two optimization 

algorithms, we compare the three objective function values 

of the optimal scheme in each iteration. Figure 7, Figure 8, 

and Figure 9 respectively show the changes in idle resource 

utilization, service cost, and network delay of the optimal 

solution selected by the two optimization algorithms in each 

iteration. First, the solution proposed in this paper is much 

better than the WSGA method in terms of the system's idle 

resource rate. It can be seen from formula 3-10 that the idle 

resource rate of the system is inversely proportional to the 

resource utilization of the system. Therefore, the NSGA-II 

algorithm precedes the WSGA algorithm in terms of system 

resource utilization rate.
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Figure 7. Comparison of free resource ratio 

 

 
Figure 8. Comparison of service costs 

 

 
Figure 9. Comparison of network latency 

Secondly, the optimization algorithm proposed in this 

paper is worse than the WSGA algorithm from the 

perspective of service cost. This is because the amount of 

resources owned by each fog device remains constant 

during the evolution process. That is, the denominator in 

formula 3-9 is constant, so the resource utilization rate of 

the system is proportional to the total amount of resources 

required to instantiate deployed services. For the 

calculation of service cost, we assumed the number of 

services on the cloud server remains constant in system 

during the evolution process. That is, the service 

placement cost remains constant on the cloud server. 

According to formula 3-11, the service cost is 

proportional to the total amount of resources required to 

instantiate deployed services. Therefore, the change trend 

of system resource utilization and service cost is 

consistent. Only the cost of placing service instances on 

the fog device is considered in this article, while the 

communication cost and calculation cost of the service are 

ignored, resulting in the above situation. We will build a 

more complex service cost model in future work.  

From the perspective of network delay, the 

optimization algorithm proposed is better than WASG 

algorithm. As show in Fig. 5.6, in the early stages of the 

iteration, the network delay of the optimal solution 

selected by the NSGA-II algorithm is extremely irregular. 

However, the optimal individuals selected from this 

algorithm have the smallest network latency in most 

cases. 

Based on Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6, the 

performance of the WSGA algorithm is relatively poor, 

and only the service cost is better than the other two 

optimization algorithms. The NSGA-II algorithm 

achieves the highest optimization goal, but the service 

cost of the algorithm is higher than WSGA algorithm. In 

addition, the NSGA-II algorithm has a faster convergence 

rate than the WSGA algorithm. 
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6. Conclusion 

This paper proposes an optimized service placement 

scheme in a fog computing environment.The goal of the 

algorithm is to increase the resource utilization of the fog 

layer as much as possible, reduce the network latency, and 

reduce the cost of service placement. Considering that the 

service placement problem in the fog computing 

environment is NP-hard, an evolutionary algorithm named 

NSGA-II is applied to optimize the solution of multi-

objective FSPP. The experimental results show that the 

solution proposed in this paper has excellent performance 

compared with the existing solutions. The experimental 

results show that the solution proposed in this paper has 

better performance than existing solutions. In future work, 

we will build a more complex mathematical model of 

service placement costs, which includes not only the cost 

of service placement, but also the storage, communication 

and computing costs of services. In addition, using other 

meta-heuristic algorithms (MOA/D, PSO, etc.) to 

optimize multi-objective service placement schemes is 

one of the future research directions. 
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