
Emulation of peripherals for automotive

electronic control unit

Juraj PANČÍK 1, Vladimír BENEŠ2

 {jpancik@bivs.cz1, vbenes@bivs.cz2}

Department of Informatics, Vysoká škola regionálního rozvoje a Bankovní institut - AMBIS, a.s.,

Praha

Abstract. The aim was to develop an embedded system for educational purposes

with functions of emulation of some peripherals which are intended for automotive

electronic stability control unit (ESC ECU). Emulators of two key ECU peripherals were

developed: one for four wheel speed sensors (both two and three current levels types) and

second for electronic parking break (EPB) switch based on LIN bus. As real-time

processors the Arduino Micro platform was chosen. The up level information system

architecture is based on the web server (Raspberry Pi 3 platform) and web browser client

and programming was done with JavaScript language for the client (AngularJS framework)

and also for server (Node.js).

Keywords: EPB system; wheel speed sensor; LIN bus; Arduino; Raspberry Pi;

Node.js

1 Introduction

This work presents educational tool for the teaching of modern trends in automotive

electronics. The aim was to develop a embedded system with functions of emulation of some

peripherals which are intended for automotive electronic control units (ECU, Electronic Control

Unit). The ECU is surrounded with peripherals (e.g. by sensor and another hardware parts) and

it interacts with their surroundings via car's buses (e.g. CAN, LIN, FlexRAY) or via cable

harness and electromechanical systems (e.g. ignition switch or EPB switch). ECU system tests

serve to test all required functions ECU. For operations of ECU during system tests is typical

that these activities are consistent with the ECU in the car. It is necessary to emulate of ECU’s

peripherals during systems tests. Therefore emulation of the ECU’s peripherals is not only

suitable for educational use of the future technicians and engineers but it may also be useful for

preparing of ECU system test. In next text is necessary to understand how differences are

between simulation and emulation. A simulator is an environment which models but an emulator

is one that replicates the usage as on the original device or system. Simulation is when you are

replicating, by the means of software, the general behaviour of a system starting from a

conceptual model. Emulation is when you are replicating, in a different system, how the original

system actually internally works considering each function and their relations. In other words:

simulation is based on a software implementation of a model where the internal functions of the

original systems are not taken into consideration (for example a "flight simulator" does not have

any "component" of an actual aircraft). Emulation is a replica of the internal system functions

MMS CONFERENCE 2017, November 22-24, Starý Smokovec, Slovakia
Copyright © 2018 EAI
DOI 10.4108/eai.22-11-2017.2274998

on a different host (for example on a microcontroller platform). Emulators can also be strictly

hardware-based and is normally based on a partial or complete "reverse engineering" phase.

2 ANALYSIS

2.1 Description of EPB system

 Since the EPB was first launched in 2001 the number of its functions continues to rise

significantly. The EPB offers by far more than the basic apply and release of a conventional

parking brake. It interacts with several other driver assistance systems. The driver experiences

the EPB system by its functions. He expects safety and reliability at low “costs of ownership”

with a highly comfortable “look and feel”. The system supplier needs to translate these mainly

subjective expectations into physical characteristics of the system and design its components

against measurable targets. Figure 2 gives an overview of the EPB system with the functionality

perceived by the driver on the one hand and the components with their technical characteristics

on the other hand. The EPB system consists of the mechatronic actuators that generate the clamp

force necessary to safely hold the vehicle, the conventional calipers that convert clamp force

into brake torque, electronic hardware with the Electronic Control Unit (ECU), cable harness

and switches and especially the control software providing the functions that the driver will

experience. State of the art is to integrate the EPB control unit into one ECU in the car with

name electronic stability control system (ESC ECU) [1]. On the market there are Original

Equipment Suppliers (OES) - specific solutions as well as OES - independent combinations

from different ECU ESC and EPB suppliers. The latter case is commonly called crosswise

integration of products from different suppliers and it is dictated and originated in modern global

market with automotive components. The integrated EPB system can be divided into two parts:

(1) One part of the EPB system contains the parking brake actuator, the parking brake caliper

and the actuation logic (Park Brake Control, PBC), (2) The second part of the EPB system, also

called the host, contains the EPB power electronics and necessary peripherals and EPB controls

the functions as a part of the ESC ECU’s embedded software. In crosswise integration projects

the OES-EPB is responsible for the first part and the OES-ESC for the second part. The aims of

this division are: (a) encapsulation of knowledge about particular components, (b) clearly

defined areas of responsibility, (c) independent testing and approval of components from the

different suppliers, (d) enabling manufacturer-specific levels of functionality of the individual

components. The development and release of such integrated systems needs clear requirements

for the interfaces and rules for collaboration between the development partners.

2.2 Peripherals of Electronic Stability Control (ESC ECU) with EPB functionality

The block diagram of the ECU with ESC EPB functionality is showed in Fig.3 [2].

According to it, there are two types peripherals for ESC ECU - peripherals connected to the

car’s buses (CAN or FlexRAY) and peripherals directly connected to the ECU (wheel speed

sensors and the EPB switch). The EPB classical electro-mechanical switch is connected to the

ESC ECU with 6 wires (with states: default open, close, Fig.4) or with 8 wires (with AutoHold

function). Four pieces of wheel speed sensors (WSS) are connected to the ESC ECU each with

two wires and they communicate with ECU by using current signals (the principle of current

loop).

3 DESIGN AND IMPLEMENTATION

Wheel speed sensors (WSS) are components with analog current output. WSS are produced

as devices with 2 levels (2L) current outputs [3] and with 3 levels (3L) current outputs [4].

Therefore information about wheel position is encoded by two or three levels of current (7mA,

14mA and 28mA current levels). For determine of exact position of the wheel we need to know

the wheel circumference and the number of magnets placed around the perimeter of the wheel.

LIN (Local Interconnect Network) is a cost-effective and deterministic communication system

for connecting ECUs with smart sensors and actuators. The EPB electromechanical switch is in

our contribution modified by utilization of the LIN bus, see more in the US patent [5]. Instead

normally 6 or 8 wires we use only 3 wires. The trends reducing of number of peripherals wires

by utilization of LIN bus can be seen in all modern cars [6]. In our solution of peripherals

emulator we tried to use a maximum amount of modern technology well known in the

community of developers. We used hardware platforms as Linux based minicomputer –

Raspberry Pi and as 8 bit AVR microcontroller for real time signal processing – Arduino Micro.

The information system architecture is based on the web server and web browser client and

programming was done in JavaScript language for the client (AngularJS framework [7]) and

also for server (Node.js [8]).

Fig.8 shows the architecture of the embedded system - right side represents the ECU

("Phantom" ECU side) and it consumes voltage and current signals from emulators at left side.

The heart of each emulator’s part is Arduino Micro. The programs for all four Arduino's we

developed in Arduino IDE environment which is enriched with many libraries and with like C

programming language [9]. On the both sides the Arduinos work besides programs in main loop

also with programs which were written in interrupt routines. Main loop ensures state machine

control and I2C bus communication. Interrupts are derived from serial port (RX or TX) or from

internal timers and digital inputs. All distributed Arduino's are controlled via I2C bus from

Raspberry Pi [10]. Both Raspberry Pi units have server’s role and they have installed Node.js

[8]. This server's solution can be programmed with JavaScript language. It means that both

sides, clients and servers, can be programmed with common JavaScript language. It includes

not only programming of the web server but also the control of I2C hardware pins for Raspberry

Pi at the I2C master side [11]. There are two client’s web sites in this embedded solution. One

website serves for setting of parameters for peripheral emulation and another website serves for

reading data captured at the ECU side. The developing of both client's web sites we done with

utilization JavaScript-based open-source front-end web application framework AngularJS [7]

and dynamic JSON data resources which represent inputs / outputs data ARDUINO's.

4 IMPLEMENTATION

4.1 WSS emulator

 We emulate all four car's WSS with 2 or 3 levels current output signal. Computing power

of Arduino Micro can serve only for two wheel’s pair emulating and it can't independent emulate

of each WSS individually. Therefore we can emulate independent front wheels pair as two

levels WSS and rear wheels pairs as three levels WSS (or vice versa). Current level pulses were

generated via combination of digital controlled analog multiplexer as voltage level selector and

open collector driver as voltage – current transformer. Two levels WSS (BOSCH DF11 and

DF30, (see Fig.5)) can be offered with different signal protocols [3]. The "s" protocol is a square

wave signal as rotary speed signal. The "i" protocol is a square wave signal with additional

information which is transmitted in the pulse width modulation (PWM) protocol. The width of

the square wave impulse includes additional information, while the time between one pulse and

the next determines rotary speed information. The “v” protocol is a three level current signal

that provides wheel speed information and additional information in a serial data protocol in

accordance to the “AK-Protocol” [12]. The magnetic sensor on the wheels perimeter generates

an output protocol after every detected magnetic signal flank, therefore its output signal

frequency is twice as high as for the standard "s" protocol variant. At emulator’s ECU side we

uses for detection current level pulses from each pair of WSS for ECU dedicated front–end

device MAX9921 [13] and ARDUINO Micro (Fig.8) as device for real-time capturing logic

level signals from front-end MAX9921. Arduino Micro also ensures I2C communication with

up level Raspberry Pi 3 minicomputer. Fig.6 shows our real measurements of output current for

emulation of DF11i in stop vehicle state (“standstill mode”).

4.2… EPB switch emulator

Implementation of the EPB switch is based on the implementation of one pair of LIN

bus nodes. One node is the master (ESC ECU side) and second one is the slave (EPB switch

emulator side). The implementation of such pair is not trivial task not only from technical point

of view but also from functional safety reasons. EPB switch can play crucial role in car's safety.

In order to demonstrate these approaches we added to the standard LIN bus protocol additional

safety options. Fig.7 shows the screenshot from LIN bus communication monitor used by us.

At this picture are showed LIN bus communication frames recorded between ESC ECU node

and EPB switch emulator node. Each row (record) represents one frame of LIN bus

communication. First byte represents the command from MASTER and remains bytes represent

a SLAVE answer from emulator’s side. The enhanced checksum is defined by LIN bus standard

as checksum including the data bytes and the identifier in addition and it is carried in the last

(5th) byte of the frame. The EPB switch states are coded in the 3rd byte (Open, Close and

Default). The checksum is calculated by slave node (EPB switch) e.g. by Arduino Micro’s 8-bit

AVR processor. We developed additional two security options. First is the implementation of

so called "alive frame counter" (high nibble of 2nd byte in the frame), second option is

calculation of additional checksum known as cyclic redundancy check byte (first byte in the

frame). Both security options are defined in AUTOSAR standard. For CRC calculation was

used the algorithm according AUTOSAR E2E Profile 1[14] and it is known as CRC-8-SAE

J1850. Calculation of this checksum is also provided by AUTOSAR CRC library, which

typically is quite efficient and may use hardware support. Useful educational information about

CRC-8-SAE J1850 calculation and implementation details we found in [16]. The issue of

functional safety for LIN bus-based ECU peripherals according automotive function safety

standard ISO 26262 is beyond scope of this paper [15].

4 CONCLUSION

This article deals with analysis, design and implementation of the equipment that is

designed for emulation of signals dedicated as inputs for electronic stability control ECU. We

developed emulators of two key peripherals: one for wheel speed sensors (both two and three

current levels types) and second for EPB switch. The main goal of our work was developing an

educational system which is based on modern open-source technologies. This embedded system

is based on the state of art embedded server-client software solutions with JavaScript. Besides

of these educational aims we try to coexist with modern automotive trends – alignment of high

level functional safety requirements together with using of peripherals which are equipped with

car’s buses. As illustration of these principles we proposed the EPB switch based on the LIN

bus. Our possible contribution may be in the implementation of modern AUTOSAR network

safety mechanism and parts of master/slave LIN bus state machines at open Arduino platform.

References

 [1] REITZ, A. et all., "HARMONISATION OF THE RELEASE PROCESS FOR

ELECTRIC PARKING BRAKE SYSTEMS," in Pub. FISITA, Proceedings of the EuroBrake 2016

Conference. 13-15 June 2016, Milan, Italy, 13-15 June 2016, MILAN, 2016.

[2] BOSCH, Encyclopedia of Automotive Engineering, John Wiley & Sons, Ltd., 2014.

[3] BOSCH, "DF30H Basic Technical Documentation Sensor DF30H," 2015.

[4] PHILIPS SEMI., "KMI22/1 Rotational speed sensor for extended air gap application and

direction detection," 2000.

[5] US Patent 20080105502, ""Electromechanical Parking Brake Device and Electronic

System for Operating Same"," 2008. [Online]. Available:

http://documents.allpatents.com/l/50722962/US20080105502A1. [Accessed 13. March 2013].

[6] BMW, ""E70 Voltage Supply and Bus Systems"," 2010. [Online]. Available:

http://www.bmwmotorsports.org/pdf/e70/03a_E70%20Voltage%20Supply%20and%20Bus.pdf.

[Accessed 13. March 2013].

[7] "AngularJS," [Online]. Available: https://angularjs.org/. [Accessed 13. March 2017].

[8] "Node.js - JavaScript runtime built on Chrome's V8 JavaScript engine," [Online].

Available: https://nodejs.org/en/. [Accessed 13. March 2017].

[9] "Arduino Micro," [Online]. Available:

https://www.arduino.cc/en/Main/arduinoBoardMicro. [Accessed 13. March 2017].

[10] "RASPBERRY PI 3 MODEL B," [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 13. March 2017].

[11] “I2C interfacing Raspberry PI to Arduino," [Online]. Available:

https://www.slideshare.net/MikeOchtman/i2c-interfacing-raspberry-pi-to-arduino. [Accessed 13.

March 2017].

[12] CONTINENTAL, "Wheel Speed Sensor (WSS)," [Online]. Available:

http://www.continental-

automotive.com/www/automotive_de_en/themes/commercial_vehicles/chassis_safety/speed_sensors/

wheel_speed_sensor_en.html. [Accessed 13. March 2017].

[13] MAXIM, "MAX9921 Dual, 2-Wire Hall-Effect Sensor Interface with Diagnostics,"

January 2010. [Online]. Available: https://www.maximintegrated.com/en/products/analog/sensors-

and.../MAX9921.html. [Accessed 13. March 2017].

[14] AUTOSAR standard No.428 (release 4.2.2), "Specification of SW-C End-to-End

Communication Protection Library," AUTOSAR, 2015.

[15] FURST,S., BMW, "AUTOSAR and Functional Safety," 8. November 2011. [Online].

Available: ttps://automotivetechis.files.wordpress.com/2013/04/autosar-and-functional-safety1.pdf.

[Accessed 13. March 2017].

[16] MOLKENTHIN,B., "CRC Calculator (Javascript)," [Online]. Available:

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html. [Accessed 17 March 2017].

[17] US Patent 7540213, ""Gearshift lever"," 2009. [Online]. Available:

http://www.freepatentsonline.com/7540213.html. [Accessed 13 March 2017].

Fig 1. EPB forecasted fitment EPB fitment rate [%] [1] Fig.2 Electric Parking Brake

System [1]

Fig.3 ECU type ESC with EPB functions configuration, adopted from [2]

Fig.4 Three basic states of EPB electromechanical switch, adopted from [2] Fig.5 Wheel speed sensors signal
protocol type s, i, v [3]

CAN / FlexRAY

communication

EPB SWITCH

EPB Switch

EPB SWITCH

2_POS

2_NEG

1_POS

1_NEG

DEFAULT STATE

CLOSE OPEN

EPB SWITCH

2_POS

2_NEG

1_POS

1_NEG

CLOSE STATE

CLOSE

OPEN

IPBESC)

IPBESC)

IPBESC)

IPBESC)

EPB SWITCH

2_POS

2_NEG

1_POS

1_NEG

OPEN STATE

CLOSE

OPEN

LED LED
LED

E
C

U

S

I
D

E

E
C

U

S

I
D

E

E
C

U

S

I
D

E

Fig.6 Emulation of the WSS DF11i - standstill idle current pulse (zero velocity)

Fig.7 LIN bus communication frames between ECU side (MASTER) and LIN EPB switch emulator

(SLAVE)

Fig.8 Blok diagram of the developed educational system for ECU peripheral's emulation

Current probe TEKTRONIX TCPA300

Settings : 5A/V

Current

direction

75 Ohm
(measurement resistor

accor. by datasheet DF11i)

Open

collector

driver

Analog

Multiplexer Level 3 = 28mA

Level 2 = 14mA

2

FRONT LEFT WSS

VBAT

(TERMINAL 30)

I Front Left

Volatge / current factor:

1mV = 5mA

Digital control

Command from MASTER (ECU side)

Answer from SLAVE

(EMULATOR side)

Alive counter 0-F

Calculated CRC8 value (CRC-8-SAE J1850)

Enhanced checksum according LIN bus

Fig.8 Blok diagram of the developed educational system for ECU peripheral's emulation

WiFi LAN network

Arduino

 MICRO

Micro USB

Arduino IDE

debug/flash port

Raspberry Pi 3

Node.js

Web sever

I2C Bus signals:

I2C1-SDA

I2C1-SCL

GND

Raspberry Pi 3

Node.js

Web sever

I2C Bus signals:

I2C1-SDA

I2C1-SCL

GND

Arduino

 MICRO

Micro USB

Arduino IDE

debug/flash port

Arduino

 MICRO

Micro USB

Arduino IDE

debug/flash port

Arduino

 MICRO

Micro USB

Arduino IDE

debug/flash port

RX

TX

~CS

~RESET

Vin

LIN Transceiver

Microchip

MCP2025

LIN Transceiver

Microchip

MCP2025

RX

TX

~CS

~RESET

Vin

PERIPHERALS EMULATOR SIDE “Phantom” ECU SIDE

Arduino TWI

SDA,SCL

Arduino TWI

SDA,SCL

Arduino TWI

SDA,SCL

Arduino TWI

SDA,SCL

VBAT

(TERMINAL 30)

GND

(TERMINAL 31)

LIN BUS DATA

LIN BUS GROUND

LIN BUS POWER

Electronic Parking Switch

“OPEN”

Position
“CLOSE”

Position

Open

collector

driver

Analog

Multiplexer Level 3 = 28mA

Level 2 = 14mA

Level 1 = 7mA

R1

R2

R3

2

Open collector driver

Analog Multiplexer
2

Open collector driver

Analog Multiplexer
2

Open collector driver

Analog Multiplexer
2

GND

(TERMINAL 31)

VBAT

(TERMINAL 30)

OE,~ERR,

OUT1,OUT2

I Front Left

I Rear Right

MAXIM MAX9921

Dual Hall Effect

 Sensor Interface

I Rear Left

I Front Right

FRONT LEFT WSS

FRONT RIGHT WSS

REAR LEFT WSS

REAR RIGHT WSS

E
C

U
 C

O
N

N
E

C
T

O
R

WSS = Wheel Speed Sensor

USER

MAXIM MAX9921

Dual Hall Effect

 Sensor Interface

OE,~ERR,

OUT1,OUT2

C
A

R
’s

 C
A

B
L

E
 H

A
R

N
E

S
S

A
R

E
A

E
M

U
L

A
T

O
R

’s

C

O
N

N
E

C
T

O
R

AVR

ATmega32U4

AVR

ATmega32U4

AVR

ATmega32U4

AVR

ATmega32U4

