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Abstract 
Virtual machine escape is one of the most serious vulnerabilities happening if the isolation between the hosts and between 
the VMs is compromised, which presents new security challenges that the security concern is the major factor effecting 
virtualization technology widely adopted in IT industry. In VM escape, the program running in a virtual machine is able to 
completely bypass the hypervisor layer, and get access to the host machine. The traditional research method is analyzing a 
vulnerability separately, but that consumes too much time and not constructs the attack model. So we innovatively design 
VM escape elevated penetration attack models based on finite state machine, which could be used to identify potential 
vulnerabilities in design, implementation and testing phases. In this paper, firstly, we extract elevated privilege models of 
different virtualization methods, studying that VMCS pointer instruction state indicates system state. Secondly, we define a 
formal language Datalog to represent pre- and post-conditions of the exploits of application vulnerabilities and infer a basic 
elevated penetration attack model. Thirdly, through the analysis of vulnerable source code and vulnerability reports from 
NVD, we shed light on four attack models to cover the most VM escape attacks. Finally, we evaluate the presented approach 
by applying code-level finite state machine models with formal language to specific vulnerabilities, together with the 
statistical results of different attack models. 

Keywords: Virtual machine escape, finite state machine, Datalog, elevated penetration attack model 

Received on 14 November 2020, accepted on 23 December 2020, published on 08 January 2021 

Copyright © 2021 Wei Fan et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons 
Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly 
cited. 

doi: 10.4108/eai.21-7-2021.170555

1. Introduction

Virtual machines share the resources of the host machine but 
still can provide isolation between VMs and between the 
VMs and the host. That is, virtual machines are designed in a 
way that a program running in one virtual machine cannot 
monitor or communicate either with programs running in 
other VMs or with the programs running in the host. But in 
reality the VM escape attacks have been already introduced 
to compromise isolation, which are considered to be one of the 
worst case in virtualization system [1]. Since the host 
machine is the root, the program which gets access to the host 
machine also gains the root privileges basically and escapes 
from the virtual machine privileges. This result in complete 
breakdown in the security framework of the system 
environment. Moreover, it is expected that the exploitation of 
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unknown VM escape vulnerabilities is increasing sharply. 
There is a pressing need for effective approaches to identify 
and fix vulnerabilities, which is always tough and expensive. 
Modeling attack models not only contribute to reasoning 
potential vulnerabilities in testing phases, but also can guide 
the practitioners, especially system engineers with little 
knowledge of security to improve system security in design 
and implementation phases. An attack model is the 
abstraction of the basic property of an attack to identify how 
vulnerabilities may be exploited. The existing attack models 
either do not (1) consider vulnerable code when attack is 
modeled and then do not provide enough in- formation for 
mitigation strategies; or (2) consider too many or too few 
attack pattern categories which contribute little to 
understanding vulnerabilities and attacks. 
This paper innovatively presents a basic VM escape attack 
model and four evolutional attack models, which are 
generalized based on an exhaustive research of National 
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Vulnerability Database (NVD). Code-level finite state 
machine (FSM) paradigm [2] is used to model the attack 
patterns. Our contributions are summarized as follows: 
We extract elevated privilege models of different 
virtualization methods. Through the research of the 
virtualization mechanism, it is inferred that VMCS pointer 
instruction state indicates system state. 
We generalize four attack models by analyzing vulnerability 
reports from NVD. These models could be used to analyze 
both known and unknown vulnerabilities. These models filter 
the details of exploitation and abstract the key steps, thus 
facilitating the identification of the unknown vulnerabilities 
by matching system behaviors from code to these attack 
models. 
A formal language is defined, which extends Datalog [3] to 
specify the pre- and post-conditions of transitions. By using 
reasoning logic based on the formal language, the description 
is simplified and formalized which benefits the deduction of 
potential vulnerabilities. 
Code-level FSM models for the attack models are proposed, 
which apply the de- fined formal language to describe the 
condition/action of each transition. The models could 
describe attack scenarios clearly and formally. The 
capabilities of the FSM models are evaluated by applying 
them to specific vulnerabilities reported recently in NVD, 
together with the statistical results of different attack models. 
The rest of paper is organized as follows. Section 2 introduces 
related work. Section 3 proposes problem statement. In 
Section 4, a formal language is defined and a basic attack 
mode is designed. In Section 5, different attack models are 
identified and modeled by code-level FSM. In Section 6, case 
study for the attack model is presented. Section 7 concludes 
our work. 

2. Related Work

This section presents the existing research on security model 
and attack model analysis. Many studies have been carried out 
for security models. There are mainly two kinds of approaches 
for modeling vulnerability exploitation [3]. The first one is to 
analyze data by statistical methods and then use stochastic 
models to describe exploitations [4]. At- tack countermeasure 
tree is one of the non-state-space modeling methods to 
analyze security in terms of attack, detection and mitigation 
[5]. As to state space modeling, Madan et al. applied 
stochastic reward nets (SRN) to quantitative assessment of 
security attributes for an intrusion tolerant system [6]. 
Markov chains have been used to analyze cyber security with 
attack graphs [7]. The other method is to provide some formal 
methods to represent or identify vulnerabilities and attacks 
[8]. In [9], a frame- work considering timed security 
requirements was proposed by using timed extended finite 
state machine. A logic-programming approach is presented to 
analyze network security [10]. They focused on the 
interactions among different hosts instead of a single host. 
This method could discover attack paths in different hosts, 
but cannot identify unknown vulnerabilities or intrusions in a 

single system. What is more, the above re- searches did not 
consider source codes and hence did not provide enough 
information for mitigation strategies. Chen et al. [2] explored 
code-level modeling. They applied data-driven finite state 
machine to analyze vulnerabilities. In the model, an object, 
which did not conform to specification at the same time did 
not have corresponding implementation, will transfer to 
accept state. However, an object which conformed 
specification will also transfer to accept state. Therefore, it is 
difficult for practitioners to understand this model clearly due 
to mixture of secure and unsecure transitions. 
As to analysis of attack model, Andrew et al. [11] provided a 
method to record attack information in a structured and 
reusable form which includes attack pattern, attack pro- file 
and attack tree. However, this method only considered the 
attack patterns dedicated to buffer overflow and web attacks. 
Michael et al. [12] developed attack patterns to locate 
vulnerabilities in software design stage in order to reduce the 
cost of finding and fixing vulnerabilities in maintenance and 
testing phases. However, the number of attack pattern 
categories in the attack library was too large to obtain the 
similarity among exploits. It is difficult, if not impossible, to 
classify a new vulnerability with existing classification, since 
this method focused on too many details. What is more, it 
only described operations in attack path and did not consider 
vulnerable code. Therefore, it is hard to get efficient 
countermeasures from the model [12]. Bozic et al. [13] 
presented an approach to take advantage of attack patterns, 
modeled by UML state machine, for test case generation and 
execution. Nonetheless, this method was only applied to XSS 
attack pattern and it is not clear whether it could be extended 
to other attack patterns. Kshirsagar et al. [14] developed a 
network application to detect intrusion. Their tool was based 
on CIDF architecture. Bozic et al. combined a combinatorial 
testing and a model-based technique to generate test cases 
[15]. However, these researchers focused on web 
vulnerabilities instead of system vulnerabilities. In fact, not 
many researchers are involved in attack model analysis for 
system vulnerabilities. 
In this paper, we propose a comprehensive modeling approach 
to apply attack models in the form of code level finite state 
machines to identify potential vulnerabilities in operation 
system. This method not only can be used to reason about 
potential vulnerabilities, but also provide efficient mitigations 
in design, implementation and testing phases. 

3. Problem Statement

There are many kinds of complex reason on VM escape, 
therefore it is difficult to summarize and extract the 
characteristics. If we can describe its attack behavior and 
monitor it keeping in step with the change of system state, it 
will be helpful to extract and protect the attack model of VM 
escape. 

3.1 Elevated Privilege Model 
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The attackers take advantage of the virtual machine operating 
system to initiate requests for execution of sensitive 
instructions, which are processed by the kernel state, and 
some privileged instructions are referred to hypervisor for 
processing. At this point, an attacker can exploit the fragility 
vulnerability of hypervisor to enable hypervisor to execute a 
privileged instruction without returning the instruction state, 
causing the user state to stay in the kernel state, and the 
attacker implements the privilege elevating, then can penetrate 
the hypervisor and other areas of the virtual machine to 
destroy the isolation mechanism of virtualization, ultimately 
complete the escape operation. 
The following are four conditions required to complete a 
successful escape attack: 

1. A vulnerable kernel;
2. An escape of a matching loophole;
3. Having the ability to transfer the escape to the

target position; 
4. Having the ability to perform an escaping attack

at the target location.
Privilege elevation is particularly important in virtualized 
systems, including two- level privilege elevation, from the 
user layer to the kernel layer, and from the kernel layer to 
the virtualization layer. Elevation of privilege can enable 
attackers to gain higher privileges, run higher levels of code, 
and produce greater harm. 
The purpose of the permission elevation are three aspects: 

1. Reading / writing any sensitive files;
2. The attack is still running after system restarting;

Inserting the permanent back door. 

Fig. 1. a. Elevated privilege models of full 

Fig. 1b. Elevated privilege models of hardware- 
virtualization and para virtualization assisted 

virtualization. 

The elevated privilege models of full virtualization and para 
virtualization are shown in Figure 1a: 
Definition 1: S ={Si } is the collection of all sensitive 
instructions in the x86 host system, i 𝜖𝜖[0,∞) . These sensitive 
instructions include instructions for accessing or modifying 
the virtual machine mode or host state, accessing or 
modifying sensitive registers or storage units, such as clock 
registers, interrupt registers, accessing the storage protection 
system and address assignment system, and almost all I/O 
instructions. The execution of these instructions will change 
the level of privilege of the original instruction, which may 
lead to the occurrence of the privilege elevating. 
Definition 2: r = {ri } is the collection of privilege levels 
representing the host operating system, 0 ≤ i ≤ 4 , that is r 
={r0、r1、r2、r3} .The  user  application  is  at  r3 level, the 
system driver is at r2 level, the virtualized guest OS is at r1 
level and the hypervisor is at the highest level r0 . 
Definition 3: Si <rj> represents a sensitive instruction Si   at 
a privileged level rj , i 𝜖𝜖 [0, ∞) ，0 ≤ j ≤ 4 Definition 4: I = 
exe(Si <rj >) represents the execution of a sensitive 
instruction Si , and I takes a value of 0 or 1. If I = 0 , the 
execution of a sensitive instruction Si is an escape process, 
and if I = 1, the sensitive instruction Si  is performed correctly 
by the system.  
Definition 5: rk = rtn(I ) = rtn[exe(Si <rj>)] represents the 
final return privilege level of a sensitive instruction Si . If rk = 
rj , where k = j , the sensitive instruction Si returns after 
normal execution, if rk = r0 ,the sensitive instruction Si is an 
escape process, and user state application elevated to highest 
privilege level successfully. 
Similarly, the elevated privilege model of hardware-assisted 
virtualization is shown in Figure 1b, the execution of sensitive 
instructions requires the jump from a non-root mode to the 
root mode, and the final escape successful or not is also 
decided by the results of sensitive instructions to return to the 
original mode, or stay in ring0. 
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3.2 Analysis of VMCS Pointer Instruction 

Intel and AMD vendors introduced hardware-assisted VT 
(Virtualization Technology) in 2005, which resolved the 
reliability and performance deficiencies of pure software 
virtualization solutions, while virtualization technology is 
more biased towards full virtualization. Hypervisor can also 
capture CPU instructions, act as intermediaries for instruction 
access hardware controllers and peripherals, and there are 
more virtual ma- chine escape problems based on hypervisor. 
VT-x expands the operations of the virtualization system to 
two forms: VMX root operation and VMX Non-root 
operation. As shown in Figure 2, this paper studies the 
application of a broader virtualization architecture based on 
Intel processors. 

Fig. 2. Instruction processing work model in KVM 
virtualization system. 

The workflow of Figure 2 is: 
a) QEMU running in the user state with root mode

uses the IOCTL system call to manipulate
/dev/kvm character devices, creating VMs and
VCPU;

b) The kernel KVM module in root mode is
responsible for initializing the relevant data
structure, then returning to the user state;

c) QEMU runs VCPU processing through the
IOCTL call, that is, scheduling the corresponding
VM operation;

d) After the kernel carries out the related processing,
it executes the VMLAUNCH instruction, and
enters the client operating system to run through
VM entry, the client operating system runs in the
non-root mode;

e) The client operating system executes the
corresponding virtual machine code, and the
insensitive instruction can run directly on the
physical CPU;

f) When a sensitive instruction, such as an external
interrupt occurs, or an internal exception, occurs
on the client operating system, a VM exit is
generated and the relevant information is recorded
in the VMCS structure;

g) VM exit causes the CPU to return to root mode,
read VMCS structure to judge VM exit by VMM;

h) If I/O or other peripheral instructions, then return
to the user state QEMU (that is, the root mode of
ring3), and QEMU completes the simulation of
the relevant instructions;

i) If not, it is handled by the VMM itself;
j) After processing completes, VM Entry enters into

the client operating system.
The QEMU thread interacts with the IOCTL between the 
KVM kernel module and the client operating system, and the 
KVM kernel module switches with the client soft- ware 
through VM exit and VM entry operations. The hypervisor 
and client operating systems share the underlying processor 
resources, so the hardware requires a physical memory area 
to automatically save or restore the context in which they are 
executed. This area is called the virtual machine control 
structure VMCS, the maximum size does not exceed 4KB, 
each VM needs to correspond its own VMCS, and VMM uses 
VMCS to configure VM running environment and to control 
VM running. VT designs a control structure VMCS for each 
virtual machine and hypervisor to preserve their information. 
For AMD processors, it is VMCB (virtual machine control 
block). VMCS is stored in memory and operated by the CPU, 
holding the information and content of VCPU related 
registers. That is: a physical CPU can obtain various 
information of each virtual CPU through VMCS. In addition, 
VT also provides a number of instructions for the CPU to 
direct access to VMCS. The system IOCTL file and real-time 
data collected from the VMCS can represent the current state of 
the system, and the intrusion detection system can assist to 
establish the rule base according to the VMCS instruction 
sequence and compare the vulnerability characteristics 
according to the rule base. 
Intrusion detection system designed combines semantic 
parsing of IOCTL file and instruction analysis of VMCS 
pointer instruction in the virtualization system, to collect and 
describe the original state instruction sequence among the 
virtual machine, QEMU and hypervisor, then to establish the 
escape behavior of state sequence feature library, solving the 
behavior description problem of the virtualization system. 

3.3 Feasibility Analysis By FSM 

• Root of FSM
State is one of the commonly used and undefined concepts in 
system science, which refers to the condition, situation and 
characteristics of the system which can be observed and 
identified. If correctly distinguishing and describing these 
states, we grasp the system. When describing a system with a 
finite state machine, the system should meet different 
conditions, and can be divided into different states. These 
finite states will be transferred after the occurrence of a 
particular event, and the event that causes system state to 
transfer is also finite. When the system behavior can be 
divided into a finite state, the system shows the state behavior. 
Finite state machine is an effective method to stipulate the 
whole behavior of the system. Being in a state means that the 
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system only responds to a subset of all allowed inputs, 
produces a subset of possible responses, and that changing 
state is also only a subset of all possible states. 

• Process of VM escape
With the continuous emergence of VM escape events, the 
intrusion methods are gradually transformed from the initial 
lower level of single step passive attack into complex and 
premeditated multi-step attacks. The attack process of the 
network intruder usually includes several discrete attack 
steps, each step attack is often an independent attack 
behavior, and the intruder has a lot of methods to achieve the 
same goal or the effect of the right operation. Because of the 
stage characteristics of multi-step attacks, intruders can use a 
variety of methods to achieve the same target, which makes it 
more difficult to detect multiple step attacks. At present, the 
main methods of attack detection are very limited, which can 
only detect the multi-step attack behavior by matching the 
pattern of the preset vulnerability database. If only for the 
single step attack process detection, it is difficult to involve 
the entire attack process, therefore, the detection should not be 
isolated by the individual attack steps, and should be detected 
by relevant perspective of multiple attack steps. 

• Influence of VM escape
Before an attacker carries out an escape attack, the first thing 
to do is to figure out the method of how to elevate, what kind 
of goal to achieve. The common methods include destructive 
and invasive types. A disruptive attack is a denial of service 
attack that simply destroys the target and makes it work 
improperly. The intrusion type attack takes the control target 
as the core, obtains the more information from the system. 
This attack is more prevalent and more threatening than a 
destructive attack. Once you get the administrator privileges 
on the target, you could do anything arbitrarily, including a 
destructive attack. In order to achieve their goals, attackers 
firstly take certain measures to obtain information about the 
target host or the target network, such as using port scans to 
obtain port number of the target host system. In order to 
improve their privileges, attackers often use the target host 
system vulnerabilities to perform some unconventional 
operations. 
Regardless of the attack method the attacker takes, it will 
have a certain impact on the target host system when the 
attack is implemented. For example, in the QEMU simulation 
process, the right is raised by occupying the host's computing 
resources through an incorrect call, and if the attacker triggers 
an interrupt service in the host system, it will cause the buffer 
to be accessed. If the CPU resource occupied by the incorrect 
call or the memory resource overflowed is regarded as a 
system resource, then the attacker will change the assigned 
resource value of the system during the execution of the attack. 
From the analysis above, it is known that the escape attack is 
not only procedural, but also every step in the attack process 
may change the characteristics of certain re- sources within 
the attack target itself or the attack target, so that the system 
passes from the secure state to some abnormal middle state and 
is finally to an insecure state, which is completely attacked. 
The system state is divided by the value of system resources, 
then the system will be in a specific state at any time, and 
these states are finite. When the system is under attack, the 

value of system resources will be changed, resulting in the 
transfer of system state. If changing system resource values 
is regarded as events that cause state transitions, it is obvious 
that these events are also finite. According to the nature of the 
finite state machine, we can completely describe the attack 
process with a finite state machine. And the finite state 
machine has a "memory" function be- cause its output is 
related to the current state. Describing the attack behavior 
with a finite state machine can reflect the procedural nature of 
the attack, so as to truly reflect the escape behavior. 

3.4 Description of Elevated Penetration 
Attack Model 

The attack model is an abstraction of attack behavior. 
Summarizing the attack model must be derived from the 
actual code level of the attack behavior, but it cannot focus 
too much on a particular type or a type of code and lead to a 
general decline. In this paper, the design of virtual machine 
escape privilege escalation attack model is de- signed to 
analyze the loopholes of current NVD about KVM and XEN 
virtualization system. 
When describing an escape behavior with a finite state 
machine, it is necessary to firstly analyze the attack scenario 
to determine which resources in the system will be affected 
when the attack is implemented and what kind of hazards will 
be caused to the system. Then, according to the change of the 
resource values in the system, divides the system state and 
determines the attack event that caused the state transition. 
Finally, a formal finite state machine can be used to describe 
the attack process. 
Assuming that the amount of escape attacks in the system is 
numbered, the following attack i can be described as follows: 
Definition 6: Virtual Machine Escape Attack 
Attacki ={Qi ,∑i ,δi , qsi ,Ti ,ε}. 

1) Qi  is the instruction sequence status set of the i
attack, which represents the state of the system at this
time. Each element of the instruction sequence
represents the possible state of the target system when
the system is under attack. These instruction sequence
states are based on the system resources affected by
the attack;

2) ∑i states that the collection of attack events that may
cause abnormal changes in system resources during
the attack;

3) δi : Qi ×∑i → Qi ,is the reflection from Qi ×∑i to Qi
, Since the uncertain finite

state machine is used, the mapping result is a subset of Qi ; 
4) qsi ∈Qi states the only infinite state of the i attack,

which indicates the security status of the target system
before the attack;

5) Ti ⊆ Qi and T ≠∅  ,which indicates the set of final
states of the attack, indicating that the attacker has
completed the attack or identified the attack on behalf
of the detection system;

6) ε indicates the threshold for the occurrence of this
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attack. This value is used for later analysis of the 
detection system. 

Because the escape attack will cause the target system from 
the secure state to some intermediate abnormal state and 
eventually become insecure, the state in the Qi can be divided 
into three categories, that is Q ={qs , qa j , qd | j = 0 or j =1, 
2,..., M}. 

a qsi indicates the security status of the target system before 
the attack; 
b qa ji indicates the j security status of the target system after 
the attack occurs and before it is completed, j = 0 indicates no 
middle state, indicates the number of the ab normal middle 
state; 
c qdi indicates the system's escape or failure state after the 
attack is completed. ei

m indicates the m element of ∑I,  
e i

m  is the m attack in the attacking process,  m =1, 2,..., N 
, N is the number of ∑i . δi indicates the state transfer function,
which takes the system state and attack events as the input, 
and takes Qi

 non-empty subsets as the output, such as δι 
(qai

j , ei
m ) →{qai

j , qai
m} , qai

0 = qsi while j = 0 , qai
M = 

qdi  while m = M ; qdi   indicates the unique end state of
the attack, and Ti ={sdi } . 

4. Proposed the Modeling Language and
Basic Model

This section firstly introduces a formal language, an 
extension of Datalog is defined, that includes clauses 
(operation and judgment), variables and constants, then raises 
the basic elevated penetration attack model. 

4.1 Datalog Overview 

Datalog, as a data query language on logic-based, inspired by 
the Prolog (Programming in logic) language, is subset of 
Prolog. Its sentences are made up of facts and rules as the 
same as Prolog, which can implement deductive reasoning for 
a knowledge base, that is, a new fact could be obtained from 
the known facts by inference. A rule of Datalog consists of 
the following three parts: 

1) Head: A relation atom.
2) Implication symbol: “:-”, read as if, indicates a logical

relation rather than an operational symbol.
3) Body: Include one or more atoms. Atoms may be

related or arithmetical, with constants or variables as
parameters. Each atom is connected by AND, and the
atom with NOT ahead is called the counter atom.

A sentence can be represented as a clause: 
P：- P  1  ,P2 ,    ,Pn

This clause means that if P1 ,P2 ,.....,Pn are true, then P is true. 
Otherwise, P is false. The left part of the clause is called head, 
while the right part is called body. If a clause has non-empty 

body, it is called a rule. If a clause has no body, it is called 
fact. 

4.2 Datalog-based Formal Language 

Datalog has limited forms of clauses. This section presents a 
modeling language which allows a generic and succinct 
representation of exploitation. The formal language con- sists 
of a clause, variables and constants, defined in TABLE 1, 2 
and TABLE 3. The clause is further divided into two different 
types: action and judgment. The vulnerability reports provide 
information about vulnerable reason and exploits. The 
language must define literal, variable and constant. The 
description is abstracted into literals, which is divided into 
two different types: operation and judgment. Operation is 
operation conducted by attackers. Judgment is a check about 
whether some conditions con- form to our designed security 
specification and how much probability matching escape 
vulnerability. 
Table 1. Operation and Description 

Table 2. Judgment and Description.. 
Literal Description 
NotPositive(Var) Checking whether Var is non-positive. 
Sign(Var) Checking whether Var is signed integer. 
Uninitialized(Var) Checking whether Var is uninitialized. 
Uncleared(Var) Checking whether the value or information i

Var is cleared. 
Free(Var) Checking whether Var is freed. 

Literal Description 

ChngPt(principal, orgPt, 
newPt) 

A principle changes original pointer 
to new pointer. 

GetLength(p) Finding the length of object P. 
WriteBuf(data) Writing data with size into buffer. 
ExeOpers(oprA, oprB) Executing operation A, then executing 

operation B. 
ChngRTN(p, data) Modifying the return value of p and 

writing 
data. 

EoP(OperA,formerPriv, 
latterPriv) 

Elevating privilege of operation A from 
former-Priv to latterPriv. 

CallFunc(func) Calling function Func. 
ExeCode(principal, program, 
priv) 

A principle executes program with 
privilege. 

Access(principal, r/w, data) A principle accesses (read/write) data. 
Dos(principal, program, priv) Generating denial of service under 

privilege. 
Oob(principle, operA) A principle conduct out of bound 

operation A (access/write/read). 
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Table 3. Description of Variable and Constant. 
Variable Description 

orgPt Original pointer 
newPt New pointer 
RTN Return address 
oprA Operation A 
oprB Operation B 
formerPriv The privilege before certain 

operation 
latterPriv The privilege after certain 

operation 
func Function 
Var Variable 
priv Privilege 

As shown in Fig. 3, the basic elevated penetration attack 
model based on finite state machine includes six states [16]: 
start state (S), specification check state (SC), weak secure 
state (WS), insecure state (IS), good state (G), failure state 
(F). In view of the definition 6, S represents qsi and qai j 

involves SC, WS and IS, then qdj is equal to F. It also includes 
transitions: Implementation conforms to security 
specification completely, Implementation does not conform 
to security specification completely, deep checking in 
instruction sequence how much probability matching escape 
vulnerability. 

Fig. 2. Basic elevated penetration attack model based 
on FSM. 

In Fig. 3, there is a label “Condition/Action” attached to every 
transition. Condition means the pre-condition to trigger the 
transition. Action is the post-condition caused by transition. 
From S, the model will check whether condition is satisfied. 
If yes, it goes to check. The security specification describes 
system secure behavior. If so, the condition of the object will 
transfer to good state (G). If the code is not in accord with 
security specification completely, the model will go to weak 
secure state (WS). Then the model will check whether there 
is a deep check in instruction sequence how much probability 
matching escape vulnerability and how it works in 
implementation. If the probability δ is less than the set 
threshold  , meaning not a VM escape vulnerability, the 
model will transfer to good state (G). Otherwise, the model 
will transfer from WS to IS, indicating an elevated operation 
to be the successful intrusion. Therefore, apart from the lack 
of security mechanism completely, this model could also 
describe in-sufficient security assurance mechanism. At last, 
the condition will transfer from IS to F along with penetration 
by executing arbitrary code, causing denial of service, or 

accessing arbitrary data. Hence a VM escape behavior is 
completed entirely. The basic elevated penetration attack 
model is used to describe every step of attack pattern. 
Consequently, we can acquire FSM model of attack patterns 
by combining every basic FSM [2]. In this section, our 
models describe escape process conceptually with condition 
and action represented by Datalog based language in FSM. 

5. Proposed the Different Attack Models

Most of VM escape vulnerabilities could be exploited by 
certain different methods. According to NVD security 
research, we generalize four attack models that include 
specification violation attack, buffer overflow attack, out-of-
bounds attack and error handling attack. This section presents 
FSM models of the above attack patterns. Each model 
consists of one or several basic elevated penetration attack 
models described in Section 4.3. These models offer general 
steps to conduct escape conceptually and per- form as the 
templates for every attack pattern which is helpful to analyze 
specific cases in vulnerability database. The pre- and post-
conditions in FSM are represented by the formal language 
presented in Section 4.2. According to attack models, 
mitigation strat egy could also be gained. 

5.1 Specification Violation Attack Model 

Specification violation attack model often works at the 
judgement stage of SC. The representative attack patterns of 
this model are type confusion attack, uninitialized at- tack, 
use after free attack, and so on. 
The general steps of specification violation attack model are 
shown in Fig. 4. In the SC, FSM will check whether 
implementation accords with security specification 
completely (e.g. whether type of argument matches 
predefined parameter type, whether un- initialized 
variable/object with previous information remained in the 
memory, or whether certain vulnerable operations leading to 
freeing of variables but not clearing the reference to the 
variables). If so, the system is secure. Therefore, the control 
flow will exit the model. Otherwise, it transits from SC to WS 
and the attacker has passed the first check. At state WS, the 
model will check whether there is a deep check in 
instruction sequence how much probability matching escape 
vulnerability. If the prob- ability δ is less than the set 
threshold ε , meaning not a VM escape vulnerability, the 
model will transfer to good state (G) and the control flow will 
exit the model. Other- wise, it will turn to state IS. At IS, the 
attackers craft variable type to manipulate address space to 
elevate (e.g. Make pointer of certain class method point to 
malicious shell code) and have passed all of checks. The 
attackers can execute the program with privileges of owner. 
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Fig. 3. Specification violation attack model based on 
FSM. 

In Fig. 4, following the attack path, specification violation 
attack model and corresponding mitigation strategy could be 
derived. The attack model is described by Data- log based 
language. According to Section 4, the sentence below means 
in order to exe- cute program with owner’s privilege for 
attacker, the steps below should be followed. Firstly, the 
buffer overflow vulnerabilities should exist. Then ensure that 
implementation doesn’t accord with security specification 
completely. At last, the attackers have already changed 
function pointer successfully. 
Take an example of use after free attack, attack model 
description: 
 ExeCode(Attacker, Program, Owner):- 
GetVariable(PtToVar); 
 isUncleared(PtToVar);  
Not isNtFree(Var); 
AllocMem(Length, PtToObject); 
ChngPt(Attacker, PtObjectMethod, AddrOfShellCode); 
 isMalicious(Attacker). 
Mitigation: 
In order to prevent UAF attack, there are three 
countermeasures: 

1) The mechanism to check whether pointer to the
variable is freed;

2) The mechanism to check whether the variable is
freed; 

3) The mechanism to check whether pointer of object
method is modified. 

5.2 Buffer Overflow Attack Model 

Buffer overflow attacks mainly include integer variable 
overflow, stack smashing, heap corruption and so on. The 
general steps for buffer overflow attack model are shown in 
Fig. 5. The attacker allocates destination buffer determined 
by the given length (some- times this is predefined by 
program). Then attacker writes data to buffer, goes across the 
boundary of buffer and overwrites memory locations (e.g. 
Make return address point to malicious code). Shellcode will 
be executed when function returns. Ellipsis represents 
accumulation process, which means that it will take a long 
time to input data into buffer and overflow it. The attack 
model has multi-WS process used to check whether the length 
of destination buffer is non-negative, after this check, other 
potential 

vulnerabilities related to negative buffer size can be ruled 
out. The description of the attack model in the formal 
language and attack mitigation strategy are derived below. 

Fig. 4. Buffer overflow attack model based on FSM. 

Attack model description: 
ExeCode(Attacker, Prog, Owner):-  
GetVariable(BufLength);  
AllocMem(BufLength, DesBuf); 
isLargerThan(InputSz, maxBufLength); 
 isLargerThan( ε , δ); 
ChngPt(Attacker, RTN, addrOfShellCode); 
 isMalicious(Attacker). 
Mitigation: 

In order to prevent buffer overflow attack, there are two 
countermeasures: 

1. The mechanism to check whether input size is
within buffer length;

2. The mechanism to check whether return address
(RTN) is changed.

5.3 Out-of-Bounds Attack Model 

The general steps of out-of-bounds attack model are shown in 
Fig. 6. Out-of-bounds attack model, pointer index failure 
leads to be intended for use, always causes denial of service of 
the system. It often appear in self modified KVM or XEN 
virtualization systems. It is possible that request data length 
will go beyond the array available length. Then control flow 
pointers (e.g. function pointer, return address) can be 
modified to point to malicious code. Then the malicious code 
will be executed when control flow transfers to modified 
pointers. According to Fig. 6, the description of out-of-
bounds attack model in the formal language and the attack 
mitigation strategy can be derived. 

Fig. 5. Out-of-Bounds attack model based on FSM. 
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Attack model description: 
ReqCheck(CndEqtn):-  
GetVariable(Type p);  
isLargerThan(p, Maxdatalength); 
isUsedBy(p, equation or array index); 
isLargerThan(  , δ); 
isOob(equation or array index);  
isMalicious(Attacker). 

Mitigation: 
In order to prevent out-of-bounds attack, we can apply two 
mechanisms: 

1. The mechanism to check whether request data
length is beyond the array available length;

2. The mechanism to check whether pointer index
is failure.

5.4 Error Handling Attack Model 

The general steps for error handling attack are shown in Fig. 
7. Firstly, the attackers try to call a function to trigger an
interrupt. Then they will confuse interrupt processing
mechanism so as to stay ring0. At last, control flow pointer
(e.g. function pointer, return pointer) is overwritten to execute
arbitrary code. According to Fig. 7, the description of model
and the attack mitigation strategy can be obtained.

Fig. 6. Error handling attack model based on FSM. 

Attack model description:  
isLargerThan(  , δ) :- 
CallFunc(func);  
ExeCode(principal, program, priv); 
Access(principal, r/w, data); 
isMalicious(Attacker). 
Mitigation: 
In order to prevent error handling attack, we can apply a 
mechanisms: the mechanism to check whether interrupt 
handling is working. 
The conceptual models can be used to help identify potential 
VM escape vulnerabilities and guide the practitioners, 
especially system engineers with little knowledge of security, 
to improve system security by adding checking mechanisms 
in design stage. They can also be detailed by inspecting the 
vulnerable code after the implementation stage which will be 
introduced in section 6. 

6. Statistics and Evaluation

This section first briefly introduces NVD, an open 
vulnerability database, then the results of VM escape attack 

model classification are presented. At last, in order to verify 
the validity of the attack model, our modeling methods are 
exemplified by analyzing a recent specific vulnerabilities 
reported in NVD. 

6.1 Statistical Analysis 

Virtualization vulnerability source 
Our analysis is based on approved vulnerability database, 
National Vulnerability Data- base. There are 432 vulnerability 
reports involving 111 KVM virtualization vulnerabilities and 
321 XEN virtualization vulnerabilities, which are reviewed 
until April, 2020. This database not only has validated the 
majority of vulnerabilities, but also provides more detailed 
information for every vulnerability, such as vulnerability 
report date, vulnerability fix date, vendor, patch, and ways to 
exploit vulnerability. What is more, NVD includes databases 
of security checklist references, security-related system 
flaws, mis- configurations, product names, and impact 
metrics. 
VM escape attack model classification results 
We distill 39 VM escape vulnerabilities according to VM 
escape definition from 111 KVM virtualization 
vulnerabilities, while 100 VM escape vulnerabilities from 
321 XEN virtualization vulnerabilities. Table 4 and table 5 
summarize the number and per- centage of each attack model 
virtualization from different virtualization systems. 
As table 4 and table 5 show, buffer overflow attack model 
accounts for a greater proportion. 2 (5.1%) vulnerabilities in 
KVM reports and 6 (6%) vulnerabilities in XEN reports are 
related to specific defects in hardware design. The exploit to 
these vulnerabilities needs to take advantage of specific 
hardware features. Therefore, there are no general attack 
models which can cover them. Specification violation attack 
model focuses on the judgement of SC. If the checking does 
not conform to security specification completely, it will turn 
to butter overflow to a large extent. So attack models are 
much more related to manipulation of address space which is 
still the main vehicle for attackers to intrude system. Efficient 
techniques to detect anomalies in address space can 
contribute so much to preventing intrusion. 
Table 4. Number and Percentage of Each Attack Model on 
KVM Virtualization. 

Attack model Number (%) 
Specification Violation Attack Model 9(23.1%) 
Buffer Overflow Attack Model 11(28.2%) 
Out-of-Bounds Attack Model 9(23.1%) 
Error Handling Attack Model 8(20.5%) 
Hardware 2(5.1%) 
Total Number 39 

Table 5. Number and Percentage of Each Attack Model on 
XEN Virtualization. 

Attack model Number (%) 
Specification Violation Attack Model 21(21%) 
Buffer Overflow Attack Model 35(35%) 
Out-of-Bounds Attack Model 12(12%) 
Error Handling Attack Model 26(26%) 
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Hardware 6(6%) 
Total Number 100 

6.2 Attack Case Evaluation 

In this part, our modeling approach is exemplified by 
analyzing several specific vulnerabilities reported in NVD. 
The completion of an escape behavior is often the result of the 
interaction of one or more attack models, only buffer 
overflow attack model combined with Error handling attack 
model will be detailed due to space limitation, like CVE-
2016-3960, CVE-2012-0217, is triggered by SYSCALL and 
Hypercall instructions, eventually triggering the GP (General 
Protection) fault with ring0 privileges and attacker-controlled 
registers when executing the SYSRET instruction. The model 
is derived shown in Fig. 8. In this case, the mechanism to 
check whether buffer length is positive should be conducted 
to avoid other potential vulnerabilities. Then the at- tacker 
keeps writing data into buffer and our model will check 
whether the size of input is within buffer length. If size of input 
is larger, it will transit to WS and go to second WS. 
Otherwise, it will go to G. Then the attacker will overwrite 
memory. In the third WS, the model will check if the RTN is 
changed by attacker to point to shellcode. If so, the model will 
go to IS. Thus, the attacker will execute the program with 
owner’s privilege. The attack scenario and mitigation can be 
obtained as below. The attack pattern is described by Datalog 
based language. 

 

Fig. 7. Vulnerability details of buffer overflow attack 
model combined with Error handling at- tack model 

based on FSM. 

Attack model description: 
ExeCode(principal,program, priv):- 
Getlength(buflength);  
Getlength(datalength);  
WriteBuf(data); ExeOpers(S 
YSCALL, SYSRET); 
isLargerThan(  , δ); 
ChngRTN(RSP,shellcode); 
 isLargerThan(  , δ); 
ChngPt(attack,ring0,addrofshellcode). 
isMalicious(Attacker). 

Mitigation: 
In order to prevent buffer overflow attack combined with 
Error handling attack, there are three countermeasures: 

1. The mechanism to check whether input size
controlled is larger than buffer length;

2. The mechanism to check whether return address
(RTN) is changed;

3. As to SC, the mechanism to check buffer length
is positive should be conducted to avoid other
potential vulnerabilities.

7. Conclusion

In this paper, we innovatively propose an elevated penetration 
attack model based on FSM, extending Datalog language to 
describe pre- and post-conditions of exploits for VM escape 
vulnerabilities specifically, eventually details the escape 
vulnerabilities, summarizes the key steps, and deduces the 
escape vulnerabilities. The evaluation experimental results 
demonstrate that the proposed attack models are reasonable 
and ac- curate, making up for the evaluation on the VM 
escape behavior in the virtualization security area. In the 
future, we plan to apply the elevated penetration attack 
models to identify more potential VM escape vulnerabilities 
combined with the virtualization technology and more details 
of attack behavior. Furthermore, we also intend to implement 
our approach to different versions of virtualization systems to 
generalize findings and refinement of the work. 
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