
1

Elevated Penetration Attack Models of Virtual Machine
Escape Based on FSM
Wei Fan1,*, Weiqing Huang1

1Institute of Information Engineering, CAS

Abstract
Virtual machine escape is one of the most serious vulnerabilities happening if the isolation between the hosts and between
the VMs is compromised, which presents new security challenges that the security concern is the major factor effecting
virtualization technology widely adopted in IT industry. In VM escape, the program running in a virtual machine is able to
completely bypass the hypervisor layer, and get access to the host machine. The traditional research method is analyzing a
vulnerability separately, but that consumes too much time and not constructs the attack model. So we innovatively design
VM escape elevated penetration attack models based on finite state machine, which could be used to identify potential
vulnerabilities in design, implementation and testing phases. In this paper, firstly, we extract elevated privilege models of
different virtualization methods, studying that VMCS pointer instruction state indicates system state. Secondly, we define a
formal language Datalog to represent pre- and post-conditions of the exploits of application vulnerabilities and infer a basic
elevated penetration attack model. Thirdly, through the analysis of vulnerable source code and vulnerability reports from
NVD, we shed light on four attack models to cover the most VM escape attacks. Finally, we evaluate the presented approach
by applying code-level finite state machine models with formal language to specific vulnerabilities, together with the
statistical results of different attack models.

Keywords: Virtual machine escape, finite state machine, Datalog, elevated penetration attack model

Received on 14 November 2020, accepted on 23 December 2020, published on 08 January 2021

Copyright © 2021 Wei Fan et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons
Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly
cited.

doi: 10.4108/eai.21-7-2021.170555

1. Introduction

Virtual machines share the resources of the host machine but
still can provide isolation between VMs and between the
VMs and the host. That is, virtual machines are designed in a
way that a program running in one virtual machine cannot
monitor or communicate either with programs running in
other VMs or with the programs running in the host. But in
reality the VM escape attacks have been already introduced
to compromise isolation, which are considered to be one of the
worst case in virtualization system [1]. Since the host
machine is the root, the program which gets access to the host
machine also gains the root privileges basically and escapes
from the virtual machine privileges. This result in complete
breakdown in the security framework of the system
environment. Moreover, it is expected that the exploitation of

* Corresponding author. Email: fanwei@iie.ac.cn

unknown VM escape vulnerabilities is increasing sharply.
There is a pressing need for effective approaches to identify
and fix vulnerabilities, which is always tough and expensive.
Modeling attack models not only contribute to reasoning
potential vulnerabilities in testing phases, but also can guide
the practitioners, especially system engineers with little
knowledge of security to improve system security in design
and implementation phases. An attack model is the
abstraction of the basic property of an attack to identify how
vulnerabilities may be exploited. The existing attack models
either do not (1) consider vulnerable code when attack is
modeled and then do not provide enough in- formation for
mitigation strategies; or (2) consider too many or too few
attack pattern categories which contribute little to
understanding vulnerabilities and attacks.
This paper innovatively presents a basic VM escape attack
model and four evolutional attack models, which are
generalized based on an exhaustive research of National

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Wei Fan and Weiqing Huang

2

Vulnerability Database (NVD). Code-level finite state
machine (FSM) paradigm [2] is used to model the attack
patterns. Our contributions are summarized as follows:
We extract elevated privilege models of different
virtualization methods. Through the research of the
virtualization mechanism, it is inferred that VMCS pointer
instruction state indicates system state.
We generalize four attack models by analyzing vulnerability
reports from NVD. These models could be used to analyze
both known and unknown vulnerabilities. These models filter
the details of exploitation and abstract the key steps, thus
facilitating the identification of the unknown vulnerabilities
by matching system behaviors from code to these attack
models.
A formal language is defined, which extends Datalog [3] to
specify the pre- and post-conditions of transitions. By using
reasoning logic based on the formal language, the description
is simplified and formalized which benefits the deduction of
potential vulnerabilities.
Code-level FSM models for the attack models are proposed,
which apply the de- fined formal language to describe the
condition/action of each transition. The models could
describe attack scenarios clearly and formally. The
capabilities of the FSM models are evaluated by applying
them to specific vulnerabilities reported recently in NVD,
together with the statistical results of different attack models.
The rest of paper is organized as follows. Section 2 introduces
related work. Section 3 proposes problem statement. In
Section 4, a formal language is defined and a basic attack
mode is designed. In Section 5, different attack models are
identified and modeled by code-level FSM. In Section 6, case
study for the attack model is presented. Section 7 concludes
our work.

2. Related Work

This section presents the existing research on security model
and attack model analysis. Many studies have been carried out
for security models. There are mainly two kinds of approaches
for modeling vulnerability exploitation [3]. The first one is to
analyze data by statistical methods and then use stochastic
models to describe exploitations [4]. At- tack countermeasure
tree is one of the non-state-space modeling methods to
analyze security in terms of attack, detection and mitigation
[5]. As to state space modeling, Madan et al. applied
stochastic reward nets (SRN) to quantitative assessment of
security attributes for an intrusion tolerant system [6].
Markov chains have been used to analyze cyber security with
attack graphs [7]. The other method is to provide some formal
methods to represent or identify vulnerabilities and attacks
[8]. In [9], a frame- work considering timed security
requirements was proposed by using timed extended finite
state machine. A logic-programming approach is presented to
analyze network security [10]. They focused on the
interactions among different hosts instead of a single host.
This method could discover attack paths in different hosts,
but cannot identify unknown vulnerabilities or intrusions in a

single system. What is more, the above re- searches did not
consider source codes and hence did not provide enough
information for mitigation strategies. Chen et al. [2] explored
code-level modeling. They applied data-driven finite state
machine to analyze vulnerabilities. In the model, an object,
which did not conform to specification at the same time did
not have corresponding implementation, will transfer to
accept state. However, an object which conformed
specification will also transfer to accept state. Therefore, it is
difficult for practitioners to understand this model clearly due
to mixture of secure and unsecure transitions.
As to analysis of attack model, Andrew et al. [11] provided a
method to record attack information in a structured and
reusable form which includes attack pattern, attack pro- file
and attack tree. However, this method only considered the
attack patterns dedicated to buffer overflow and web attacks.
Michael et al. [12] developed attack patterns to locate
vulnerabilities in software design stage in order to reduce the
cost of finding and fixing vulnerabilities in maintenance and
testing phases. However, the number of attack pattern
categories in the attack library was too large to obtain the
similarity among exploits. It is difficult, if not impossible, to
classify a new vulnerability with existing classification, since
this method focused on too many details. What is more, it
only described operations in attack path and did not consider
vulnerable code. Therefore, it is hard to get efficient
countermeasures from the model [12]. Bozic et al. [13]
presented an approach to take advantage of attack patterns,
modeled by UML state machine, for test case generation and
execution. Nonetheless, this method was only applied to XSS
attack pattern and it is not clear whether it could be extended
to other attack patterns. Kshirsagar et al. [14] developed a
network application to detect intrusion. Their tool was based
on CIDF architecture. Bozic et al. combined a combinatorial
testing and a model-based technique to generate test cases
[15]. However, these researchers focused on web
vulnerabilities instead of system vulnerabilities. In fact, not
many researchers are involved in attack model analysis for
system vulnerabilities.
In this paper, we propose a comprehensive modeling approach
to apply attack models in the form of code level finite state
machines to identify potential vulnerabilities in operation
system. This method not only can be used to reason about
potential vulnerabilities, but also provide efficient mitigations
in design, implementation and testing phases.

3. Problem Statement

There are many kinds of complex reason on VM escape,
therefore it is difficult to summarize and extract the
characteristics. If we can describe its attack behavior and
monitor it keeping in step with the change of system state, it
will be helpful to extract and protect the attack model of VM
escape.

3.1 Elevated Privilege Model

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

 Elevated Penetration Attack Models of Virtual Machine Escape Based on FSM

3

The attackers take advantage of the virtual machine operating
system to initiate requests for execution of sensitive
instructions, which are processed by the kernel state, and
some privileged instructions are referred to hypervisor for
processing. At this point, an attacker can exploit the fragility
vulnerability of hypervisor to enable hypervisor to execute a
privileged instruction without returning the instruction state,
causing the user state to stay in the kernel state, and the
attacker implements the privilege elevating, then can penetrate
the hypervisor and other areas of the virtual machine to
destroy the isolation mechanism of virtualization, ultimately
complete the escape operation.
The following are four conditions required to complete a
successful escape attack:

1. A vulnerable kernel;
2. An escape of a matching loophole;
3. Having the ability to transfer the escape to the

target position;
4. Having the ability to perform an escaping attack

at the target location.
Privilege elevation is particularly important in virtualized
systems, including two- level privilege elevation, from the
user layer to the kernel layer, and from the kernel layer to
the virtualization layer. Elevation of privilege can enable
attackers to gain higher privileges, run higher levels of code,
and produce greater harm.
The purpose of the permission elevation are three aspects:

1. Reading / writing any sensitive files;
2. The attack is still running after system restarting;

Inserting the permanent back door.

Fig. 1. a. Elevated privilege models of full

Fig. 1b. Elevated privilege models of hardware-
virtualization and para virtualization assisted

virtualization.

The elevated privilege models of full virtualization and para
virtualization are shown in Figure 1a:
Definition 1: S ={Si } is the collection of all sensitive
instructions in the x86 host system, i 𝜖𝜖[0,∞) . These sensitive
instructions include instructions for accessing or modifying
the virtual machine mode or host state, accessing or
modifying sensitive registers or storage units, such as clock
registers, interrupt registers, accessing the storage protection
system and address assignment system, and almost all I/O
instructions. The execution of these instructions will change
the level of privilege of the original instruction, which may
lead to the occurrence of the privilege elevating.
Definition 2: r = {ri } is the collection of privilege levels
representing the host operating system, 0 ≤ i ≤ 4 , that is r
={r0、r1、r2、r3} .The user application is at r3 level, the
system driver is at r2 level, the virtualized guest OS is at r1
level and the hypervisor is at the highest level r0 .
Definition 3: Si <rj> represents a sensitive instruction Si at
a privileged level rj , i 𝜖𝜖 [0, ∞) ，0 ≤ j ≤ 4 Definition 4: I =
exe(Si <rj >) represents the execution of a sensitive
instruction Si , and I takes a value of 0 or 1. If I = 0 , the
execution of a sensitive instruction Si is an escape process,
and if I = 1, the sensitive instruction Si is performed correctly
by the system.
Definition 5: rk = rtn(I) = rtn[exe(Si <rj>)] represents the
final return privilege level of a sensitive instruction Si . If rk =
rj , where k = j , the sensitive instruction Si returns after
normal execution, if rk = r0 ,the sensitive instruction Si is an
escape process, and user state application elevated to highest
privilege level successfully.
Similarly, the elevated privilege model of hardware-assisted
virtualization is shown in Figure 1b, the execution of sensitive
instructions requires the jump from a non-root mode to the
root mode, and the final escape successful or not is also
decided by the results of sensitive instructions to return to the
original mode, or stay in ring0.

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

Wei Fan and Weiqing Huang

4

3.2 Analysis of VMCS Pointer Instruction

Intel and AMD vendors introduced hardware-assisted VT
(Virtualization Technology) in 2005, which resolved the
reliability and performance deficiencies of pure software
virtualization solutions, while virtualization technology is
more biased towards full virtualization. Hypervisor can also
capture CPU instructions, act as intermediaries for instruction
access hardware controllers and peripherals, and there are
more virtual ma- chine escape problems based on hypervisor.
VT-x expands the operations of the virtualization system to
two forms: VMX root operation and VMX Non-root
operation. As shown in Figure 2, this paper studies the
application of a broader virtualization architecture based on
Intel processors.

Fig. 2. Instruction processing work model in KVM
virtualization system.

The workflow of Figure 2 is:
a) QEMU running in the user state with root mode

uses the IOCTL system call to manipulate
/dev/kvm character devices, creating VMs and
VCPU;

b) The kernel KVM module in root mode is
responsible for initializing the relevant data
structure, then returning to the user state;

c) QEMU runs VCPU processing through the
IOCTL call, that is, scheduling the corresponding
VM operation;

d) After the kernel carries out the related processing,
it executes the VMLAUNCH instruction, and
enters the client operating system to run through
VM entry, the client operating system runs in the
non-root mode;

e) The client operating system executes the
corresponding virtual machine code, and the
insensitive instruction can run directly on the
physical CPU;

f) When a sensitive instruction, such as an external
interrupt occurs, or an internal exception, occurs
on the client operating system, a VM exit is
generated and the relevant information is recorded
in the VMCS structure;

g) VM exit causes the CPU to return to root mode,
read VMCS structure to judge VM exit by VMM;

h) If I/O or other peripheral instructions, then return
to the user state QEMU (that is, the root mode of
ring3), and QEMU completes the simulation of
the relevant instructions;

i) If not, it is handled by the VMM itself;
j) After processing completes, VM Entry enters into

the client operating system.
The QEMU thread interacts with the IOCTL between the
KVM kernel module and the client operating system, and the
KVM kernel module switches with the client soft- ware
through VM exit and VM entry operations. The hypervisor
and client operating systems share the underlying processor
resources, so the hardware requires a physical memory area
to automatically save or restore the context in which they are
executed. This area is called the virtual machine control
structure VMCS, the maximum size does not exceed 4KB,
each VM needs to correspond its own VMCS, and VMM uses
VMCS to configure VM running environment and to control
VM running. VT designs a control structure VMCS for each
virtual machine and hypervisor to preserve their information.
For AMD processors, it is VMCB (virtual machine control
block). VMCS is stored in memory and operated by the CPU,
holding the information and content of VCPU related
registers. That is: a physical CPU can obtain various
information of each virtual CPU through VMCS. In addition,
VT also provides a number of instructions for the CPU to
direct access to VMCS. The system IOCTL file and real-time
data collected from the VMCS can represent the current state of
the system, and the intrusion detection system can assist to
establish the rule base according to the VMCS instruction
sequence and compare the vulnerability characteristics
according to the rule base.
Intrusion detection system designed combines semantic
parsing of IOCTL file and instruction analysis of VMCS
pointer instruction in the virtualization system, to collect and
describe the original state instruction sequence among the
virtual machine, QEMU and hypervisor, then to establish the
escape behavior of state sequence feature library, solving the
behavior description problem of the virtualization system.

3.3 Feasibility Analysis By FSM

• Root of FSM
State is one of the commonly used and undefined concepts in
system science, which refers to the condition, situation and
characteristics of the system which can be observed and
identified. If correctly distinguishing and describing these
states, we grasp the system. When describing a system with a
finite state machine, the system should meet different
conditions, and can be divided into different states. These
finite states will be transferred after the occurrence of a
particular event, and the event that causes system state to
transfer is also finite. When the system behavior can be
divided into a finite state, the system shows the state behavior.
Finite state machine is an effective method to stipulate the
whole behavior of the system. Being in a state means that the

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

5

system only responds to a subset of all allowed inputs,
produces a subset of possible responses, and that changing
state is also only a subset of all possible states.

• Process of VM escape
With the continuous emergence of VM escape events, the
intrusion methods are gradually transformed from the initial
lower level of single step passive attack into complex and
premeditated multi-step attacks. The attack process of the
network intruder usually includes several discrete attack
steps, each step attack is often an independent attack
behavior, and the intruder has a lot of methods to achieve the
same goal or the effect of the right operation. Because of the
stage characteristics of multi-step attacks, intruders can use a
variety of methods to achieve the same target, which makes it
more difficult to detect multiple step attacks. At present, the
main methods of attack detection are very limited, which can
only detect the multi-step attack behavior by matching the
pattern of the preset vulnerability database. If only for the
single step attack process detection, it is difficult to involve
the entire attack process, therefore, the detection should not be
isolated by the individual attack steps, and should be detected
by relevant perspective of multiple attack steps.

• Influence of VM escape
Before an attacker carries out an escape attack, the first thing
to do is to figure out the method of how to elevate, what kind
of goal to achieve. The common methods include destructive
and invasive types. A disruptive attack is a denial of service
attack that simply destroys the target and makes it work
improperly. The intrusion type attack takes the control target
as the core, obtains the more information from the system.
This attack is more prevalent and more threatening than a
destructive attack. Once you get the administrator privileges
on the target, you could do anything arbitrarily, including a
destructive attack. In order to achieve their goals, attackers
firstly take certain measures to obtain information about the
target host or the target network, such as using port scans to
obtain port number of the target host system. In order to
improve their privileges, attackers often use the target host
system vulnerabilities to perform some unconventional
operations.
Regardless of the attack method the attacker takes, it will
have a certain impact on the target host system when the
attack is implemented. For example, in the QEMU simulation
process, the right is raised by occupying the host's computing
resources through an incorrect call, and if the attacker triggers
an interrupt service in the host system, it will cause the buffer
to be accessed. If the CPU resource occupied by the incorrect
call or the memory resource overflowed is regarded as a
system resource, then the attacker will change the assigned
resource value of the system during the execution of the attack.
From the analysis above, it is known that the escape attack is
not only procedural, but also every step in the attack process
may change the characteristics of certain re- sources within
the attack target itself or the attack target, so that the system
passes from the secure state to some abnormal middle state and
is finally to an insecure state, which is completely attacked.
The system state is divided by the value of system resources,
then the system will be in a specific state at any time, and
these states are finite. When the system is under attack, the

value of system resources will be changed, resulting in the
transfer of system state. If changing system resource values
is regarded as events that cause state transitions, it is obvious
that these events are also finite. According to the nature of the
finite state machine, we can completely describe the attack
process with a finite state machine. And the finite state
machine has a "memory" function be- cause its output is
related to the current state. Describing the attack behavior
with a finite state machine can reflect the procedural nature of
the attack, so as to truly reflect the escape behavior.

3.4 Description of Elevated Penetration
Attack Model

The attack model is an abstraction of attack behavior.
Summarizing the attack model must be derived from the
actual code level of the attack behavior, but it cannot focus
too much on a particular type or a type of code and lead to a
general decline. In this paper, the design of virtual machine
escape privilege escalation attack model is de- signed to
analyze the loopholes of current NVD about KVM and XEN
virtualization system.
When describing an escape behavior with a finite state
machine, it is necessary to firstly analyze the attack scenario
to determine which resources in the system will be affected
when the attack is implemented and what kind of hazards will
be caused to the system. Then, according to the change of the
resource values in the system, divides the system state and
determines the attack event that caused the state transition.
Finally, a formal finite state machine can be used to describe
the attack process.
Assuming that the amount of escape attacks in the system is
numbered, the following attack i can be described as follows:
Definition 6: Virtual Machine Escape Attack
Attacki ={Qi ,∑i ,δi , qsi ,Ti ,ε}.

1) Qi is the instruction sequence status set of the i
attack, which represents the state of the system at this
time. Each element of the instruction sequence
represents the possible state of the target system when
the system is under attack. These instruction sequence
states are based on the system resources affected by
the attack;

2) ∑i states that the collection of attack events that may
cause abnormal changes in system resources during
the attack;

3) δi : Qi ×∑i → Qi ,is the reflection from Qi ×∑i to Qi
, Since the uncertain finite

state machine is used, the mapping result is a subset of Qi ;
4) qsi ∈Qi states the only infinite state of the i attack,

which indicates the security status of the target system
before the attack;

5) Ti ⊆ Qi and T ≠∅ ,which indicates the set of final
states of the attack, indicating that the attacker has
completed the attack or identified the attack on behalf
of the detection system;

6) ε indicates the threshold for the occurrence of this

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

 Elevated Penetration Attack Models of Virtual Machine Escape Based on FSM

Wei Fan and Weiqing Huang

6

i i i

i

attack. This value is used for later analysis of the
detection system.

Because the escape attack will cause the target system from
the secure state to some intermediate abnormal state and
eventually become insecure, the state in the Qi can be divided
into three categories, that is Q ={qs , qa j , qd | j = 0 or j =1,
2,..., M}.

a qsi indicates the security status of the target system before
the attack;
b qa ji indicates the j security status of the target system after
the attack occurs and before it is completed, j = 0 indicates no
middle state, indicates the number of the ab normal middle
state;
c qdi indicates the system's escape or failure state after the
attack is completed. ei

m indicates the m element of ∑I,
e i

m is the m attack in the attacking process, m =1, 2,..., N
, N is the number of ∑i . δi indicates the state transfer function,
which takes the system state and attack events as the input,
and takes Qi

 non-empty subsets as the output, such as δι
(qai

j , ei
m) →{qai

j , qai
m} , qai

0 = qsi while j = 0 , qai
M =

qdi while m = M ; qdi indicates the unique end state of
the attack, and Ti ={sdi } .

4. Proposed the Modeling Language and
Basic Model

This section firstly introduces a formal language, an
extension of Datalog is defined, that includes clauses
(operation and judgment), variables and constants, then raises
the basic elevated penetration attack model.

4.1 Datalog Overview

Datalog, as a data query language on logic-based, inspired by
the Prolog (Programming in logic) language, is subset of
Prolog. Its sentences are made up of facts and rules as the
same as Prolog, which can implement deductive reasoning for
a knowledge base, that is, a new fact could be obtained from
the known facts by inference. A rule of Datalog consists of
the following three parts:

1) Head: A relation atom.
2) Implication symbol: “:-”, read as if, indicates a logical

relation rather than an operational symbol.
3) Body: Include one or more atoms. Atoms may be

related or arithmetical, with constants or variables as
parameters. Each atom is connected by AND, and the
atom with NOT ahead is called the counter atom.

A sentence can be represented as a clause:
P：- P 1 ,P2 , ,Pn

This clause means that if P1 ,P2 ,.....,Pn are true, then P is true.
Otherwise, P is false. The left part of the clause is called head,
while the right part is called body. If a clause has non-empty

body, it is called a rule. If a clause has no body, it is called
fact.

4.2 Datalog-based Formal Language

Datalog has limited forms of clauses. This section presents a
modeling language which allows a generic and succinct
representation of exploitation. The formal language con- sists
of a clause, variables and constants, defined in TABLE 1, 2
and TABLE 3. The clause is further divided into two different
types: action and judgment. The vulnerability reports provide
information about vulnerable reason and exploits. The
language must define literal, variable and constant. The
description is abstracted into literals, which is divided into
two different types: operation and judgment. Operation is
operation conducted by attackers. Judgment is a check about
whether some conditions con- form to our designed security
specification and how much probability matching escape
vulnerability.
Table 1. Operation and Description

Table 2. Judgment and Description..
Literal Description
NotPositive(Var) Checking whether Var is non-positive.
Sign(Var) Checking whether Var is signed integer.
Uninitialized(Var) Checking whether Var is uninitialized.
Uncleared(Var) Checking whether the value or information i

Var is cleared.
Free(Var) Checking whether Var is freed.

Literal Description

ChngPt(principal, orgPt,
newPt)

A principle changes original pointer
to new pointer.

GetLength(p) Finding the length of object P.
WriteBuf(data) Writing data with size into buffer.
ExeOpers(oprA, oprB) Executing operation A, then executing

operation B.
ChngRTN(p, data) Modifying the return value of p and

writing
data.

EoP(OperA,formerPriv,
latterPriv)

Elevating privilege of operation A from
former-Priv to latterPriv.

CallFunc(func) Calling function Func.
ExeCode(principal, program,
priv)

A principle executes program with
privilege.

Access(principal, r/w, data) A principle accesses (read/write) data.
Dos(principal, program, priv) Generating denial of service under

privilege.
Oob(principle, operA) A principle conduct out of bound

operation A (access/write/read).

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

7

Table 3. Description of Variable and Constant.
Variable Description

orgPt Original pointer
newPt New pointer
RTN Return address
oprA Operation A
oprB Operation B
formerPriv The privilege before certain

operation
latterPriv The privilege after certain

operation
func Function
Var Variable
priv Privilege

As shown in Fig. 3, the basic elevated penetration attack
model based on finite state machine includes six states [16]:
start state (S), specification check state (SC), weak secure
state (WS), insecure state (IS), good state (G), failure state
(F). In view of the definition 6, S represents qsi and qai j

involves SC, WS and IS, then qdj is equal to F. It also includes
transitions: Implementation conforms to security
specification completely, Implementation does not conform
to security specification completely, deep checking in
instruction sequence how much probability matching escape
vulnerability.

Fig. 2. Basic elevated penetration attack model based
on FSM.

In Fig. 3, there is a label “Condition/Action” attached to every
transition. Condition means the pre-condition to trigger the
transition. Action is the post-condition caused by transition.
From S, the model will check whether condition is satisfied.
If yes, it goes to check. The security specification describes
system secure behavior. If so, the condition of the object will
transfer to good state (G). If the code is not in accord with
security specification completely, the model will go to weak
secure state (WS). Then the model will check whether there
is a deep check in instruction sequence how much probability
matching escape vulnerability and how it works in
implementation. If the probability δ is less than the set
threshold , meaning not a VM escape vulnerability, the
model will transfer to good state (G). Otherwise, the model
will transfer from WS to IS, indicating an elevated operation
to be the successful intrusion. Therefore, apart from the lack
of security mechanism completely, this model could also
describe in-sufficient security assurance mechanism. At last,
the condition will transfer from IS to F along with penetration
by executing arbitrary code, causing denial of service, or

accessing arbitrary data. Hence a VM escape behavior is
completed entirely. The basic elevated penetration attack
model is used to describe every step of attack pattern.
Consequently, we can acquire FSM model of attack patterns
by combining every basic FSM [2]. In this section, our
models describe escape process conceptually with condition
and action represented by Datalog based language in FSM.

5. Proposed the Different Attack Models

Most of VM escape vulnerabilities could be exploited by
certain different methods. According to NVD security
research, we generalize four attack models that include
specification violation attack, buffer overflow attack, out-of-
bounds attack and error handling attack. This section presents
FSM models of the above attack patterns. Each model
consists of one or several basic elevated penetration attack
models described in Section 4.3. These models offer general
steps to conduct escape conceptually and per- form as the
templates for every attack pattern which is helpful to analyze
specific cases in vulnerability database. The pre- and post-
conditions in FSM are represented by the formal language
presented in Section 4.2. According to attack models,
mitigation strat egy could also be gained.

5.1 Specification Violation Attack Model

Specification violation attack model often works at the
judgement stage of SC. The representative attack patterns of
this model are type confusion attack, uninitialized at- tack,
use after free attack, and so on.
The general steps of specification violation attack model are
shown in Fig. 4. In the SC, FSM will check whether
implementation accords with security specification
completely (e.g. whether type of argument matches
predefined parameter type, whether un- initialized
variable/object with previous information remained in the
memory, or whether certain vulnerable operations leading to
freeing of variables but not clearing the reference to the
variables). If so, the system is secure. Therefore, the control
flow will exit the model. Otherwise, it transits from SC to WS
and the attacker has passed the first check. At state WS, the
model will check whether there is a deep check in
instruction sequence how much probability matching escape
vulnerability. If the prob- ability δ is less than the set
threshold ε , meaning not a VM escape vulnerability, the
model will transfer to good state (G) and the control flow will
exit the model. Other- wise, it will turn to state IS. At IS, the
attackers craft variable type to manipulate address space to
elevate (e.g. Make pointer of certain class method point to
malicious shell code) and have passed all of checks. The
attackers can execute the program with privileges of owner.

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

 Elevated Penetration Attack Models of Virtual Machine Escape Based on FSM

Wei Fan and Weiqing Huang

8

Fig. 3. Specification violation attack model based on
FSM.

In Fig. 4, following the attack path, specification violation
attack model and corresponding mitigation strategy could be
derived. The attack model is described by Data- log based
language. According to Section 4, the sentence below means
in order to exe- cute program with owner’s privilege for
attacker, the steps below should be followed. Firstly, the
buffer overflow vulnerabilities should exist. Then ensure that
implementation doesn’t accord with security specification
completely. At last, the attackers have already changed
function pointer successfully.
Take an example of use after free attack, attack model
description:
 ExeCode(Attacker, Program, Owner):-
GetVariable(PtToVar);
 isUncleared(PtToVar);
Not isNtFree(Var);
AllocMem(Length, PtToObject);
ChngPt(Attacker, PtObjectMethod, AddrOfShellCode);
 isMalicious(Attacker).
Mitigation:
In order to prevent UAF attack, there are three
countermeasures:

1) The mechanism to check whether pointer to the
variable is freed;

2) The mechanism to check whether the variable is
freed;

3) The mechanism to check whether pointer of object
method is modified.

5.2 Buffer Overflow Attack Model

Buffer overflow attacks mainly include integer variable
overflow, stack smashing, heap corruption and so on. The
general steps for buffer overflow attack model are shown in
Fig. 5. The attacker allocates destination buffer determined
by the given length (some- times this is predefined by
program). Then attacker writes data to buffer, goes across the
boundary of buffer and overwrites memory locations (e.g.
Make return address point to malicious code). Shellcode will
be executed when function returns. Ellipsis represents
accumulation process, which means that it will take a long
time to input data into buffer and overflow it. The attack
model has multi-WS process used to check whether the length
of destination buffer is non-negative, after this check, other
potential

vulnerabilities related to negative buffer size can be ruled
out. The description of the attack model in the formal
language and attack mitigation strategy are derived below.

Fig. 4. Buffer overflow attack model based on FSM.

Attack model description:
ExeCode(Attacker, Prog, Owner):-
GetVariable(BufLength);
AllocMem(BufLength, DesBuf);
isLargerThan(InputSz, maxBufLength);
 isLargerThan(ε , δ);
ChngPt(Attacker, RTN, addrOfShellCode);
 isMalicious(Attacker).
Mitigation:

In order to prevent buffer overflow attack, there are two
countermeasures:

1. The mechanism to check whether input size is
within buffer length;

2. The mechanism to check whether return address
(RTN) is changed.

5.3 Out-of-Bounds Attack Model

The general steps of out-of-bounds attack model are shown in
Fig. 6. Out-of-bounds attack model, pointer index failure
leads to be intended for use, always causes denial of service of
the system. It often appear in self modified KVM or XEN
virtualization systems. It is possible that request data length
will go beyond the array available length. Then control flow
pointers (e.g. function pointer, return address) can be
modified to point to malicious code. Then the malicious code
will be executed when control flow transfers to modified
pointers. According to Fig. 6, the description of out-of-
bounds attack model in the formal language and the attack
mitigation strategy can be derived.

Fig. 5. Out-of-Bounds attack model based on FSM.

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

9

Attack model description:
ReqCheck(CndEqtn):-
GetVariable(Type p);
isLargerThan(p, Maxdatalength);
isUsedBy(p, equation or array index);
isLargerThan(, δ);
isOob(equation or array index);
isMalicious(Attacker).

Mitigation:
In order to prevent out-of-bounds attack, we can apply two
mechanisms:

1. The mechanism to check whether request data
length is beyond the array available length;

2. The mechanism to check whether pointer index
is failure.

5.4 Error Handling Attack Model

The general steps for error handling attack are shown in Fig.
7. Firstly, the attackers try to call a function to trigger an
interrupt. Then they will confuse interrupt processing
mechanism so as to stay ring0. At last, control flow pointer
(e.g. function pointer, return pointer) is overwritten to execute
arbitrary code. According to Fig. 7, the description of model
and the attack mitigation strategy can be obtained.

Fig. 6. Error handling attack model based on FSM.

Attack model description:
isLargerThan(, δ) :-
CallFunc(func);
ExeCode(principal, program, priv);
Access(principal, r/w, data);
isMalicious(Attacker).
Mitigation:
In order to prevent error handling attack, we can apply a
mechanisms: the mechanism to check whether interrupt
handling is working.
The conceptual models can be used to help identify potential
VM escape vulnerabilities and guide the practitioners,
especially system engineers with little knowledge of security,
to improve system security by adding checking mechanisms
in design stage. They can also be detailed by inspecting the
vulnerable code after the implementation stage which will be
introduced in section 6.

6. Statistics and Evaluation

This section first briefly introduces NVD, an open
vulnerability database, then the results of VM escape attack

model classification are presented. At last, in order to verify
the validity of the attack model, our modeling methods are
exemplified by analyzing a recent specific vulnerabilities
reported in NVD.

6.1 Statistical Analysis

Virtualization vulnerability source
Our analysis is based on approved vulnerability database,
National Vulnerability Data- base. There are 432 vulnerability
reports involving 111 KVM virtualization vulnerabilities and
321 XEN virtualization vulnerabilities, which are reviewed
until April, 2020. This database not only has validated the
majority of vulnerabilities, but also provides more detailed
information for every vulnerability, such as vulnerability
report date, vulnerability fix date, vendor, patch, and ways to
exploit vulnerability. What is more, NVD includes databases
of security checklist references, security-related system
flaws, mis- configurations, product names, and impact
metrics.
VM escape attack model classification results
We distill 39 VM escape vulnerabilities according to VM
escape definition from 111 KVM virtualization
vulnerabilities, while 100 VM escape vulnerabilities from
321 XEN virtualization vulnerabilities. Table 4 and table 5
summarize the number and per- centage of each attack model
virtualization from different virtualization systems.
As table 4 and table 5 show, buffer overflow attack model
accounts for a greater proportion. 2 (5.1%) vulnerabilities in
KVM reports and 6 (6%) vulnerabilities in XEN reports are
related to specific defects in hardware design. The exploit to
these vulnerabilities needs to take advantage of specific
hardware features. Therefore, there are no general attack
models which can cover them. Specification violation attack
model focuses on the judgement of SC. If the checking does
not conform to security specification completely, it will turn
to butter overflow to a large extent. So attack models are
much more related to manipulation of address space which is
still the main vehicle for attackers to intrude system. Efficient
techniques to detect anomalies in address space can
contribute so much to preventing intrusion.
Table 4. Number and Percentage of Each Attack Model on
KVM Virtualization.

Attack model Number (%)
Specification Violation Attack Model 9(23.1%)
Buffer Overflow Attack Model 11(28.2%)
Out-of-Bounds Attack Model 9(23.1%)
Error Handling Attack Model 8(20.5%)
Hardware 2(5.1%)
Total Number 39

Table 5. Number and Percentage of Each Attack Model on
XEN Virtualization.

Attack model Number (%)
Specification Violation Attack Model 21(21%)
Buffer Overflow Attack Model 35(35%)
Out-of-Bounds Attack Model 12(12%)
Error Handling Attack Model 26(26%)

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

 Elevated Penetration Attack Models of Virtual Machine Escape Based on FSM

Wei Fan and Weiqing Huang

10

Hardware 6(6%)
Total Number 100

6.2 Attack Case Evaluation

In this part, our modeling approach is exemplified by
analyzing several specific vulnerabilities reported in NVD.
The completion of an escape behavior is often the result of the
interaction of one or more attack models, only buffer
overflow attack model combined with Error handling attack
model will be detailed due to space limitation, like CVE-
2016-3960, CVE-2012-0217, is triggered by SYSCALL and
Hypercall instructions, eventually triggering the GP (General
Protection) fault with ring0 privileges and attacker-controlled
registers when executing the SYSRET instruction. The model
is derived shown in Fig. 8. In this case, the mechanism to
check whether buffer length is positive should be conducted
to avoid other potential vulnerabilities. Then the at- tacker
keeps writing data into buffer and our model will check
whether the size of input is within buffer length. If size of input
is larger, it will transit to WS and go to second WS.
Otherwise, it will go to G. Then the attacker will overwrite
memory. In the third WS, the model will check if the RTN is
changed by attacker to point to shellcode. If so, the model will
go to IS. Thus, the attacker will execute the program with
owner’s privilege. The attack scenario and mitigation can be
obtained as below. The attack pattern is described by Datalog
based language.

Fig. 7. Vulnerability details of buffer overflow attack
model combined with Error handling at- tack model

based on FSM.

Attack model description:
ExeCode(principal,program, priv):-
Getlength(buflength);
Getlength(datalength);
WriteBuf(data); ExeOpers(S
YSCALL, SYSRET);
isLargerThan(, δ);
ChngRTN(RSP,shellcode);
 isLargerThan(, δ);
ChngPt(attack,ring0,addrofshellcode).
isMalicious(Attacker).

Mitigation:
In order to prevent buffer overflow attack combined with
Error handling attack, there are three countermeasures:

1. The mechanism to check whether input size
controlled is larger than buffer length;

2. The mechanism to check whether return address
(RTN) is changed;

3. As to SC, the mechanism to check buffer length
is positive should be conducted to avoid other
potential vulnerabilities.

7. Conclusion

In this paper, we innovatively propose an elevated penetration
attack model based on FSM, extending Datalog language to
describe pre- and post-conditions of exploits for VM escape
vulnerabilities specifically, eventually details the escape
vulnerabilities, summarizes the key steps, and deduces the
escape vulnerabilities. The evaluation experimental results
demonstrate that the proposed attack models are reasonable
and ac- curate, making up for the evaluation on the VM
escape behavior in the virtualization security area. In the
future, we plan to apply the elevated penetration attack
models to identify more potential VM escape vulnerabilities
combined with the virtualization technology and more details
of attack behavior. Furthermore, we also intend to implement
our approach to different versions of virtualization systems to
generalize findings and refinement of the work.

References
[1] Jenni Susan Reuben. A survey on virtual machine security. On

TKK (Helsinki University of Technology) T-110.5290
Seminar on Network Security, 2007: 1 (8).

[2] Shuo Chen, Jun Xu, Zbigniew Kalbarczyk, and K. Iyer.
Security vulnerabilities: From analysis to detection and
masking techniques. Proceedings of the IEEE, 2006:
94(2):407–418.

[3] Walaa Eldin Moustafa,Vicky Papavasileiou,Ken Yocum,Alin
Deutsch.Datalography. Scaling datalog graph analytics on
graph processing systems [M]. 2016 IEEE International
Confer- ence on Big Data (Big Data), 2016: 56-65.

[4] Arpan Roy, Dong Seong Kim, Kishor S. Trivedi. Scalable
optimal countermeasure selection using implicit enumeration
on attack countermeasure trees. DSN 2012: 1-12.

[5] Arpan Roy, Dong Seong Kim, Kishor S. Trivedi. Attack
countermeasure trees (ACT): towards unifying the constructs
of attack and defense trees. Security and Communication
Networks. 2012: 5(8): 929-943.

[6] Bharat B. Madan, Manoj Banik, Bo Chen Wu, Doina Bein.
Intrusion Tolerant Multi-cloud Storage. 2016 IEEE
International Conference on Smart Cloud (SmartCloud).
2016:262-268.

[7] Subil Abraham and Suku Nair. Cyber Security Analytics: A
stochastic model for Security Quantification using Absorbing
Markov Chains. 5th International Conference on Networking
and Information Technology, ICNIT. 2014.

[8] Mohit Dua, Himanshi Singh. Detection & prevention of
website vulnerabilities: Current scenario and future trends.
2017 2nd International Conference on Communication and
Electronics Systems (ICCES). 2017: 429-435.

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

11

[9] Wissam Mallouli, Amel Mammar. Ana R. Cavalli: Modeling
System Security Rules with Time Constraints Using Timed
Extended Finite State Machines. DS-RT 2008: 173-180.

[10] 1Ou, Xinming, Sudhakar Govindavajhala. and Andrew W.
Appel. "MulVAL: A Logic-based Network Security
Analyzer." USENIX security. 2005.

[11] Moore, Andrew P., Robert J. Ellison, and Richard C. Linger.
Attack modeling for information security and survivability.
No. CMU-SEI-2001-TN-001. CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST,
2001.

[12] Michael Gegick, Laurie Williams. Matching attack patterns to
security vulnerabilities in soft- ware-intensive system
designs[C]//ACM SIGSOFT Software Engineering Notes.
ACM, 2005, 30(4): 1-7.

[13] Bozic, Josip, and Franz Wotawa. "XSS pattern for attack
modeling in testing. "Proceedings of the 8th International
Workshop on Automation of Software Test. IEEE Press, 2013.

[14] Kshirsagar D D, Tagad D K, Sale S S, et al. Network Intrusion
Detection based on attack pattern[C]//Electronics Computer
Technology (ICECT), 2011 3rd International Conference on.
IEEE, 2011, 5: 283-286.

[15] Bozic J, Garn B, Kapsalis I, et al. Attack pattern-based
combinatorial testing with constraints for web security
testing[C]//Software Quality, Reliability and Security (QRS),
2015 IEEE International Conference on. IEEE, 2015: 207-212.

[16] Kamil Mielcarek, Alexander Barkalov, Larisa Titarenko.
Designing Moore FSM with un- standard representation of
state codes [M].2016 5th International Conference on Modern
Cir- cuits and Systems Technologies (MOCAST), 2016:1-4.

EAI Endorsed Transactions on
Security and Safety

10 2020 - 01 2021 | Volume 8 | Issue 27 | e3

 Elevated Penetration Attack Models of Virtual Machine Escape Based on FSM

