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Abstract 
Machine learning has been a thriving topic in recent years, with many practical applications and active research aspects. In 
machine learning, model aggregation is an important area. The idea of model aggregation is to aggregate a global model 
from trained local models. However, traditional aggregation methods based on parameter averaging can not aggregate 
models which have different types and structures. Because parameter averaging will fail to average different types of 
values (parameters). To address this problem, we propose a new aggregation method which will suit for different types of 
local models. To achieve our goal, we transfer knowledge from local models to the global model. To do so, firstly, we 
propose differentially private GANs, let local parties generate synthetic data related to their training data. Secondly, we use 
the majority of prediction votes from local models to label those synthetic samples. Finally, use the labelled synthetic data 
to train the global model. By combining synthetic data and labels from local models, knowledge can be transferred from 
local models to the global model. We evaluate our scheme on Adult, MNIST and Fashion MNIST datasets under different 
settings, experimental results show that our scheme can achieve an accurate global model with low privacy loss. Besides, 
the easily implemented building blocks make our scheme efficient and practical for applications. 
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1 Introduction 

Collaboration is an essential factor of success for 
companies, countries, even globalization of the world. 
Machine learning sometimes also need collaborations. For 
example, some medical research institutes wish to 
collaboratively aggregate a global model to facilitate 
diagnosis and predictions (for example, the spreading of 
Covid-19). By aggregating models from different medical 
research institutes to form a global model, every institute 
can benefit from others and have a better understanding of 
the disease. However, sometimes there might be 
obstacles. These institutes might have different types of 
models and are not willing to disclose their sensitive 
datasets. 

Why existing works fail. In secure aggregation, most 
of existing schemes aggregate global models by averaging 
parameters from local models [18,15,2]. 

Because these methods are based on the assumption of 
local models and the global model share exactly the same 
type and structure, which is indeed a very common 
situation in many machine learning services. To 
circumvent private information leaking from local 
parameters, some works [1,18] release differentially 
private parameters by adding noise to gradients during 
training process. However, in fact, averaging local 
parameters is not always an appropriate solution to model 
aggregation. Just simply taking the average of local 
parameters might not directly result in a global model 
with good accuracy, let alone parameters with noise to 
achieve differential privacy. Most importantly, local 
parties might use different types of models, in which 
parameters can not be averaged. Just like the scenario 
mentioned above, in such situations, secure aggregation 
for different types of local models are expected, which 
motivates our work.
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Fig.1. The overview of our aggregation scheme for local models with different types. 

To solve the problems, in this paper, we propose an 
aggregation method to securely aggregate from 
different types of local models. The overview of our 
approach is shown in Fig.1. 

As shown in Fig.1, because local parties use different 
types of models, we can not simply aggregate from 
parameters. Instead, we choose to transfer knowledge 
from local models to the global model. Before using our 
scheme, we assume local parties have trained their local 
models based on their privates datasets, and those local 
models are with different types and structures. Our 
scheme contains three steps: 

• Firstly, besides of their machine learning models, we
let local parties train their differentially private local
generative adversarial networks (GANs) to generate
synthetic data. Then the global party collects the
generated synthetic data as unlabelled samples.

• Secondly, with those generated synthetic samples,
the global party will require local models’
predictions on those unlabelled samples, use the
majority voting of local models’ prediction results as
labels.

• Thirdly, the global model will be trained based on
the labelled synthetic data.

In our scheme, we propose a differentially private 
GAN to generate synthetic data, we clip the loss and then 
add Gaussian noise to achieve differential privacy. 

Because local parties use different types of models, 
parameter operations will fail. With regard to this 
limitation, we start from a new perspective, we transfer 
knowledge from local models to the global model. On one 
hand, the generated data can reflect statistic distributions 
of local parties’ private datasets. On the other hand, by 
labelling generated synthetic data, local model can 
transfer its knowledge learned from its sensitive dataset to 
the synthetic dataset. Using these two parts of knowledge 
simultaneously, the global model is supposed to learn 
knowledge from local parties’ private datasets and 
achieve good accuracy. 

We evaluated the performance of our scheme on both 
text dataset and image datasets, they are Adult, MNIST 
and Fashion MNIST. We split the dataset for local parties, 
train different types of local models and GANs on behalf 
of local parties. We test different Gaussian noise levels, 
different numbers of local parties. Among those different 
settings, the global model can achieve 82.81%, 98.28% 
and 88.94% accuracy for Adult, MNIST and Fashion 
MNIST respectively. Moreover, our scheme achieves low 
privacy loss from differentially private GANs. The 
contributions of our work are as follows: 

• We address a new problem that aggregating global
model privately from different types of local models.

• In despite of the infeasibility of parameter
aggregation, we privately transfer knowledge from
local models to the global model by combining
differentially private GAN and labelling generated
samples from local models .

• We evaluate the performance of our scheme on real-
world datasets, experiments show that our scheme
can achieve accurate global model with low privacy
loss.

The organization of the remainder of this paper is 
structured as follows: Preliminary is introduced in Section 
2. Our scheme along with proof and privacy loss are
present in Section 3. Then followed by Evaluations in
Section 4. Related works and Conclusion are given in
Section 5 and 6. Appendix provides auxiliary proof for
our scheme.

2 Preliminary 

In this section, we briefly describe the building blocks of 
our approach, including differential privacy and 
generative adversary network. 

2.1 Differential Privacy 
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Differential privacy [3,5,6] is a standard for randomized 
algorithms analyzing dataset providing privacy 
guarantees. We recall the definition defined in [4]. 
Definition 1. A randomized algorithm M : D → R 
with domain D and range 
R satisfies (ε,δ)-differential privacy, if for any two 
adjacent inputs d,d’ ∈ D for any subset of outputs S ⊆ 
R it holds that 

This definition is based on (ε,δ)-differential privacy, 
which means the plain ε-differential privacy can be 
broken with a probability δ. In this paper, we use a 
common value of δ as 10−5. Two adjacent datasets means 
they only differ in a single entry. 

To achieve differential privacy for a function, a 
common method is to add random noise to the function, 
the magnitude of the noise should be calibrated to the 
sensitivity of the function. 

Definition 2. For f : D → R, adjacent d,d’ ∈ D, the L2

sensitivity of f is 

where ||2 means l2 -norm 

The Gaussian noise mechanism achieving differential 
privacy is defined as follows: 

where N(0,∆2f2σ2) is the normal (Gaussian) 
distribution with mean 0 and standard deviation ∆2fσ. 

2.2 GAN 

Generative Adversarial Network (GAN) [7] is a newly 
invented architecture in machine learning, used for 
training generative models. The idea of GAN is to let two 
neural networks compete with each other in a game, one 
learns to generate synthetic data while the other one learns 
to distinguish between real and synthetic data. Given a 
training set, the outcome of a GAN is a generative 
network that can generate new data with the same 
statistics as the training set. 

Generative Adversarial Networks (GAN) consists of two 
models: a generator G and a discriminator D. Generator G 
takes random noise z ∼ pz(z) as input, tries to output 
synthetic samples of data with distribution approximates 
real data’s distribution x ∼ pdata(x). The discriminator D 
will estimate the probability that a sample is a real data 
comes from the training dataset rather than a synthetic 
data generated from G. These two models are 
simultaneously trained in a competitive way, the goal of 
GAN is training G and D playing a two-player minmax 
game with the value function V(G,D): 

3 Our Approach 

In this section, we illustrate our scheme for secure 
aggregation from different types of local models. Notice 
that, our secure aggregation method can also generalize 
traditional model aggregation where local models share 
the same model structure. 

3.1 Roles of participates 

There are two roles in our scheme, local parties and the 
global party. Local party possesses its sensitive dataset 
and every local party develops its own machine learning 
model privately. The global party is in charge of 
aggregating a global model from local machine learning 
models. 

In our scheme, we consider an honest but curious 
global party, which will participate in the system honestly 
but always wants to steal privacy information from local 
parties. 

Local parties are also honest but curious, they 
participate in the system honestly, and also want to steal 
sensitive information from other parties. They might 
collude with each other but would not destroy their 
collaboration of aggregation. 

3.2 Train local models and GANs 

Fig.2. Local parties train their own machine learning 
models and GANs privately. 
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As mentioned before, our method can suit for local 
models with different types. As shown in Fig.2, we use 
different colors to represent different local models. Local 
parties train their own machine learning models and 
develop differentially private GANs. 

The types and structures of machine learning models 
differ among local parties. For example, in our 
experiment, there are five different machine learning 
models used among local parties for Adult dataset, they 
are Logistic Regression, Random Forest, SVM (support 
vector machine), Decision Tree and Neural Net-work. For 
MNIST and Fashion MNIST datasets, local parties use 

different CNN (convolutional neural network) structures, 
they are different in the number of layers, number of 
parameters, etc. 

Local parties can also use different types and structures 
of GANs (not mandatory). For examples, in our 
experiment, we use three different types of GANs: 
traditional GAN, DCGAN and Variational Autoencoder. 
Local parties train their GANs based on their own 
sensitive datasets privately. To prevent generated data 
repeating or reflecting sensitive features of the training 
data, we introduce differentially private GAN structure, 
described in Algorithm 1. 

The perspective of Algorithm 1 is that even though 
generator has no access to training dataset, it has access to 
discriminator’s parameters, which might have encoded 
sensitive features of training data. To prevent generator 
from stealing sensitive information from discriminator’s 
parameters, reflecting them to generated synthetic 
samples, we need to make sure the derivatives from 
discriminator’s parameters to generator’s parameters 
contain no sensitive features. In Algorithm 1, we provide 
a differentially private parameter update for generator. 

As shown in Algorithm 1, we need the following steps 
in every epoch of GAN training: 

• Train the discriminator on a batch of synthetic data
from generator and a batch of real data from training
dataset, compute loss on every sample.

• For loss computed on real data, clip loss norm to a
threshold C, i.e., if ||D reali||2 ≤ C then D _reali would
be preserved, if ||D_reali||2 ≥ C, then D_ reali would be
clipped to be norm of C.

• Sum up the loss D_reali and then add Gaussian noise
(with mean 0 and standard variance σ) to the sum of
the clipped loss.

• Compute the whole loss D_losst, use the loss to
compute gradients, update discriminator’s
parameters. Then set the discriminator untrainable.

• Generator G generates a batch of synthetic data, the
discriminator D predicts on the synthetic data,
computes the loss and then computes the gradients.

• Generator G updates its parameters according to the
gradients.
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In Algorithm 1, we use Gaussian differential privacy 
mechanism to achieve a differentially private 
discriminator. Because the discriminator is differentially 
private, through propagation, the generator and the 
generated synthetic samples from the generator are also 
differentially private. 

3.3 Labelling generated synthetic data 

Every local party generates an amount of synthetic 
samples for the global party. The global party collects 
synthetic samples from every local party, then submits 
them to all local models to get predictions. We use 
majority voting of prediction results as labels for the 
generated synthetic data. 

The idea of majority voting is to select the largest 
count of the vote to ensemble the decision. Let m be the 
number of classes in our task, n be the number of local 
parties. The label count (for a given class j ∈ [m] and an 
input x) is the number of local parties assigned class j to 
input x: nj(x) = |{i : i ∈ [n],fi(x) = j}|. For an input x, the 
ensemble prediction j will be the class with the largest 
count: 

Notice that, the shortcoming of this method is the 
majority voting result will be sensitive to individual votes, 
especially when the votes for two categories are equal. If 
one individual reversed its prediction result, the ensemble 
prediction would be reversed as well. 

To overcome this problem, we also consider the second 
majority prediction class count. If the first majority and 
the second majority votes are equal or only with distance 
1, we remove the related generated sample. The reasons 
for the equality and closeness of the first and second 
majority probably come from the corresponding synthetic 
sample being of poor quality or errors and compromised 
behaviors of local parties. 

After obtaining those labelled synthetic samples, the 
global party will use them to train the global model. 

3.4 Differential privacy proof and privacy 
loss 

In this subsection, we prove Algorithm 1 in our scheme 
can be bounded as (ε,δ)differentially private. 

Privacy loss is a random variable dependents on the 
random noise added to the algorithm. A mechanism M is 
(ε,δ)-differentially private is equivalent to a certain tail 
bound on M’s privacy loss random variable. In this paper, 
we use the moments accountant introduced in [1] to keep 
track of a bound on the moments of the privacy loss 
random variable (Equation (6)). The moments accountant 
can be applied for composing Gaussian mechanisms with 
random sampling. As shown in Algorithm 1, we update 
the state by sequentially applying Gaussian differentially 
private mechanisms during training the discriminator. 

3.5 Differential privacy proof 

Proof. We compute the log moments of the privacy loss 
random variable, which compose linearly. Then combine 
the moments bounds with the standard Markov inequality 
to obtain the tail bound, which is the privacy loss in the 
sense of differentially privacy. 

For neighboring databases d,d’ ∈ Dn, a mechanism M, 
auxiliary input aux, and an outcome o ∈ R, define the 
privacy loss at o as: 

As shown in Equation (6), this is an instance of 
adaptive composition, which we let the auxiliary input 
aux of the kth mechanism Mk be the output of all the 
previous mechanisms. 

For a given mechanism denoted as M, we define the λth 

moment αM(λ;aux,d,d’) as the log of the moment 
generating function evaluated at the value λ: 

Which can be used to prove privacy guarantees of a 
mechanism. The maximum is calculate over all possible 
aux and all the neighboring databases d,d’. 

We recall and use some properties of α introduced and 
proved in [1] to prove the bound. 
Theorem 1. Let αM defined as above, then 

1. [Composability] Suppose that a mechanism
M consists of a sequence of adaptive mechanisms 

M1,...,Mk, where . Then, 
for any λ, 

2. [Tail bound] For any ε > 0, the mechanism M is (ε,δ)-
differentially private (we use a common value for δ
as 10−5) for

Now we need to prove the bound for every step value 
αMt(λ). To compute the bound, we need some 
parameters as follows: 

• We use f(·) to denote the function applying Gaussian
differentially private mechanism, which is the loss
D_ reali in Algorithm 1, we clip the loss function f(·)
to a threshold C (set as 1), therefore we have ||f(·)||2 ≤
C.
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• σ is the standard variance of Gaussian distribution, in
Algorithm 1, σ ≥ 1

• Sampling probability from the training dataset is
denoted as q, in Algorithm 1, the sampling
probability is B/N, in which B is the batch size of
selected real samples; N is the total number of
samples of training dataset. – Training epochs (steps)
in Algorithm 1 is T.

With these settings, we can obtain a bound for αM(λ), 
we use a theorem in work [1] to facilitate our proof. 

Theorem 2. Suppose that f : D → Rp, with ||f(·)||2 ≤ C, 
C = 1. Let σ ≥ 1 and let J be a sample from [n], where 
each i ∈ [n] is chosen independently with 
probability . Then for any positive integer 

, the mechanism 

Mt(d) = Pi∈J f(di) + N(0,C2σ2) satisfies

The proof for Theorem 2 is attached in Appendix. 
With T steps composed, we can obtain a whole 

bound for Algorithm 1. 

3.6 Privacy loss 

With the bound for αM(λ), we can derive a measurement 
of the differential privacy parameters (ε,δ) for Algorithm 
1. With , 

We can see the bound for αM(λ) is dominated 

by . We set a slightly tight bound for αM(λ) for 
easy forward reduction as: 

Then combine with Theorem 1.1 [Tail bound], for any 
ε < Tq2, we can have: 

According to these two inequality, and λ > 1, σ > 1, we 
can have: 

Then we set the bound for ε, which is the relation 
between σ and ε. 

With this evaluation method for ε, we can evaluate the 
bound (ε,δ) and claim our Algorithm 1 is (ε,δ)-
differentially private. 

4 Evaluation 

4.1 Datasets 

We evaluate the performance of our scheme on Adult, 
MNIST and Fashion MNIST datasets. The Adult dataset 
is a collection of census data with 48,842 examples, every 
example has 14 attributes. It is a binary classification and 
its prediction task is to determine whether a person makes 
over 50K a year [10]. MNIST is a 10-class handwritten 
digit recognition dataset consisting of 60,000 training 
examples and 10,000 test examples [11], each example is 
a 28 × 28 size greyscale image. Similarly, Fashion 
MNIST is a 10-class dataset of fashion images, also 
consisting of 60,000 training examples and 10,000 testing 
examples [19], each example is a 28 × 28 size gray-level 
image. 

With Adult, MNIST and Fashion MNIST, our scheme 
can be evaluated broadly on different types of datasets. 
Adult dataset is a text and number based dataset 
(produced in 1996). MNIST (produced in 1998) is an 
image based dataset and has been as a benchmark for 
machine learning and data science algorithms for years, 
and now Fashion MNIST (produced in 2017) serves as an 
alternative replacement for the original MNIST dataset 
benchmarking machine learning algorithms. 

4.2 Train local machine learning models 
and DP-GANs 

In our experiments, we let local parties develop different 
machine learning models, which have different types and 
structures. We develop Logistic Regression, Random 
Forest, SVM (support vector machine), Decision Tree and 
Neural Network among local parties for Adult. For 
MNIST and Fashion MNIST, because they are image 
based datasets, we deploy different CNN (convolutional 
neural network) structures. CNNs can achieve good 
accuracies for image recognition tasks. 
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We split the training dataset among local parties and 
train every local machine learning model on their part of 
training dataset, test local models’ performance on test 
dataset, then take the average of local models’ accuracies 
as “standalone” accuracy for local models. 

Next, local parties develop their GANs to generate 
synthetic samples. We also develop different GAN 
structures, which is not mandatory in our scheme. For 
Adult dataset, we use traditional GANs and Variational 
Autoencoders (VAEs) among local parties. For MNIST 
and Fashion MNIST, we use traditional GANs and 
DCGANs. VAE and DCGAN are GAN variants, DCGAN 
[16] uses deep convolutional neural network in GAN
structure, while VAE [9,17] uses variational encoder and
decoder as GAN structure.

We develop differentially private GANs according to 
Algorithm 1. It turns out that choosing loss function as 
target of applying differential privacy benefits our 
experiments. It is easy to program and suitable for 
different GAN structures. Also, there is no need to modify 
core functions in Tensorflow or Keras to implement our 
scheme. All our experiments are programmed in Python 
and executed on Google Colab which provides free access 
to GPUs and has libraries such as Keras, TensorFlow 
embeded. We will open source our codes along with this 
paper. 

In Fig.4, we show some generated synthetic samples 
for Adult, MNIST and Fashion MNIST with 5 local 
parties, loss clipping threshold C = 1 and noise level σ = 

1.0. For Adult, the generated synthetic samples are from a 
local party using VAE. Generated synthetic MNIST 
samples are from a traditional GAN and generated 
synthetic Fashion MNIST samples are from a local party 
using DCGAN. Because Adult dataset is number and text 
based dataset, we process samples and standardize each 
sample to 88 numerical features, then feed the processed 
samples to GANs. Therefore, in Fig.4 (a) (b), we show 
samples in 88 features instead of using the original form 
of data. 

As shown in Fig.4, the synthetic samples generated 
from differentially private GANs look similar with real 
samples. Because we add Guassian noise to GANs to 
achieve differential privacy, some generated synthetic 
samples are a little bit blurry. 

After training local GANs, local parties are ready to 
generate synthetic samples. We let the number of 
generated synthetic samples from every local party be the 
same size with local party’s training dataset. The global 
party collects generated synthetic samples from local 
parties, submit the synthetic samples to local models. 
Local models predict on those samples. Then the global 
party collects the prediction results and uses majority 
voting to ensemble labels. If the first majority voting is 
equal or only has one count more than the second 
majority voting count, the related samples will be 
removed by the global party. 

(a) Real and synthetic class -0 samples. (b) Real and synthetic class -1 samples.
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(c) Real MNIST samples. (d) Synthetic MNIST samples.

(e) Real Fashion MNIST samples. (f) Synthetic Fashion MNIST samples.

Fig.4. Real and Synthetic (a)(b) samples of Adult, synthetic samples are from a VAE; Real (c) and synthetic (d) 
samples of MNIST, synthetic samples are from a traditional GAN; Real (e) and synthetic (f) samples of Fashion 

MNIST, synthetic samples are from a DCGAN. 

Next, global models will be trained on those labelled 
generated synthetic datasets. For Adult dataset, the global 
model is a 4-layer neural network. For MNIST and 
Fashion MNIST, global models are CNN structures. After 
training global models for different datasets, we test 
global models on real test datasets from Adult, MNIST 
and Fashion MNIST to obtain global accuracies. In Table 
1, we list the accuracies of global models for different 
datasets, we also list the corresponding baseline 
accuracies which come from machine learning models 
trained on the whole real training datasets, and the 
standalone accuracies which are the average of local 
models’ accuracies. 

As shown in Table 1, the global models aggregated by 
our scheme achieve higher accuracies than local model’s 
standalone accuracies, indicating our scheme can provide 
privacy protection and achieve accurate global models 
simultaneously. On the other hand, because we use 
differential privacy in our scheme, global models achieve 
slightly lower accuracies than baselines. This inferior 
performance mainly due to two reasons: firstly, the global 
model is trained on generated samples not on real 
samples, but tested on real samples, this gap causes some 
decline of accuracy; secondly, we add noise to GAN to 
achieve differential privacy, the added noise will to some 
extent affect the quality of generated synthetic samples, 
thus affecting the accuracy of trained global model. 

Table 1. Accuracy of Global model, Baseline and 
Standalone on different datasets. 

Dataset Adult MNIST Fashion MNIST 
Baseline 0.8474 0.9920 0.9250 

Standalone 0.8246 0.9816 0.8760 
Global 0.8281 0.9828 0.8894 

We also evaluate our scheme under different Gaussian 
noise levels σ. We also compute the privacy loss for every 
local party according to different noise levels. With noise 
level σ and δ (we set δ as a common value 10−5), we can 
calculate the privacy loss ε according to Equation (18). 
Some other parameters are as follows: batch size B for 
Adult, MNIST and Fashion MNIST are 256, 128 and 128 
respectively. Training epochs T for Adult, MNIST, 
Fashion MNIST are 1,000, 10,000, and 10,000. Total 
numbers of training samples N in every local party for 
Adult, MNIST, Fashion MNIST are 7,814, 12,000 and 
12,000. We list the related experimental results in Table 
2. 

As seen from Table 2, with more noise added, we can 
achieve stronger privacy protection which means lower 
privacy loss. Due to more noise is added to differentially 
private GANs, the generated samples will be affected, 
then result in less accurate global models. 

To compare global models’ accuracies under different 
noise levels with baseline and standalone accuracies, we 
plot the comparison in Fig.6 

As shown in Fig.6, when the noise level is low, the 
global models achieved by our scheme can exceed local 
model’s standalone accuracies. With more noise added to 
obtain stronger privacy protection, the global models’ 
accuracies will be slightly lower than local model’s 
standalone accuracies. In fact, this tradeoff between 
privacy and performance is inevitable in many other 
privacy-preserving schemes as well. In our scheme, the 
global party can alter the noise level to balance between 
privacy loss and accuracies. 
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Table 2. Global models’ accuracies and privacy loss under different noise levels. 

Dataset Noise level Privacy loss Accuracy 

Adult

σ = 1.0 (ε,δ) = (7.0306,10−5) 0.8281 
σ = 1.5 (ε,δ) = (4.6870,10−5) 0.8236 
σ = 3.0 (ε,δ) = (2.3435,10−5) 0.8147 
σ = 5.0 (ε,δ) = (1.4061,10−5) 0.8109 

MNIST

σ = 1.0 (ε,δ) = (7.2385,10−5) 0.9828 
σ = 1.5 (ε,δ) = (4.8257,10−5) 0.9819 
σ = 3.0 (ε,δ) = (2.4128,10−5) 0.9789 
σ = 5.0 (ε,δ) = (1.4477,10−5) 0.9677 

Fashion MNIST

σ = 1.0 (ε,δ) = (7.2385,10−5) 0.8894 
σ = 1.5 (ε,δ) = (4.8257,10−5) 0.8779 
σ = 3.0 (ε,δ) = (2.4128,10−5) 0.8702 
σ = 5.0 (ε,δ) = (1.4477,10−5) 0.8647 

(a)                                                          (b)     (c) 
Fig.6. With 5 local parties and different Gaussian noise levels, global models’ accuracies, baseline and 

standalone accuracies for Adult, MNIST and Fashion MNIST. 

We also test our scheme under different numbers of 
local parties. In Fig.8, we plot global models accuracies 
aggregated from 10 and 20 local models along with local 
models’ standalone and the baseline accuracies. 

Notice that, because we split the training data evenly 
among local parties, with more local parties involved, 
every local party will have less training data and achieve 
less accurate local models. Consequently, with less data, 

the quality of generated samples from local differentially 
private GAN will decrease, therefore resulting in less 
accurate global models trained on those generated 
samples. 

In conclusion, according to those experiments, our 
scheme can achieve accurate global models from different 
types of local models, meanwhile, providing satisfying 
privacy protection with low privacy loss. 

(d)  (e) (f) 
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(g) (h) (i) 

Fig.8. Under different Gaussian noise levels, ((d)(e)(f) from 10 local parties and (g)(h)(i) from 20 local parties), 
global models’ accuracies, baseline and standalone accuracies for Adult, MNIST and Fashion MNIST. 

4.3 Comparison with other works 

We compare our scheme with two state-of-the-art related 
works [18,12] about secure machine learning model 
aggregation. DP-DSSGD [18] is designed for aggregating 
local models with the same structure. Local models select 
and upload small part of differentially private parameters 
to the global party, then the global party uses the average 
of local models’ parameters to form global model’s 

parameters. SecureML [12] uses secure two-party 
computation to train a global model. They let data owners 
distribute their private data among two non-colluding 
servers who train various models on the joint data using 
secure two-party computation (2PC). We compare our 
scheme with these two schemes evaluated on MNIST 
dataset (Due to lack of experimental results from these 
two works, we only compare the performance on 
MNIST), shown in Table 3. 

Table 3. Comparison among our scheme and two related works. 

Scheme Methods Versatility Accuracy 
DP-DSSGD [18] DP, Selective SGD Same type, deep learning 97.00% 
SecureML [12] 2PC Different types, machine learning 93.10% 

Our scheme DP-GAN Different types, machine learning 98.26% 
Because DP-DSSGD computes privacy loss based on 
every parameter, their privacy loss will be huge when 
local parties upload many parameters. With 0.1 portion of 
parameters uploaded from local models, their privacy loss 
can still be larger than our scheme. With 0.1 portion of 
parameters uploaded, DPDSSGD achieves lower accuracy 
than our scheme. Besides, our scheme can suit for 
different types of machine learning models while DP-
DSSGD can only suit for same type of deep learning 
models. 
SecureML uses Garbled Circuits (a popular tool for 
secure two-party computation) to learn a global model 
without knowing data owners’ private dataset. Because 
they need to compute almost the entire machine learning 
process under Garbled Circuits, which are only suitable 
for boolean circuits, they need to modify non-linear 
activation functions, thus causing decline of global 
model’s accuracy, they only obtain 93.1% on MNIST. 

Even worse, Garbled Circuits can be extremely time-
consuming and sometimes space-consuming, which is 
very inefficient for machine learning algorithms. 

5 Other Related Works 

There are some works originally designed for 
differentially private deep learning can bring inspirations 
to our work. Through modifications, some ideas can be 
borrowed for local model aggregation. 
Based on transfering knowledge: Hamm et al. [8] and 
Papernot et al. [13,14] use majority voting from local 
models to label auxiliary public data, then use those 
labelled public data to train a secure model. However, 
there are limitations, firstly, public data with the same 
distribution as training datasets is not always available, 
especially when involving sensitive data. In most cases, 
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public data has different distribution with the training 
data. 
Based on differential privacy: Some schemes choose to 
release local models’ parameters to aggregate. To prevent 
private information leaking from local parameters, some 
works [1,18] use differential privacy by adding noise to 
local models’ parameters. With differential privacy, those 
schemes achieve differentially private machine learning 
models. However, those schemes can only be applied on 
local models with exactly the same type and structure. 

6 Conclusion 

Motivated by securely aggregating local models with 
different types, we design an aggregation scheme that 
allows different types of local models train on their 
datasets privately. We propose differentially private GAN 
and transfer knowledge from local models to the global 
model. We use differentially private GANs to let local 
parties generate synthetic samples and all local models 
predict on the generated samples, then we use the 
majority voting count as the label. By combining 
generating differentially private synthetic data and 
querying local models’ predictions, we transfer 
knowledge from local models to the global model. With 
good performance, our scheme is accurate, efficient and 
practical, we believe our scheme can be widely applied in 
the very near future. 
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