
1

deMSF: a Method for Detecting Malicious Server Flocks
for Same Campaign
Yixin Li1,*, Liming Wang1, Jing Yang1, Zhen Xu1 and Xi Luo2

1Institute of Information Engineering, Chinese Academy of Sciences
2Cyberspace Institute of Advanced Technology, Guangzhou University

Abstract
Nowadays, cybercriminals tend to leverage dynamic malicious infrastructures with multiple servers to conduct attacks,
such as malware distribution and control. Compared with a single server, employing multiple servers allows crimes to be
more efficient and stealthy. As the necessary role infrastructures play, many approaches have been proposed to detect
malicious servers. However, many existing methods typically target only on the individual server and therefore fail to
reveal inter-server connections of an attack campaign.
In this paper, we propose a complementary system, deMSF, to identify server flocks, which are formed by infrastructures
involved in the same malicious campaign. Our solution first acquires server flocks by mining relations of servers from
both spatial and temporal dimensions. Further we extract the semantic vectors of servers based on word2vec and build a
textCNN-based flocks classifier to recognize malicious flocks. We evaluate deMSF with real-world traffic collected from
an ISP network. The result shows that it has a high precision of 99% with 90% recall.

Keywords: Malicious web infrastructure, Server flock, Word embedding, textCNN.

Received on 31 May 2020, accepted on 14 September 2020, published on 07 October 2020

Copyright © 2020 Yixin Li et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.21-6-2021.170236

* Corresponding author. Email: liyixin@iie.ac.cn

1 Introduction

Malicious web activity is still a major threat to Internet.
Nowadays, cybercriminals build malicious web
infrastructures to supply their crimes, which makes
attacks complicated and diversified. Dark infrastructures
today contain multiple servers (e.g., exploit servers,
command & control servers, redirect servers, payment
servers). Adversaries growingly combine these servers as
the platform to spread malicious content, launch attacks
and monetize from crimes. A typical example is malicious
redirection, which leverages exploit servers to redirect
visitor to another website.

Many approaches have been proposed to identify
malicious servers. Most detection systems detect
malicious webs by analyzing web content [5,11,16,24],
identify malicious servers by building a reputation system
for an individual server [3,4,9] or find popular techniques
adversaries used to avoid evasion [18,25,30,32, 33].
Unfortunately, these works focus only on a single server
which makes them lack the panoramic view of attacks. In

addition, some servers may not easily be discovered by
only analyzing the single server. Some works
[2,15,19,27,34] notice the relation of servers by identify
malicious redirections. Zhang et al. [34] indicate that
malicious servers tend to be invisible and propose a
method by analyzing redirections from visible to invisible
server. Li et al. [15] leverage redirect-chains to build the
topology of dark infrastructures and further recognize the
dedicated malicious hosts. However, the collection of
redirections is not easy while relations of malicious
servers are various which not only limited to redirect.

Different from existing works, we focus on relations of
servers given that increasingly attacks are conducted with
multiple servers. We aim to identify servers involved in
the same malicious activity, which we called a server
flock, without relying on redirections. In particular, we
find two features of server flocks to help distinguish
flocks from DNS traffic. First, the completion of the
attack requires a victim to access multiple servers
continuously, in other words, servers of a flock tend to co-
exist in the user’s access list within an interval. Second,
the flock used for crimes only serves certain victims,

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

EAI Endorsed Transactions
on Security and Safety Research Article

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Yixin Li et al.

2

which means that servers of a flock probably have stable
clients.

Based on the above observations, in this paper, we
propose a mechanism, deMSF, to detect malicious server
flocks on a local network with only three fields:
timestamp, clients and servers. We generate sever flocks
in two steps: (a)we cluster servers within a client access
list according to the timeline; (b)we extract final server
flocks based on the similarity of clients. Inspired by a
hypothesis that servers occur in the same contexts tend to
be similar, we extract semantic vectors as features of
servers based on word2vec and further design a
convolution neural network based on textCNN to classify
malicious flocks.

It should be noted that deMSF is a complementary
approach to existing works. We believe that it can help
detect servers that may be ignored by only analyzing a
single server. In addition, it helps describing relations of
servers within a malicious activity.

In summary, the contributions can be described as
follows:

– We present a system, deMSF, to detect malicious
campaigns by recognizing malicious server flocks.
Focusing on flocks rather than an individual server
makes deMSF be capable of revealing the relation of
malicious servers.

– We design a two-step method to discover malicious
flocks. In the first step, we generate flocks by
clustering servers from both sequential and spatial
dimensions. In the second step, we extract semantic
vectors of servers and design a convolutional neural
network to classify flocks based on these vectors.

– We evaluate the effectiveness of deMSF with real-
world data collected from an ISP network, and the
result demonstrates that deMFS performs well in
discovering associated servers involved in malicious
campaigns.

The rest of this paper is organized as follows: section 2
introduces the background knowledge of our work.
Section 3 describes the critical components of deMSF.
Then we evaluate the effectiveness of deMSF in section 4.
Section 5 presents the related works, and section 6 is our
conclusion.

2 Background

Machine learning has been widely used in many fields
and gets significant advantages. Our work leverages
machine learning to describe semantic features of servers
and identify malicious flocks. In this section, we describe
the related machine learning techniques employed in our
system.

2.1 word2vec

Word2vec, proposed by Mikolov [20] in 2013, is one of
the most widely used techniques for learning high-quality
word vectors from huge data sets with billions of words.
The resulting vectors can reflect subtle semantic
relationships between words, for example,
vector(King)−vector(Man)+vector(Woman) results in a
vector that is closest to the vector representation of the
word Queen [22].

Fig.1. Two models of word2vec

Word2vec takes text corpus as input and generates
word vectors. It includes two learning models, Continuous
Bag of Words (CBOW) and Skip-gram. As shown in
Figure 1, both are simple neural network model with one
hidden layer. The former predicts the word given its
context, while the latter predicts the context given a word.
Compared to the one-hot encoder, word2vec generates
dense vectors. Another significant advantage of word2vec
is that words with similar meanings will be mapped to
similar positions in the vector space.

2.2 textCNN

Convolutional neural networks (CNNs) are a specialized
kind of neural network for processing data that has a
known, grid-like topology [8]. CNNs are originally used
in computer vision [13], while in recent years, they have
been found to perform well for NLP. In 2014, Kim
proposed a network named textCNN [12] for sentence-
level classification tasks with pre-trained word vectors.
As shown in Figure 2, textCNN is a simply neural
network with an input layer, an output layer, a
convolution layer and a max-pooling layer. It takes texts
as input and usually leverages word embedding to
increase performance.

In this paper, we design a network based on textCNN
for our task. This model achieves superlative performance
in malicious flocks detection.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

3

Fig.2. textCNN

3 System Description

Fig.3. Architecture of deMSF

In this section, we describe our design of deMSF. The
intuition of deMSF is that servers involved in one activity
have strong relationships: (a) servers of a flock tend to co-
occur within an interval in a client access list; (b) servers
for the same campaign have similar clients. As shown in
Figure 3, deMSF takes network traffic as input, and has
four components: Preprocessing, Flocks Generating,
Servers Vectorizing, Flocks Classifying. It leverages only
three fields (client, timestamp, server) to analyze. In this
paper, we take DNS logs as raw data. After process raw
data and extract related fields, we generate server flocks
from both temporal and spatial dimensions. Then we
vectorize servers according to word2vec [21]. Finally, we
build a deep learning classifier to recognize malicious
flocks based on semantic vectors of servers. In the
following, we will explain each component in detail.

3.1 Preprocessing

The primary goal of this step is to formalize the dirty raw
data, extract valid fields and generate visit-sequences of
clients. In order to reduce the data to be processed and
improve the system efficacy, we first filter records
according to the following rules.

– Irregular domain. There are some records in raw data
with irregular domains(domains that do not conform
to domain naming rules, for example, google,com),
which is probably caused by mistyping or
misconfiguration.

– Invalid domain. An invalid domain here indicates that
its TLD(Top Level Domain) is not in the list of
registered TLDs presented by IANA [10]. We filter
records with these domains.

– Hyperactive clients. There are some hyperactive
clients whose queries are greatly more than others,
which are usually proxies forwarding requests for
many users. In order to improve the performance of
deMSF, we remove these clients cause they behave
significantly different from regular clients. In detail,
we remove the top H% most active clients. In this
experiment, H is set to 1% empirically.

Then we formalize the data by extracting three valid
fields: client, server and timestamp to generate request
sequences. The form is defined as follows: R = ∪Ci is the
set of visit-sequences, where Ci = {(s1,t1),(s2,t2),...,(sn,tn)}
represent the visit-sequence of client i and (sn,tn) indicates
that client i query server sn at time tn.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

Yixin Li et al.

4

3.2 Flocks Generating

Based on the collected sequences of each client, deMSF
further mines related servers that are involved in the same
activity. We explore two steps to find server flocks from
temporal and spatial dimensions. We give an example in
Figure 4.

First, we execute clustering according to querying
time. We analyze dns queries of ten clients within 900
seconds, Figure 5 shows the result: client’s requests show
obvious clustering phenomena in timeline. The result
accords with our expectations as many network activities

require more than one domain. For example, when query
a web page, clients usually query other domains to
download images. Besides, some programs have a static
domain query list and order. We implement time
clustering in a simple way: for two adjacent visits
(sj,tj),(sj+1,tj+1) of client Ci, if the time interval ∆T = tj+1 −tj

greater than a certain threshold τ (we set τ = 5 in this
article), we divide them into different clusters. After these
step, we get a time-clustered sequence of client Ci as
{s1,s2,...sn}.

Fig. 4. An example of flocks generating

Fig.5. Domain queries of ten clients in 900 seconds

Second, we perform clustering in terms of the client
similarity of servers. It depends on the intuition that
normal clients usually don’t query malicious servers while
infected clients of a same malicious campaign usually
query same suspicious servers. In other words, servers
sharing similar client tend to belong to same flocks. We
leverage Jaccard similarity to measure the connection of
server si and sj:

Specifically, for a time-clustered sequence {s1,s2,...sn}, we
calculate the client similarity of adjacent servers sj and
sj+1. If the Similarity(sj,sj+1) is less than a certain threshold
γ (γ is set to 0.5 empirically), we divide them into
different clusters.

Finally, as our goal is to find the correlation among
different servers, the small flocks with only one server are
removed. In addition, if the adjacent two servers are the
same, we only keep one.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

5

3.3 Servers Vectorizing

The goal of this step is to map servers into a low-
dimensional feature vector while keeping the context
information as much as possible. We find that a technique
named word embedding in natural language processing
(NLP) is very helpful for learning features of servers.
Word embedding based on a hypothesis: words that occur
in the same contexts tend to have similar meanings. The
same applies to servers: servers that occur in the same
contexts tend to be similar. Thus we regard servers as
words, a flock as a sentence, then we can learn features of
servers the same as word embedding. Based on this, we
leverage word2vec to learn feature vectors of servers,
which can effectively describe the relationship among
different servers.

Considering the time consuming and effect, we
experiment with CBOW model. We implement it in
Python, using the Gensim† package to generate server-
vectors:
(a) the input layer contains 2a context servers, in this

article, we set a=5.
(b) the output layer contains a vector, which is the server

probability predicted according to the context. In the
experiment, we set the size of vectors as 128.

3.4 Flocks Classifying

As we mentioned earlier, the server can be regarded as a
word and the flock as a sentence. Then identifying
malicious server flocks can be seen as a text classification
task. Based on this perception, we design the neural
network based on the textCNN [12] proposed by Kim in
2014. The structure is shown in Figure 6, consisting of an
input layer, an embedding layer, convolution layers, max-
pooling layers, a concatenate layer and an output layer.
And we show the parameter settings in Table 1.

(a) Input Layer. The input layer takes flocks as input. A
flock can be represented as a sequence Seqflock =
{s1,s2,...sn}, where n is the length of sequence.

(b) Embedding Layer. Let xi be the k-dimensional server
vector corresponding to the i-th server in the
sequence. A sequence with n servers can be
represented as x1:n = x1 ⊕ x2 ⊕ ... ⊕ xn. The output of
the embedding layer is a n*k matrix composed of
server vectors of each sequence, where k is the length
of vectors.

† https://radimrehurek.com/gensim/

Fig.6. textCNN-based flocks classification system

Table 1. Parameter settings

(c) Convolution Layer. There are three convolution
layers with different window sizes of filters: 3,4,5.
Each type of filters has 100 filters with different
values. A feature ci is generated with a filter which
window size h:

ci = f(w ∗ xi:i+h−1 + b)

Layer Parameters

Input Layer shape = (None,200)

Embedding Layer server semantic vectors

Conv1D_1
filters = 100

kernal_size = 3 activation =
’relu’

MaxPooling_1 pool_size = 198

Conv1D_2
filters = 100

kernal_size = 4 activation =
’relu’

MaxPooling_2 pool_size = 197

Conv1D_3
filters = 100

kernal_size = 5 activation =
’relu’

MaxPooling_3 pool_size = 198

Concatenate axis = -1

Flatten N/A

Dense
units = number of categories activation

= ’softmax’ droupout=0.2

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

Yixin Li et al.

6

In this work, we use Rectified Linear Units(ReLU) as

f. A filter is applied to each possible window of

servers in the sequence {x1:h,x2:h+1,...,xn−h+1:n} to

produce a feature map c = [c1,c2,...cn−h+1].

(d) Max-pooling Layer. We apply a max-pooling
operation over the feature map and take the
maximum value cˆ to capture the most important

feature for a feature map. In this step, we get 300
features from 300 filters.

cˆ= max(c)

(e) Concantenate&flatten & output. All features are
passed to a fully connected softmax layer whose
output is the probability distribution over labels.

4 Evaluation

In this section, we evaluate the performance of deMSF
using the real word DNS traffic captured from an ISP
network. We first introduce the dataset used in our
experiment. Then we analyze the results of server
vectorizing and the effectiveness of deMSF.

4.1 DataSet

DNS traffic We obtain DNS traffic collected on the edge
of an ISP network from December 20th, 2018 to
December 26th, 2018. The summary of dataset is
presented in Table 2. As we filter hyperactive clients in
preprocessing step, we don’t count them in Table 2.

Table 2. Dataset

Date Clients Domains Queries Flocks

2018-12-20 14.3k 412k 30,433k 119k
2018-12-21 14.2k 437k 25,497k 116k
2018-12-22 12.7k 279k 23,921k 79k
2018-12-23 12.3k 288k 27,000k 74k
2018-12-24 13.7k 424k 44,531k 116k
2018-12-25 13k 385k 34,221k 120k
2018-12-26 13k 386k 24,517k 119k

Ground Truth We get the ground truth from two popular
online blacklists, Malware Domain Block List [7] and
URLhaus [1]. Except above two blacklists, we also
leverage a threat intelligence platform named ThreatBook
[29] to scan all servers appeared in flocks and get their
report. ThreatBook marks a server with three labels:
clean, suspicious and malicious. Also some special clean
servers will be marked as whitelist in ThreatBook.

4.2 Labelling

We first label servers according to ground truth we collect
by following steps:

(a) a server is labeled as white if it is marked with
whitelist by ThreatBook.

(b) a server is labeled as malicious if it is listed in any
blacklists or is marked with malicious by
ThreatBook.

(c) a server is labeled as suspicious if marked with
suspicious by ThreatBook.

(d) a server is labeled as clean if it is marked with clean
by ThreatBook and not listed in any blacklist.

Then we label flocks with harsh conditions. A flock is
labeled as clean if all servers are labeled as white. A flock
is labeled as malicious if its threat score is greater than 3.
The threat score of a flock is the average score of all its
servers and is calculated by the following formula.

4.3 Server Vectorizing Results &
Analysis

We expect semantic vectors of servers can effectively
represent the internal relationship among servers, which
means similar servers tend to have similar vectors. The
internal relationship here indicates that servers have

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

7

similar content, provide similar service or have other
connections like belonging to the same web.
We trained the vectors with one day data (2018-12-20) to
check if the results meet our expectations. For a popular
domain, we extract top 10 servers similar to it according
to the semantic vectors and manually check whether they
are similar in practical world. We give partial results in
Table 3:

– www.jd.com is one of the biggest online shops in
China. The top 10 servers similar to it are most the
subpages of jd.com. It should be noted that there are
three special examples pf.3.cn, f.3.cn, dx.3.cn, which
are all related to jd.com cause 3.cn is another domain
of JD Inc. and can be redirected to www.jd.com.
Another exception is mediav.com, which is a popular
online advertising provider. It is reasonable that
mediav.com is similar to jd.com

– www.google.com is the most popular search engine
around world. The top 10 servers similar to it all
belong to Google Inc.

– sohu.com is a popular portal web in China. Among
the top 10 similar to itservers, there are four portal
webs (hao123.com, sina.com, qq.com, 163.com), one
popular search engine in China (baidu.com), the
biggest online shop in China (taobao.com), and four
servers related to a popular tool named Kingsoft
Antivirus.

It can be seen that the semantic vectors can reflect
internal connections of servers. Thus it is feasible to use
the semantic vectors as features of servers.

Table 3. Top 10 servers similar to www.jd.com, www.google.com, sohu.com

Server Similarity Vector Correlation
jcm.jd.com 0.9894 [0.04064134,-0.016787084...-0.050261103] Subpage

cm.mediav.com 0.9891 [0.04064134,-0.016787084...-0.050261103] Advertisement
ccc.jd.com 0.9875 [0.04064134,-0.016787084...-0.050261103] Subpage

pf.3.cn 0.9872 [0.04064134,-0.016787084...-0.050261103] Subpage*
f.3.cn 0.9859 [0.04064134,-0.016787084...-0.050261103] Subpage*

api.m.jd.com 0.9846 [0.04064134,-0.016787084...-0.050261103] Subpage
list.jd.com 0.9844 [0.04064134,-0.016787084...-0.050261103] Subpage
ai.jd.com 0.9838 [0.04064134,-0.016787084...-0.050261103] Subpage
dx.3.cn 0.9833 [0.04064134,-0.016787084...-0.050261103] Subpage*

floor.jd.com 0.9831 [0.04064134,-0.016787084...-0.050261103] Subpage
www.googletagmanager.com 0.9689 [0.09148411,-0.23106502...-0.007657597] Google Inc.

fonts.googleapis.com 0.9548 [0.09148411,-0.23106502...-0.007657597] Google Inc.
stats.g.doubleclick.net 0.9515 [0.09148411,-0.23106502...-0.007657597] Advertisement of google

fonts.gstatic.com 0.9473 [0.09148411,-0.23106502...-0.007657597] Google Inc.
googleads.g.doubleclick.net 0.9450 [0.09148411,-0.23106502...-0.007657597] Advertisement of google
www.googletagservices.com 0.9411 [0.09148411,-0.23106502...-0.007657597] Google Inc.

adservice.google.com 0.9399 [0.09148411,-0.23106502...-0.007657597] Google Inc.
www.googleadservices.com 0.9368 [0.09148411,-0.23106502...-0.007657597] Google Inc.

pagead2.googlesyndication.com 0.9330 [0.09148411,-0.23106502...-0.007657597] Google Inc.
ssl.google-analytics.com 0.9328 [0.09148411,-0.23106502...-0.007657597] Google Inc.

hao123.com 0.9994 [0.36417392,-0.58563906...-0.12286949] Portal web
sina.com 0.9992 [0.36417392,-0.58563906...-0.12286949] Portal web

rq.upgrade.cloud.duba.net 0.9988 [0.36417392,-0.58563906...-0.12286949] Anti-virus**
rq.cct.cloud.duba.net 0.9987 [0.36417392,-0.58563906...-0.12286949] Anti-virus**

rcmd.pop.ijinshan.com 0.9987 [0.36417392,-0.58563906...-0.12286949] Anti-virus**
taobao.com 0.9987 [0.36417392,-0.58563906...-0.12286949] Online shopping

qq.com 0.9983 [0.36417392,-0.58563906...-0.12286949] Portal web
cv.duba.net 0.9982 [0.36417392,-0.58563906...-0.12286949] Anti-virus**

163.com 0.9982 [0.36417392,-0.58563906...-0.12286949] Portal web
baidu.com 0.9981 [0.36417392,-0.58563906...-0.12286949] Search engine

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

Yixin Li et al.

8

* 3.cn is another domain of JD and is redirected to www.jd.com
** duba.net is a domain of Kingsoft Antivirus, which is one of the most widely used software in China

4.4 Classification Results & Analysis
Evaluation index

1. Accuracy&Precision&Recall&F1score.
– TP: the number of malicious flocks deMSF
detected as malicious.
– TN: the number of clean flocks deMSF detected
as clean.
– FP: the number of clean flocks deMSF detected
as malicious.
– FN: the number of malicious flocks deMSF
detected as clean.

10-fold cross-validation We experiment with one day
data (2018-12-20) to evaluate the effectiveness of the
classifier. There are 49,760 different labeled flocks in
2018-12-20 data, including 603 malicious samples and
49,157 clean samples. In order to eliminate the
randomness that may exist during some experiments and
improve the reliability of results, we use 10-fold cross-
validation for performance evaluation. Each experiment
contains 39,808 samples in training sets, 4,976 samples in
validation sets and 4,976 samples in test sets. The result
shows in Table 4. It can be seen that the flock
classification model based on server embeddings can
achieve a high accuracy rate over 99%.

Table 4. 10-fold Cross Validation

No. TP TN FP FN Accuracy Precision Recall F1_socre

0 48 4925 0 3 99.94 100.00 94.12 96.97
1 53 4916 1 6 99.86 98.15 89.83 93.81
2 62 4912 0 2 99.96 100.00 96.88 98.41
3 60 4909 0 7 99.86 100.00 89.55 94.49
4 61 4908 0 7 99.86 100.00 89.71 94.57
5 45 4929 0 2 99.96 100.00 95.74 97.83
6 62 4907 0 7 99.86 100.00 89.86 94.66
7 46 4926 0 4 99.92 100.00 92.00 95.83
8 67 4906 0 3 99.94 100.00 95.71 97.81
9 51 4918 0 7 99.86 100.00 87.93 93.58

Experiment on one week data In order to analyze the
effectiveness of deMSF with new servers, we further
leverage one model trained above to predict the results
with the next six days. One significant problem here is
that there are many new servers that we don’t know the
semantic vectors of them. Retraining the vectors will

change the value of vectors we used in the trained model
and make the model not effective anymore. Thus we
make an incremental training of server vectors with new
flocks while keeping the original server vectors be
constant. Then we use the newly trained vectors to make
the classification. In order to measure the result of

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

9

classification, we only use labeled flocks to execute the
experiment. The summary of data is presented in Table 5
and the result is showed in Table 6.

It can be seen that deMSF has excellent results. It has a
high precision that all detected flocks are actually

malicious flocks. It has an acceptable recall that only a
few malicious flocks are not detected. This could be
caused by the new threat that has weak connections with
the known threat we trained thus deMSF cannot detect it.
We show some examples of malicious flocks in Table 7.

Table 5. The summary of six days data

Table 6. The result of six days data

Date TP TN FP FN Accuracy Precision Recall F1_socre

12-21 610 47091 0 62 99.87 100.00 90.77 95.16
12-22 606 29501 0 49 99.84 100.00 92.52 96.11
12-23 551 27086 0 67 99.76 100.00 89.16 94.27
12-24 605 47887 0 60 99.88 100.00 90.98 95.28
12-25 572 48607 0 66 99.87 100.00 89.66 94.55
12-26 610 48288 0 57 99.88 100.00 91.45 95.54

All 3,554 248,460 0 361 99.86 100.00 90.77 95.16

Table 7. Examples of malicious flocks

Type Servers

Mirai
e.mariokartayy.com

cnc.arm7plz.xyz
cnc.junoland.xyz

Date Flocks(label) Flocks(mal) Flocks(clean)

2018-12-21 47,763 672 47,091
2018-12-22 30,156 655 29,501
2018-12-23 27,704 618 27,086
2018-12-24 48,552 665 47,887
2018-12-25 49,245 638 48,607
2018-12-26 48,955 667 48,288

All 252,375 3,915 248,460

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

Yixin Li et al.

10

Conficker

vqhxyffk.ws
linepve.cc

zzqvketg.info
kpsvqpozld.net

nzdkujuj.ws
usjhbqrctb.cn

...

NrsMiner, CoinMiner

lebec.attendecr.com
tar.kziu0tpofwf.club
swt.njaavfxcgk3.club
phelan.chereher.com
p3.qsd2xjpzfky.site
yuma.dification.com

...

Install Core

q96b7b7.strangled.net
q968787.ignorelist.com
q96b7b7.homenet.org
q968787.mooo.com

...

4.5 Discussion

Overhead
The most expensive part of deMSF is to calculate the
client similarity of servers. Since we should calculate
similarity among different servers and there may be a
large number of servers in data. Fortunately, there are
some techniques like sparse matrix multiplication can
significantly reduce the complexity of calculation.

Limitation

• Single malicious servers. deMSF focuses on multiple
servers involved in malicious activities or evasion
techniques instead of a single server. Thus, deMSF
cannot detect malicious campaigns with only a single
server cause there are

• no connections we can extract from these campaigns.
However, malicious campaign with a single server is
very rare.

• Noise. deMSF based on the query sequences of a
client. It is inevitable that there are queries triggered
by background activities mixed in the true
continuous queries. Although we leverage the client
similarity to decrease the noise, this phenomenon can
not be eliminated. But it should be noted that noise is
a small probability event. With the data increase, its
impact is negligible. – New threat. Since deMSF
leverage the inter-connections of servers according to
client queries, deMSF can hardly detect completely
new threats that don’t have connections with before

• servers. To overcome this may need other properties
and data sources. It can be a topic for our future
work.

Evasion

• Attackers can make internal associations between
benign servers and malicious servers by mixing
benign queries in malicious activities. Thus deMSF
may divide malicious servers within a campaign into
different flocks and delete flocks cause they only
contain one server. However, we can filter popular
benign servers which are impossible involved in
malicious campaigns by add whitelist in
preprocessing step.

• Another approach attackers can use is to let different
compromised clients communicate with different
servers to reduce the client similarity of malicious
servers. However, this may be costly for attackers, as
the more bots they have, the more servers they need
to register.

• One more method attackers can use is increasing the
time interval between two queries. While some
attacks require continuous queries such as malicious
redirections and DGA. In addition, researchers can
adjust the time window threshold to catch them.

Universality

• deMSF is designed to monitor the traffic from the
edge of a network and it only requires basic three

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

11

fields: client, timestamp and server, thus it can be
deployed at most enterprise or ISP networks.

• deMSF is an automatic threat discovery system. It
leverages a basic hypothesis that servers occur in the
same contexts tend to have similar meanings. Then it
learns semantic vectors of servers to get the internal
association between them and further classifies
malicious flocks from normal activities. It should be
noted that deMSF does not need any defined feature
rules or knowledge.

• deMSF don’t need researchers to manually adjust
parameters to get the proper value. By training a
sufficiently good model, deMSF can discover
malware behaviors and exclude known non-
malicious behaviors. While the parameters can be
stable and effective for a long time.

5 Related work

5.1 Studies focus on Individual Servers.

Many approaches concentrate on individual malicious
servers to mitigate malicious avitivites.

Some works analyze web content to recognize
malicious webs. Liao et al. [16] develop a semantic-based
technique, which leverages Natural Language Processing
(NLP) to identify the bad terms most irrelevant to an
sTLD’s semantics and detects webpages with malicious
promotional injections. Delta [5] is a system identifing
malicious web sites according to the changes of sites. It
extracts change-related features between two versions of
the same website and identifies an infection using
signatures generated from such modifications. Saxe et al.
[24] propose a deep learning approach to detecting
malevolent web pages operated on a language-agnostic
stream of tokens extracted directly from static HTML
files with a simple regular expression.

Some works construct reputation system for a single
server to recognize malicious servers. Notos [3] is a
dynamic reputation system for domains. It uses passive
DNS query data to construct the network and zone
features of domains and compute accurate reputation
scores. EXPOSURE [4] employs large-scale, passive
DNS analysis techniques to detect malicious domains. It
extracts 15 features from DNS traffic to characterize
different properties of domains and the ways they are
queried. PREDATOR [9] uses only time-of-registration
features to establish domain reputation to predict
malicious domains when they are registered.

Some concentrate on the technique adversaries use to
avoid detection. Yadav et al. [32] develop a methodology
to detect domain fluxes in DNS traffic by looking for
patterns inherent to domain names that are generated
algorithmically, in contrast to those generated by humans.
Phoenix [25] is a mechanism using a combination of
string and IP-based features to tell DGA and non-DGA
domains.It can find groups of DGA domains that are

representative of the respective botnets. It can associate
previously unknown DGA-generated domains to these
groups, and produce novel knowledge about the evolving
behavior of each tracked botnet. WoodBridge et al. [30]
leverages long short-term memory (LSTM) networks to
predict malicious domains and their respective families.
Luo [18] leverages the query time lags of non-existent
domains (NXDomain) to mitigate DGA-based malware
without the lexical property.

5.2 Studies focus on relations of servers.

There are many studies focus on malicious redirections.
VisHunter [34] investigates the visibility of servers and
finds that certain malicious servers tend to be invisible to
normal users. It identifies malicious redirections from
visible servers to invisible servers at the entryway of
malicious web infrastructures. Akiyama et al. [2]
develope a honeypot-based monitoring system across four
years and analyze the ecosystem of malicious URL
redirections. Stringhni et al. [27] aggregate the different
redirection chains that lead to a specific web page and
analyze the characteristics of the resulting redirection
graph. Then they detect malicious web pages by looking
at the redirection chains that lead to them. Mekky et al.
[19] develop a methodology to identify malicious chains
of HTTP redirections. They passively collected traffic and
extract statistical features which capture inherent
characteristics from malicious redirection cases. They
further apply a supervised decision tree classifier to
identify malicious chains.

Some works leverage many other relations of
malicious servers. Zhang et al. [35] utilize an
unsupervised framework to infer malware associated
server herds by systematically mining the relationships
among all servers from multiple dimensions: client
similarity, IP address set similarity, whois similarity, URI
file similarity. Li et al. [15] perform a study on the
topological relations among hosts and find that dedicated
malicious hosts are well connected to other malicious
hosts and do not receive traffic from legitimate sites. They
develope a graphbased approach that relies on a small set
of known malicious hosts as seeds and results in an
expansion rate of over 12 times in detection. Lee et al.
[14] construct a domain travel graph based on the
sequential correlation of DNS, cluster domains using the
graph structure and determine malicious clusters by
referring to public blacklists. Sun et al. [28]model the
DNS scene as a Heterogeneous Information Network
(HIN) consist of clients, domains, IP addresses and their
diverse relationships. They leverage a transductive
classification method to detect malicious domains with
only a small fraction of labeled samples. Liu et al. [17]
analyze a new attack infrastructures named shadowed
domain. They propose a system to detect these domains
from two dimensions: the deviation from legitimate
domains under the same apex and the correlation among
shadowed domains under a different apex.

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

Yixin Li et al.

12

5.3 Studies using embedding in security

Xu et al. [31] propose a neural network-based model to
generate vectors based on the control flow graph of each
binary function. Then the cross-platform binary code
similarity detection problem can be done efficiently by
measuring the distance between vectors. Popov [23]
proposes a method applying word2vec technique for
extracting vector embeddings of machine code
instructions. And further build a convolutional neural
network-based classifier using extracted vectors to detect
malware. Ding et al. [6] develope a representation
learning model named Asm2Vec to construct feature
vectors for assembly code. It takes assembly code as input
and does not require any prior knowledge such as the
correct mapping between assembly functions. It can find
and incorporate rich semantic relationships among tokens
appearing in assembly code. Shen et al. [26] calculate the
vector of an attack step by considering the entire attack
sequence as a sentence, and each step as a word. They
develop attack2vec to understand the emergence, the
evolution, and the characteristics of attack steps in
relation to the wider context in which they are exploited.

6 Conclusion

In this paper, we focus on the servers that are involved in
the same malicious campaign. We learn the features of
vectors leveraging the querying relationships among
different servers and propose a novel approach to detect
malicious activities using a neural network based on
server semantic vectors. deMSF first mines server flocks
from both temporal and spatial dimensions. Further it
generates server semantic vectors with the techniques
developed in the area of natural language processing,
which can effectively model the internal connection
among servers. Finally it recognizes malicious flocks by a
deep neural network based on all server vectors of a flock.
The feasibility of deMSF is demonstrated with one week
logs acquired from real-world, and the results show that
deMSF achieves a high precision of 99% with 90% recall.

References
[1] Abuse: Urlhaus. https://urlhaus.abuse.ch
[2] Akiyama, M., Yagi, T., Yada, T., Mori, T., Kadobayashi,

Y.: Analyzing the ecosystem of malicious url redirection
through longitudinal observation from honeypots.
Computers & Security 69, 155–173 (2017)

[3] Antonakakis, M., Perdisci, R., Dagon, D., Lee, W.,
Feamster, N.: Building a dynamic reputation system for
dns. In: USENIX security symposium. pp. 273–290 (2010)

[4] Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure:
Finding malicious domains using passive dns analysis. In:
Ndss. pp. 1–17 (2011)

[5] Borgolte, K., Kruegel, C., Vigna, G.: Delta: automatic
identification of unknown web-based infection campaigns.
In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. pp. 109–120 (2013)

[6] Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: Boosting
static representation robustness for binary clone search
against code obfuscation and compiler optimization. In:
2019 IEEE Symposium on Security and Privacy (SP). pp.
472–489. IEEE (2019)

[7] DNS-BH: Malware domain blocklist.
http://www.malwaredomains.com

[8] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning.
MIT press (2016)

[9] Hao, S., Kantchelian, A., Miller, B., Paxson, V., Feamster,
N.: Predator: proactive recognition and elimination of
domain abuse at time-of-registration. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1568–1579. ACM (2016)

[10] IANA: Top level domain.
http://www.iana.org/domains/root/db/

[11] Kim, B.I., Im, C.T., Jung, H.C.: Suspicious malicious web
site detection with strength analysis of a javascript
obfuscation. International Journal of Advanced Science
and Technology 26, 19–32 (2011)

[12] Kim, Y.: Convolutional neural networks for sentence
classification. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). pp. 1746–1751 (2014)

[13] Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems 25(2)
(2012)

[14] Lee, J., Lee, H.: Gmad: Graph-based malware activity
detection by dns traffic analysis. Computer
Communications 49, 33–47 (2014)

[15] Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the
linchpins of the dark web: a study on topologically
dedicated hosts on malicious web infrastructures. In: 2013
IEEE Symposium on Security and Privacy. pp. 112–126.
IEEE (2013)

[16] Liao, X., Yuan, K., Wang, X., Pei, Z., Yang, H., Chen, J.,
Duan, H., Du, K., Alowaisheq, E., Alrwais, S., et al.:
Seeking nonsense, looking for trouble: Efficient
promotional-infection detection through semantic
inconsistency search. In: 2016 IEEE Symposium on
Security and Privacy (SP). pp. 707–723. IEEE (2016)

[17] Liu, D., Li, Z., Du, K., Wang, H., Liu, B., Duan, H.: Don’t
let one rotten apple spoil the whole barrel: Towards
automated detection of shadowed domains. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 537–552 (2017)

[18] Luo, X., Wang, L., Xu, Z., An, W.: Lagprober: Detecting
dga-based malware by using query time lag of non-existent
domains. In: International Conference on Information and
Communications Security. Springer (2018)

[19] Mekky, H., Torres, R., Zhang, Z.L., Saha, S., Nucci, A.:
Detecting malicious http redirections using trees of user
browsing activity. In: IEEE INFOCOM 2014-IEEE
Conference on Computer Communications. pp. 1159–
1167. IEEE (2014)

[20] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781 (2013)

[21] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean,
J.: Distributed representations of words and phrases and
their compositionality. In: Advances in neural information
processing systems. pp. 3111–3119 (2013)

[22] Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities
in continuous space word representations. In: Proceedings
of the 2013 conference of the north american chapter of the

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

deMSF: a Method for Detecting Malicious Server Flocks for Same Campaign

13

association for computational linguistics: Human language
technologies. pp. 746–751 (2013)

[23] Popov, I.: Malware detection using machine learning based
on word2vec embeddings of machine code instructions. In:
2017 Siberian Symposium on Data Science and
Engineering (SSDSE). pp. 1–4. IEEE (2017)

[24] Saxe, J., Harang, R., Wild, C., Sanders, H.: A deep
learning approach to fast, format-agnostic detection of
malicious web content. In: 2018 IEEE Security and
Privacy Workshops (SPW). pp. 8–14. IEEE (2018)

[25] Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.:
Phoenix: Dga-based botnet tracking and intelligence. In:
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. pp. 192–211.
Springer (2014)

[26] Shen, Y., Stringhini, G.: Attack2vec: Leveraging temporal
word embeddings to understand the evolution of
cyberattacks. In: 28thUSENIX Security Symposium. pp.
905–921 (2019)

[27] Stringhini, G., Kruegel, C., Vigna, G.: Shady paths:
Leveraging surfing crowds to detect malicious web pages.
In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. pp. 133–144. ACM
(2013)

[28] Sun, X., Tong, M., Yang, J., Xinran, L., Heng, L.:
Hindom: A robust malicious domain detection system
based on heterogeneous information network with
transductive classification. In: 22nd International
Symposium on Research in Attacks,

[29] Intrusions and Defenses ({RAID} 2019). pp. 399–412
(2019)

[30] ThreatBook: https://x.threatbook.cn
[31] Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.:

Predicting domain generation algorithms with long short-
term memory networks. arXiv preprint arXiv:1611.00791
(2016)

[32] Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.:
Neural network-based graph embedding for cross-platform
binary code similarity detection (2017)

[33] Yadav, S., Reddy, A.K.K., Reddy, A., Ranjan, S.:
Detecting algorithmically generated malicious domain
names. In: Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. pp. 48–61. ACM
(2010)

[34] Yin, L., Luo, X., Zhu, C., Wang, L., Xu, Z., Lu, H.:
Connspoiler: Disrupting c&c communication of iot-based
botnet through fast detection of anomalous domain queries.
IEEE Transactions on Industrial Informatics (2019)

[35] Zhang, J., Hu, X., Jang, J., Wang, T., Gu, G., Stoecklin,
M.: Hunting for invisibility: Characterizing and detecting
malicious web infrastructures through server visibility
analysis. In: IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer
Communications. pp. 1–9. IEEE (2016)

[36] Zhang, J., Saha, S., Gu, G., Lee, S.J., Mellia, M.:
Systematic mining of associated server herds for malware
campaign discovery. In: 2015 IEEE 35th International
Conference on Distributed Computing Systems. pp. 630–
641. IEEE (2015)

EAI Endorsed Transactions on
Security and Safety

07 2020 - 10 2020 | Volume 7 | Issue 26 | e1

