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Abstract

In many disciplines there is a need for efficient in terpolation of  ir regular spaced 
data. For unsampled locations values have to be computed from the available data. 
Usually we are interested in smooth interpolations, and artificial o scillations should 
be avoided. For large data sets fully populated matrices are undesirable. The use 
of compactly supported basis functions appears to be attractive. In this paper radial 
basis functions satisfying the 2D bi-harmonic equation are used. Accurate interpolation 
could be achieved in the numerical test examples.
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1 Introduction

Often data is collected at irregular spaced locations. Computational tools for a fast interpo-
lation at unsampled locations are needed. One huge application area is in the processing of 
geographic data sets. Many authors made contributions to the topic of data interpolation 
(see for example [1, 2, 4] [3] )

2 Problem Statement and Methods

We consider a 2D domain for which at N scattered points data values are given. Using 
radial basis functions we want to find an interpolation function which can recover the data 
values at the given locations and which can smoothly interpolate between the sampled 
locations (xj , yj ). When using globally supported radial basis functions (RBFs) we obtain 
a fully populated coefficient matrix in the linear system of eq uations. Some popular globally 
supported RBFs are

Φ(r) =
√

r2 + c2,
Φ(r) =r2 log r,
Φ(r) =r2n log r,

Φ(r) =e−cr2

(1)

where for the 2D case

r =
√

(x − xj)
2 + (y − yj)

2 (2)

In order to obtain a sparse coefficient matrix in  th e li near sy stem of  equations we  can 
utilize compactly supported radial basis functions. In the following some popular compactly 
supported RBFs with Cn continuity are listed:

C0

C2

C4

Φ(r) = (1 − r)2+,
Φ(r) = (1 − r)4+(4r + 1),
Φ(r) = (1 − r)6+(35r2 + 18r + 3), 
Φ(r) = (1 − r)8+(32r3 + 25r2 + 8r + 1),

C6

(3)
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Figure 1: Comparison of a few radial basis functions

In this paper a compactly supported radial basis function with a very special feature is
uesed. The RBF has to satisfy the bi-harmonic equation

ΔΔΦ = 0 (4)

Solutions of the bi-harmonic equation are expected to be very smooth and very suitable for
data interpolation. In the engineering literature one can find solutions of the bi-harmonic
equation for rectangular and circular plates subjected to different loading and support
conditions. The solution for a clamped circular plate with radius = a loaded at the center
is given on page 69 of the book by Timoshenko/Woinowsky-Krieger [5] :

w(r) =
Pa2

16πD

[

2
( r

a

)2

ln(
r

a
) + (1 −

( r

a

)2

)

]

(5)

Utilizing this plate bending solution we can define the following bi-harmonic Trefftz radial
basis function:

Φ(R) = 2R2ln(R) + (1 − R2) (6)

where R = r
a . In the literature often functions satisfying a governing differential equation

are called Trefftz trial functions [6] The Trefftz radial basis function can be compared to
other radial basis functions in Figure 1 and in Figure 2

3 Numerical Experiments

In order to test the numerical performance of the Trefftz radial basis functions satisfying
the bi-harmonic equation artificial data has been constructed from t widely used Franke
test function (Fig. 3). Franke’s test function is made up from four exponential function
terms with powers of x and y in the exponents. At random locations (x,y) the z-values
are computed from Franke’s function. The computed z-values are used as the data for the
interpolation tests. After solving a linear sparse system of equations for the coefficients of
the Trefftz radial basis functions the obtained interpolation function is evaluated at the the
original (x,y) locations. It is seen in Figure 4 that the data values are recovered very well
in the algorithm.
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Figure 2: Comparison of a Trefftz radial basis function and a thin plate spline.

4 Conclusion

Several globally supported and compactly supported radial basis functions are available
from the literature. Globally supported functions are useful for smaller data interpolation
tasks. The compactly supported radial basis functions for this paper have the special feature
that a bi-harmonic differential equation is satisfied so that the approximation function can
be considered a Trefftz function. For a sequence of numerical test problems the chosen
Trefftz radial basis function appeared to be well performing. In the near future numerical
tests for radial basis functions satisfying homogeneous tri-harmonic equations and satisfying
an inhomogeneous bi-harmonic equation will be performed.
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Figure 3: Franke’s test function with selected data locations

Figure 4: Recovered data values using the Trefftz RBF interpolation.
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