
Using Deep Learning Neural Network for Block
Partitioning in H.265/HEVC

Ming Yang1, Ying Xie1, Jian Yu2, Zhe Wang3, Tao Wu1

{mingyang@kennesaw.edu, yxie2@kennesaw.edu, yujian@tju.edu.cn, snowleoperd@126.com, twu6@students.kennesaw.edu}

College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA1

School of Computer Science and Technology, Tianjin University, Tianjin 300072, China2

College of Science, Tianjin University of Technology, Tianjin 300384, China3

Abstract: dividing video frames into Coding Tree Units (CTUs) and Coding Units (CUs) is a
critical task of video compression in H.265/HEVC video coding standard. In this paper, we utilize
deep learning techniques, especially the deep Convolutional Neural Network (CNN) to speed up
the block partitioning process. Deep CNNs have achieved break-through improvements on image
recognition tasks such as image classifications, object identifications, and image annotations.
However, very few work has been done in applying deep CNN to video encoding. Block
partitioning in video coding is highly dependent on the content of the video frames, and thus it is
natural to take advantage of the significant capabilities of deep CNN on image content detection
and recognition to perform block partitioning and avoid the time-consuming iterative Rate-
Distortion-Optimization (RDO) process. Experimental results have shown that the proposed
methodology has largely speed up the coding process and has also achieved coding efficiency
comparable to the reference software of H.265/HEVC.

Keywords: Deep Learning, Deep CNN, H.265, HEVC, Video Encoding.

1. Introduction
Video coding techniques have been there for decades to enable storage and transmission of digital video

contents with limited storage space and transmission bandwidth. The past video coding standards, such as H.263,
MPEG-2, H.264, have adopted the hybrid coding architecture which utilized block coding, intra prediction, motion
estimation, transformation, and entropy coding to achieve high level of compression efficiency. The latest video
coding standard, H.265/HEVC, has inherited such type of hybrid coding architecture. It has made improvements in
each of the coding modules and overall it has achieved 50% compression performance gain compared to H.264-
AVC.

H.265/HEVC has adopted a more flexible blocking strategy, a more sophisticated data structure, more choices
on intra-prediction modes, and other advanced techniques to achieve the above performance goal. The tradeoff is
more intensive computation, which hinders its penetration to real-time streaming/transmission applications scenarios
at current stage. Many coding decisions have to be made real-time during coding process, such as blocking
(CTUCU, CUPU, CUTU), prediction mode decision (intra-mode vs. inter mode), prediction direction
decision in intra-prediction.

MOBIMEDIA 2018, June 21-22, Qingdao, People's Republic of China
Copyright © 2018 ACM
DOI 10.4108/eai.21-6-2018.2276639

mailto:%7bmingyang@kennesaw.edu
mailto:yxie2@kennesaw.edu
mailto:snowleoperd@126.com

All these decisions are dependent on the contents of the video frames and making such decisions often times
require exhaustive search if Rate-Distortion Optimization (RDO) is needed. In real-time streaming, these decisions
need to be made as fast as possible and thus exhaustive search is infeasible. In recent years, Convolutional Neural
Network (CNN) has made great advances in the analysis and recognition of image/video contents. Thus, it is natural
to apply trained CNNs to perform the above mentioned coding decision making process to largely speed up the
coding process of H.265/HEVC and make it feasible for real-time coding and streaming applications. In the
following sections, the proposed ideas will be discussed in further details.

2. Background and Literature Review
Fig. 1 has illustrated the traditional RDO-based exhaustive search CU partitioning process.

A novel fast Coding Tree Unit partitioning for HEVC/H.265 encoder was proposed in [1]. This method does not
require any pre-training and provides a high level of adaptivity to the dynamic changes in video contents; it relies on
run-time trained neural networks for fast Coding Units splitting decisions. Paper [2] proposed a machine learning
based approach for fast CU partition decision using features that describe CU statistics and sub-CU homogeneity.
The proposed scheme was implemented as a "preprocessing" module on top of the Screen Content Coding reference
software. Liu et al. ([4] [5]) devised a CNN based fast algorithm to decrease no less than two CU partition modes in
each CTU for full rate-distortion optimization (RDO) processing, thereby reducing the encoder’s hardware
complexity. In another study, Chen et al. [6] proposed a fast coding unit (CU) depth decision algorithm for intra
coding of HEVC using an artificial neural network (ANN) and a support vector machine (SVM). Machine learning
provides a systematic approach for developing a fast algorithm for early CU splitting or termination to reduce intra

1. Suppose CU0,0 is the optimal coding mode
2. Calculate J0,0
3. Split CU0,0 into four smaller CUs of size of 16×16: CU1,0, CU1,1 , CU1,2

and CU1,3
4. Calculate J1,0
5. Split CU1,0 into four smaller CUs of size of 8×8: CU2,0, CU2,1 , CU2,2

and CU2,3
6. Calculate J2,0, J2,1, J2,2 and J2,3
7. Compare J1,0 and (J2,0+J2,1+J2,2+J2,3)

 if J1,0 > J2,0+J2,1+J2,2+J2,3
 split CU1,0
 else
 keep CU1,0

8. Make decision on CU1,1 , CU1,2 and CU1,3
9. Make decision on CU0,0, (compare J0,0 and J1,0+J1,1+J1,2+J1,3)
10. Finally we get the optimal coding mode

Fig. 1 Iterative Searching Process in CU Partition in H.265/HEVC Reference Software

coding computational complexity. Compared with existing efforts that applied machine learning in video encoding,
our proposed methodology has the following two unique features: (1) it takes advantages of superiority of the-state-
of-the-art deep CNN technology on image content detection to enhance content-based video encoding; (2) it utilizes
deep CNN as the primary technique for multiple content-relevant tasks in video encoding within the framework of
H.265/HEVC.

3. Using CNN to Divide CTU into CUs

Coding Tree Unit (CTU) is the basic logic unit of the H. 265/HEVC standard and replaces macroblocks that
were used in the previous standards. CTUs can be 16x16, 32x32, or 64x64 pixels in size. Larger size of CTU
typically improves video encoding efficiency [7][8], especially for higher-resolution video. Each CTU can be
partitioned recursively into coding unit (CU). The smallest CU can be 8x8. A CTU can be one CU or partitioned
into 4 equal-size CU. Each CU that is larger than 8x8 can remain as one CU or can be further partitioned into 4
equal-size CU. A quadtree structure can be used to represent the partition of a CTU into CUs, as shown in Fig. 2.
Given a CTU with size of 64x64, instead of recursively partitioning by following the quadtree, we propose
designing a CNN to quickly determine the final partition for the CTU.

3.1 The Architecture of the Deep NN for Partitioning CTUs

The architecture of deep NN for partitioning a CTU can be illustrated in Fig. 3. The input is a 64x64 CTU.
Each CTU is fed into a CNN with multiple layers. On top of CNN is the full connected layers with Softmax
outputting the probability that the input CTU belong to each of partitioning types.

Based on the quadtree, there are totally 174+1=83522 different possible partitions for a 64x64 CTU. This large
number of possibilities leads to the same number of outputs at the Softmax layer, which makes training this deep
NN infeasible. One possible solution is that configure each CTU to be the size of 32x32 instead of 64x64. However,
this simplified configuration compromises the merit that H.265/HEVC allows larger size of CTU for more efficient
encoding. Therefore, our solution is that separating the participating into two steps. The first step uses a deep CNN
to determine if the 64x64 CTU needs to be split or not. If so, then the second step is to split the 64x64 CTU into four
32x32 CTUs, and feed each one of them into another deep NN to determine its partitioning mode. Not only the two-
step approach is consistent with H.265/HEVC on the maximum size of CTU, but also reduce the number of 32x32
CTUs that need to be fed into the deep NN by the filtering process of the first step.

With respect to the design of the CNN component in the deep NN as shown in Fig. 3, we consider the state-of-
the-art CNN designs, including AlexNet [9], ZF Net [10], VGG [11], GoogleNet [12], and ResNet [13]. We
determine that ResNet would be the one that fits our purpose well for the following reasons. First of all, it won
ILSVRC 2015 with an incredible error rate of 3.6% using a revolution of depth of 152 layers; Secondly, it
incorporated the effective deep residual learning strategy in its design; Thirdly, all filters that ResNet uses have the

Fig. 2 CU Division Depth Map

fixed small size 3x3, which fit the size of the input CTU (64x64 or 32x32) very well. The depth of ResNet is
determined by experimental studies. Since a 64X64 conceptual CTU maps to one 64x64 Luma CTB and two 32x32
Chroma CTB, the real inputs of the deep NN for CTU partitioning should be one 64x64 Luma CTB and two 32x32
Chroma CTB as well. Therefore the final design of the deep NN for CTU partitioning will be as follows:

3.2 Generating Training Data Set

Generating a large training data set to train the deep NNs described in Section 3.1 is a big challenge. We
propose a method that uses H.265 reference software to process a large number of different videos offline in order to
generate training data sets. More specifically, we configure the reference software by setting the CTU size to be
64x64, and then output the partition information for each CTU. From the outputs, we extract information to form
two training sets. First, for each 64x64 CTU, determine whether it should be partitioned or not. Second, for each
64x64 CTU that is partitioned, extract one of the 17 parturition modes for each of its four 32x32 sub-regions. Using
the H.265 reference software to partition CTUs is a time consuming process, which is also one of the primary
motivations of our proposal of using deep NN for online CTU partitions. We downloaded 13 videos samples as the
training and testing data. Among them, 12 samples were used as training data and the last one is used as testing data.
The video samples are in CIF formats with the dimension of 352x288 (as shown in Fig .4). Every frame of the video
is divided into CTU with size 32x32. For this sample, the training data includes total of 3150 frames, and each frame
has 99 CTUs. So, there are over 300,000 CTUs available for training. The testing data has 260 frames, giving us
more than 25,000 CTUs for testing.

Fully Connected Feedforward

Network

Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Fig. 3 CNN Architecture

3.3 Training Data Set Structure

 For each training sample, we have two components: the input and desired output. The input is basically the gray
scale matrix of the 32x32 CTU, and the desired output is the CU depth map of the CTU. Here is how the depth
number is defined:

(1) If a 8x8 block is part of a 32x32 CU, then the depth index corresponding to that 8x8 block is 0;

(2) If a 8x8 block is part of a 16x16 CU, then the depth index corresponding to that 8x8 block is 1;

(3) If a 8x8 block is part of a 8x8 CU, then the depth index corresponding to that 8x8 block is 2;

In the following example in Fig. 5, since the 32x32 CTU is divided into 16 8x8 CUs, then the depth index of
each 8x8 block is 2; and thus, every cell in the desired output is 2.

Fig. 4 Video Samples used for
Training Set and Testing Set

Fig. 5 Input and Desired Output of a Training Sample

4. Test Results

As can be seen from Fig. 6 and Fig. 7, with the CNN we designed, an initial accuracy rate of 60% was achieved.
As the training moves forward, the accuracy rate will increase rapidly and will approach 100% at around the 200th
iteration. In Fig. 6, we have set the value of batch-size parameter to 32, and then we change the value of “Adam”. As
can be seen, when the value of “Adam” is too large (lr = le-1) or too small (lr = le-1), the results of training are not
satisfactory. When we set the value of “Adam” to “lr = le-3”, the learning curve will reach 100% very quickly and
will remain stable after that.

 In Fig. 7, we have fixed the value of “Adam” to “lr = le-3”, and then change “batch-size” to different values.
When the value of “batch-size” is smaller, the accuracy rate will reach 100% with less number of iterations.
However, with smaller “batch-size” value, each iteration will take longer. Thus, we need to choose an appropriate
“batch-size” value. Overall, in order to reach satisfactory training results, we need to adjust the values of the
parameters. The ultimate goal is to obtain a near-optimum CNN architecture.

5.

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

0 100 200 300 400 500 600 700 800 900 1000

Accuracy of Block Partitioning (batch-size = 32)

Adam(lr=1e-1)

Adam(lr=1e-2)

Adam(lr=1e-3)

Adam(lr=1e-4)

Adam(lr=1e-5)

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

0 200 400 600 800 1000

Accuracy of Block Partitioning with Adam (lr=1e-3)

batch-size=128

batch-size=64

batch-size=32

batch-size=16

batch-size=8

Accuracy

Fig. 6 Accuracy of Blocking (batch-size = 32)

Iteration

Accuracy

Iteration
Fig. 7 Accuracy of Blocking with Adam(lr=1e-3)

6. Discussion and Future Work

In this paper, we proposed using deep NN as the primary technique for efficient video encoding in
H.265/HEVC. We proposed several deep NN designs for CTU partitioning in video encoding. One of the biggest
challenges for using deep NN for video encoding is to generate large enough training data for training the designed
deep NN models. Our solution to this challenge is using the H.265 reference software to generate the most
optimized outputs for each of the above tasks, based on which training data can be extracted. The proposed CNN
based algorithm has largely speed up this process (compared to RDO-based block partitioning), and now it can
achieve real-time block partitioning. This has enabled the application of H.265/HEVC to real-time application
scenarios. Our next step is to conduct large-scale experimental studies on the proposed deep NN designs and refine
the designs based on the experimental results. We also plan to apply the proposed algorithm to other modules of
H.265/HEVC, such as intra prediction mode decision, intra prediction direction decision, and inter-frame motion
estimation.

REFERENCES
[1] Svetislav Momcilovic, Nuno Roma, Leonel Sousa, Run-time machine learning for H.265/HEVC fast partitioning decision,

IEEE International Symposium on Multimedia, 2015, pp347-350

[2] Fanyi Duanmu, Zhan Ma, and Yao Wang, Fast CU partition decision using machine learning for screen content
compression, IEEE International Conference on Image Processing (ICIP), 2015, pp4972-4976

[3] Md Mushfiqul Alam, Tuan D. Nguyen, Martin T. Hagan, and Damon M. Chandler, A perceptual quantization strategy for
HEVC based on a convolutional neural network trained on natural images, SPIE Applications of Digital Image Processing
XXXVIII, Sept. 2015, doi: 10.1117/12.2188913

[4] Zhenyu Liu, Xiaoyu Yu, Yuan Gao, Shaolin Chen, Xiangyang Ji, and Dongsheng Wang, CU partition mode decision for
HEVC hardwired intra encoder using convolution neural network, IEEE Transactions on Image Processing, Vol. 25, No.
11, Nov. 2016, pp5088-5103

[5] Zhenyu Liu, Xianyu Yu, Shaolin Chen, Dongsheng Wang, CNN oriented fast HEVC intra CU mode decision, IEEE
International Symposium on Circuits and Systems (ISCAS), 2016, pp2270-2273

[6] Zong-Yi Chen, Jiunn-Tsair Fang, Yen-Chun Liu, and Pao-Chi Chang, Machine learning-based fast intra coding unit depth
decision for High Efficiency Video Coding, Journal of Information Science and Engineering 32, 2016, pp1289-1299

[7] Gary J. Sullivan; Jens-Rainer Ohm; Woo-Jin Han; Thomas Wiegand, Overview of the high efficiency video coding
(HEVC) standard, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 22(12), 2012, pp. 1649-1668.

[8] Jens-Rainer Ohm, Gary J. Sullivan; Heiko Schwarz; Thiow Keng Tan; Thomas Wiegand, Comparison of the coding
efficiency of video coding standards – including high efficiency video coding (HEVC), IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 22(12), 2012, pp. 1669-1684.

[9] Alex Krizhevsky, Ilya Sutskever, Geoffery E. Hinton, Imagenet classification with deep convolutional neural networks,
Advances in Nerual Information Processing Systems (NIPS), 2012

[10] Karen Simonyan, Andrew Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:
1409.1556, 2014.

[11] Matthew D Zeiler, Rob Fergus, Visualizing and understanding convolutional networks, arXiv:1311.2901, 2013.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, Andrew Rabinovich, Going deeper with convolutions, arXiv:1409.4842, 2014

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, arXiv:1512.03385,
2015

http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Performance.pdf
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Performance.pdf

