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Abstract. This paper focused on classifying ground penetrating radar (GPR) images of 

subsurface cylinders according to their depth, size, material, and the dielectric constant of 

the underlying medium using four different architectures of convolutional neural 

networks. Two CNNs were newly proposed in this study and then compared to two 

others that were used by other authors. These CNNs were trained by using a couple of 

adjusted training options including initial learning rate, learning rate drop factor, and 

learning rate drop period; which had a positive impact on some of the considered models, 

while the option maximum number of epochs worked well with all of the considered 

models. Results showed that the first proposed CNN showed superior performance due 

to the use of a deep network with a large number of small filters. It was also found that 

the first proposed CNN could obtain the best results when GPR B-scans were classified 

according to the cylinders' materials. 
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1 Introduction 

Ground penetrating radar (GPR) is a very common, non-destructive, subsurface imaging 

tool used in many applications related to infrastructure evaluations such as: landmine 

detection [1], pipeline detection [2], avalanche victims detection [3] [4], liquid contamination 

detection [5], soil contamination measurement [6], bridge deck inspection [7], etc. These 

applications have mainly focused on detecting and classifying buried objects according to 

their characteristics. These characteristics include: object depth, size, material, dielectric 

constant of the underground medium, etc. Currently, a few research projects focus on 

classifying GPR images according to their characteristics. Due to the importance of GPR use 

in infrastructure applications, an automatic methodology for interpreting GPR images is very 

necessary. 

  Many techniques have been employed to classify GPR images. One technique is based 

on using Support Vector Machines (SVMs). SVMs were used to identify the materials of 

underground utilities [8]. The research in [8] suggested that the segment length of A-scan 

should be adjusted in order to obtain more accurate results using SVMs. Furthermore, B-scan 

information such as feature of amplitude and frequency should be added to the raw data. 

Moreover, a proper kernel function and a convenient range for data normalization should be 

selected to obtain accurate classification results. Neural networks were also used to classify 

GPR images. The work in [9] exploited three neural network algorithms to simultaneously 

estimate the shape, material type, size and depth of the buried objects as well as the dielectric 
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constant of the underground medium. The results showed that an error emerged when a 

circular metal object was recognized. Furthermore, triangle size estimation demonstrated that 

improvement in the proposed methodology was needed to achieve more accurate results. 

Neural networks also show limited performance with nonlinear, high dimensional samples. 

Thus, they can be really slow in data training and have challenges in dealing with complicated 

real world applications. They are also sensitive to learning samples and they have limited 

generalization ability [10]. Neural networks suffer from several limitations; therefore, deep 

convolutional neural networks were introduced to produce more accurate results.  

Convolutional neural networks (CNNs) have revolutionized the field of computer vision 

and image detection since 2012. CNNs are deep learning neural networks where each neuron 

accepts inputs from neurons on the previous layer, with no existence of cycles; thus, they are 

called feed-forward CNNs [11]. They differ from shallow neural networks that consist of only 

one layer; therefore, by using filters they do not struggle with computational complexity when 

the input size is dramatically increased. Furthermore, in contrast to other deep neural 

networks, CNNs directly work on 2D images. They also use the Back Propagation algorithm 

to optimize the accuracy of predicting models by reducing the error related to each neuron. 

CNNs have been used in the ground penetrating radar field in some work [1], [12], [13] to 

detect buried targets. Until recently, CNNs were used only to detect objects, without 

classifying GPR images according to their characteristics (i.e. depth, size, material, etc.). This 

research investigates CNNs for GPR image classification.  

The major research objective of this work is to determine the effect of different training 

options on four CNNs. Two of these networks were newly proposed and the other two were 

used by [1] and [14]. Other objectives are to determine the best combination of training 

options for each of the suggested CNNs, to identify which of these four models would work 

best in classifying GPR images according to their characteristics: depth, material, size, and the 

dielectric constant of the underground medium, and finally to examine which of the four 

characteristics results in the best classification performance. 

The rest of this paper is organized as follows: Section 2 describes the methodology of the 

work; Section 3 present evaluation results. Section 4 concludes the paper. 

2   Methodology 

Four software packages were used in this project: gprMax v3.1.1 to generate B-scan 

images; Paraview v4.3 to visualize geometry created by gprMax; HDFView v3.0.0 to pre-

process the images by rescaling them; and Matlab R2017b to resize the images, convert them 

to gray, and feed them to the proposed CNNs for training and testing. 

 

2.1 Data Set Configuration 

 

The images used in this experiment were configured using gprMax simulation. In this 

simulation, GPR Ricker waveform was set using a centre frequency of 1.5 GHz, to obtain a 

good resolution with a reasonable penetration depth. The time window was set to 3 

nanoseconds to give enough time for the waves to propagate from the transmitter and reflect 

back to the receiver resulting images with enough details. GPR A-scan traces were collected 

in a horizontal direction from left to right using 60 steps on different sized domains. The 

amplitude of the GPR antenna above the ground was 1 mm.  

It was assumed that different cylinders were buried in a half-space with different scenarios: 

● Object material: metal, concrete, polyvinyl chloride (i.e. PVC). 

● Object depth: 2 cm, 100 cm. 

● Dielectric constant of the subsurface medium: 4, 6, 8. 

● Object size/radius: 20 mm, 50 mm, 100 mm, 150 mm, 200 mm. 



 

 

 

 

2.2 Data pre-processing 

 

Since the images created by gprMax had different scales (as illustrated in Figure 1), they 

need to be normalized to have the same scale. This was accomplished by using HDFView. 

GprMax produces B-scan pictures and .out files along with them. Rescaling the .out files to 

the smallest scale would have resulted in some loss of information. Therefore, the .out files 

were rescaled to the largest scale found in the images dataset, which ranges from -1451.39 to 

1710.09. Figure 1 gives an example of a GPR image before and after rescaling using 

HDFView. 

 
Fig. 1. Steps of pre-processing GPR images.  

 

After rescaling all of the B-scans, they were changed from RGB to grey scale, and then 

resized from 637x60 to 112x60, in order to reduce the amount of memory needed to train the 

proposed CNNs.  Hence, the pre-processing steps included rescaling, changing color format, 

and finally resizing, without a need of any complex pre-processing steps (e.g. edge detection, 

segmentation, and support vector machine (SVM) classifiers). 

 

2.3 System Architecture 

 

The proposed system architecture, as shown in Figure 2, takes a set of GPR images as 

input and applies certain operations on them according to each proposed CNN. The output of 

CNNs is a probability of this image being of a certain class (e.g. concrete, PVC, and metal 

materials).  

 
 

Fig. 2. Proposed system architecture. 



 

 

 

 

Four CNN models are used in this study. CNN1 and CNN2 are newly proposed and 

then compared with CNN3 and CNN4 which are suggested by [14] and [1], respectively. 

Each model is used to classify 2D cylinders' scans according to four classification 

categories: depth, material, size, and the dielectric constant of the burying medium. The 

proposed CNN models are illustrated in Figure 3. CNN1 includes 4 blocks, and its first 

and second blocks are exactly the same. Both blocks include a convolutional layer, a 

batch normalization layer, a ReLu layer, and a max pooling layer. The third block is 

similar to the previous two blocks in the layers and the order of these layers, but it 

excludes the max pooling layer. The last block contains a fully connected layer, a softmax 

layer, and an output layer. CNN2 includes 2 blocks, the first block contains a 

convolutional layer, a ReLu layer, and a max pooling layer. The second and final block 

contains a fully connected layer, a softmax layer, and an output layer. CNN3 and CNN4 

include 5 and 3 blocks respectively. Table 1 shows the characteristics of these four CNNs 

in details.   

 
Fig. 3. Proposed CNN models. 

Table 1. The characteristics of the used CNNs. 

 Proposed/Recommended 
Number of 

blocks 

Number of 

layers 

Filter 

size 

Number of 

filters 

CNN1 Proposed 4 15 3*3 16, 32, and  64 

CNN2 Proposed 2 7 5*5 20 

CNN3 Recommended by [14] 5 15 3*3 16, 16, 32, 32 

CNN4 Recommended by [1] 3 9 5*5 20 

3 Numerical Results 

The four convolutional models were trained using 75% of the synthetic data mentioned in 

Section 2.1 and tested using 25% of that data. Training and testing were conducted on a single 

CPU using stochastic gradient descent with momentum (SGDM).  

The steps of the experiment are: 

● Finding the effect of adjusting different training options on the accuracy of the 

four CNN models. The investigated options were: 

o The initial learning rate = 0.0001. 



 

 

 

 

o Learn rate drop factor =50% and learn rate drop period = 4 epochs, 

suggested by [14]. 

o The maximum number of epochs (as needed to get 90% accuracy). 

o Other training options were set to default values. 

● Training the four models using the best combination of the previously mentioned 

options, and then finding which architecture performs the best.  

● Find which of the four classification categories works best. 

 

Results show that there is no single training option that worked the same for the four 

suggested CNNs. Adjusting the initial learning rate and the learning rate drop parameters 

worked well with some models but poorly with others, while maximizing the number of epoch 

which always improved accuracy. A combination of adjusted initial learning rate, learning rate 

drop factor, learning rate drop period (Table 2), and maximum number of epochs (Table 3) 

improved the performance of the four CNN models in classifying the GPR dataset. The four 

models were able to achieve 90% classification accuracy, but with different number of epochs. 

The best models were the ones that needed less epochs to classify GPR images. This is 

because the less the epochs the less the classification time. Furthermore, as shown in Table 3, 

the proposed CNN1 showed the best performance using the suggested combination of training 

options in Table 2 with learning rate drop factor= 0.5 and learning rate drop period= 4 epochs. 

CNN1 was able to classify GPR images according to their dielectric constant, depth, material, 

and size with an average of 60.7 epochs. CNN2 needed an average of 69 epochs. CNN3 and 

CNN4 took an average of 151.7 epochs and 163.7 epochs, respectively.   

 CNN1 performed the best because it is differentiated from the other previously 

mentioned networks by having three convolutional layers with different amount of 3*3 filters. 

Having a larger number of smaller filters improves the accuracy of architecture because they 

are able of catching more features [14]. 

 In addition it was found in Table 3 that classifying B-scans based on cylinders' materials 

was more accurate than other classification properties with any of the four CNNs. Classifying 

GPR images based on cylinders' materials needed only 86.7 epochs on average while 

classifying on the depth, size, and dielectric constant need an average of 94.5, 98.7, and 101.5 

epochs, respectively.    

 
Table 2.  The best combination of the adjusted training options for each proposed CNN. 

Adjusted option CNN1 CNN2 CNN3 CNN4 

Initial learning rate  x  x 

Learning rate drop factor and learning rate drop period x x x  

 

Table 3. The needed number of epochs for each model to achieve an accuracy of at least 90% using the 

training options combination in Table 2. 

Classification categories CNN1 CNN2 CNN3 CNN4 Average 
Dielectric constant 49e 53e 146e 158e 101.5e 

Depth 90e 111e 100e 153e 94.5e 

Material 56e 60e 136e 200e 86.7e 

Size 48e 52e 225e 144e 98.7 

Average 60.7e 69e 151.7e 163.7e - 



 

 

 

 

4 Conclusion  

In this paper, cylinders' B-scans were classified according to their depth, size, material, 

and the dielectric constant of the underground medium using four different models of CNNs. 

Two of these networks were newly proposed in this study, and the other two were from [1] 

and [14]. These CNNs were trained using different adjusted training options including initial 

learning rate, learning rate drop factor, and learning rate drop period. These three parameters 

had impact on the performance of the used models. With the best combination of training 

options CNN1 showed superior performance due to the use of a deep network with a large 

number of small filters. It was found that the best performance was obtained when GPR 

images were classified according to the materials of buried cylinders.  
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