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Abstract. Time dynamics is a very important part of human behavior recognition. The 

linear dynamic system can model the time dynamics, but in the traditional linear dynamic 

system, the transfer matrix and the output matrix are subject to permutations, rotations, 

and linear combinations. Therefore, each row in the output matrix can not uniquely 

identify the characteristics of the corresponding system. In this paper, we propose 

complex linear dynamic systems to extract the "invariant" features of each time series. 

Firstly, describing the original video using motion boundary histogram (MBH). Then, we 

propose to model the motion dynamics with complex linear dynamical systems (CLDS) 

and use the model parameters as motion descriptors. Finally, the KNN classifier is used 

to classify it. Experiments with the KTH and UCF sports database show that our method 

is more accurate than the traditional linear dynamic system. 

Keywords: behavior recognition, timing modeling, linear dynamic system, complex 

linear dynamic system 

1   Introduction 

In recent years, human behavior recognition has become a hot topic in the field of 

computer vision. It has a wide range of applications in video surveillance, human-computer 

interaction and virtual reality. The surveys by Turaga et al. [1] and Poppe [2] provide an 

extensive overview of video analysis of human motion sequences. In the case of motion 

sequence representations, the previous work can be roughly classified into appearance-based 

methods and motion-based methods.  

Appearanced-based method, various local [3-6] or global [7-10] visual features are 

usually extracted from the original video data to represent the motion sequence. For example, 

Niebles et al. [6] use a bag-of-words model by extracting and clustering local spatio-temporal 

interest points to represent human behavior. The main problem in these approaches is that they 

discard information about the time inherent to behavior and fail to capture the temporal 

dynamics of human activity.  

Motion-based methods often model motion sequences using temporal state-space models 

[11-13] and consider human behavior recognition as a temporal classification problem. The 

linear dynamic systems (LDS) are often used to model motion sequences to capture motion 

dynamics. For example, Ding et al. [14] learning linear dynamic systems with high-order 

tensor data with skeleton to recognize behavior. Luo et al. [15] combine LDS and cuboids for 

human action recognition in a maximum margin distance learning framework. We find that in 

traditional linear dynamic systems, the transfer matrix is not unique, each row in the output 
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matrix can not uniquely identify the characteristics of the corresponding system. The same set 

of observation sequences can produce a completely different transformation matrix, so it is 

difficult to explain. 

To solve the above problem, we employ a complex linear dynamic system to extract the 

"invariant" features of each time series. Firstly, we encode each frame of the motion sequence 

using the Motion Boundary Histogram (MBH). Secondly, we model the complex linear 

dynamic system on the MBH sequence to describe the global dynamics. Thirdly, calculating 

the the pair-wise distance between them. Then, any off-the-shelf classifier (such as KNN or 

SVM) can be used to classify these sequences. In this way, we expect to capture the global 

temporal dynamics of the motion sequence to improve the accuracy of behavior recognition.  

We proved that we can extract the "invariant" feature by complex LDS, it is more suitable for 

classification, so the recognition rate better than the traditional methods. 

2   Related work 

Time-dependent state-space methods such as HMM, Conditional Random Field (CRF) or 

dynamic systems are often used to model motion sequences to capture motion dynamics. 

Brand et al. [12] proposed a coupled HMM to represent the interaction between the subjects. 

Caillette et al. [16] used a variable length Markov model (VLMM) to describe the 

observations and 3D poses for each action. Hongeng and Nevatia [17] incorporate domain 

knowledge as a priori probability of state duration into the HMM framework, using hidden 

semi-HMMs for event detection. HMM is very effective for modeling time series data. 

However, its application is limited due to the assumptions of conditional independent 

observations and hidden state sequences of Markov properties. CRF, on the other hand, avoids 

both these assumptions and allows non-local dependencies between states and observations. 

Sminchisescu et al. [13] used CRFs for human motion recognition. They show that CRF is 

superior to HMM and the Maximum Entropy Markov Model (MEMM) when longer 

observation lengths are considered. Vail et al. [18] compared CRFs and HMM in detail and 

concluded that CRFs perform as well as HMMs or better than HMMs. However, although 

HMMs and CRFs model motion sequences as a time-varying sequence, they do not explicitly 

model motion dynamics. 

The dynamic system methods captures temporal changes by decoupling action sequences 

into subspace pose and potential dynamics. Bregler [19] proposed a multi-level framework for 

learning and recognizing human dynamics. LDS is used to describe mid-level simple 

movements, while HMMs are learned to represent advanced and complex behaviors. Black et 

al. [20] used a mixed auto-regressive process to represent multi-class motion sequences. 

Model parameters are learned by combining maximum expectation (EM) and condensation 

algorithms. Pavlovic and Rehg [21] used switching LDS to simulate nonlinear dynamics in 

human motion, while model learning and inference are based on variational techniques. 

Turaga et al. [22] model the motion sequence as a concatenation of LDSs. They split the 

sequence simultaneously in the time dimension and learn the LDS for each segment. Wang et 

al. [23] used Gaussian process dynamics to explore the non-linearity of motion sequences. The 

model parameters are marginalized rather than estimated. This leads to a dynamic system that 

is a non-parametric model. Although dynamic system methods are very effective in describing 

the dynamics of motion sequences, they often require detailed statistical modeling and 



 

 

 

 

parametric learning. In addition, the exact reasoning is usually difficult to deal with, need to 

develop approximation method. 

Recent work reported in system identification literature has made it easy to compare 

dynamic systems by directly defining the distance or kernel metrics in the model space. Martin 

[24] defines a metric of stable ARMA models based on comparison of their cepstral 

coefficients. De Cock and De Moor [25] extend this concept and propose a more stable 

ARMA model by using the subspace angle between the two systems. Chan and Vasconcelos 

[26] derive a probability kernel based on Kullback-Leibler divergence and use it for dynamic 

texture classification. Vishwanathan et al. [27] proposed a general similarity metric of 

dynamic scene analysis based on Binet-Cauchy theorem. Since most of the work is designed 

for dynamic textures, few attempts have been made to use it for human motion recognition. 

Bissacco et al. [28] extended the work in [27] and defined a new kernel-based LDS metric for 

human gait recognition. Chaudhry et al. [9] used histogram of directed optical flow (HOOF) 

to encode each frame of the motion sequence and used Binet-Cauchy kernel [27] to describe 

the HOOF sequence. In this paper, we consider that most of the previous work on learning 

dynamic systems neglected the invariance of features. To solve these problems, we introduced 

a complex LDS learning algorithm to extract the invariant dynamic features of the video 

sequence. We experiment to show a satisfactory recognition result on the dataset. 

3   Recognition with complex LDS 

LDS and its extensions [19-22] have long been the subject of human motion analysis. 

They show superiority to classification tasks over common HMMs, but usually require 

complex Bayesian modeling and reasoning. Learning LDS parameters [29], [30] in system 

identification theory and similarity measurements between LDS [24-27] have made LDS 

successful for classify high-dimensional time series data in the field of dynamic textures [31], 

[32]. This gives us a new way to simulate and compare the dynamics of a sequence of actions. 

By modeling the temporal variation with LDS, the system's theoretical methods specifically 

consider the global dynamics of the action sequence. The similarity between two LDSs is 

directly measured using the distance or kernel metric defined in LDS space. Therefore, we can 

use LDS to capture the dynamic information of human activities, and  classify action 

sequences by these similarity metrics. 

 

3.1   Linear dynamic system 

 

Let 
n nA   denote the system transition matrix, p nC   denote the subspace mapping 

matrix. Here p and n  are the dimensions of observation space and state space, respectively. 

Then, a stationary LDS can be represented by the parameter tuple ( , )M A C , and according 

to the following equation 
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where n

tx   is the state variable or a latent variable, p

ty   is the observed random 

variable or feature, 
tv and 

tw  are the system noise and the observation noise, respectively. If 

we assume that the noises are zero-mean i.i.d Gaussian processes, we have (0, )tv N Q  and 

(0, )tw N Q . Here Q  and R  are covariant matrices of multivariate Gaussian distributions. 

In equation (1), the hidden state is modeled as a first-order Gaussian-Markov process, 

where 
1tx 

 is determined by the previous state 
tx . The output 

ty  depends on the current state 

tx . Given a video sequence 
1:y  , learning its intrinsic dynamics is equivalent to identifying 

the model parameter M . This is a typical system identification problem and is generally 

solved by using least squares estimation. 

Let the column matrix  1: 1 2, , ,Y y y y   and  1: 1 2, , ,X x x x   represent the 

observation sequence and the state sequence, respectively. In order to obtain the closed-form 

estimate of the model parameter M , we first decompose the observation matrix with the 

singular value decomposition (SVD), 
1:

TY U V   . Where U ,V  are orthogonal and   is a 

rectangular diagonal matrix of positive non-negative real numbers on the diagonal. To get the 

subspace mapping matrix and underlying state sequence estimates set by 

 

1:
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(2) 

 

the model dimension n  is determined by preserving singular values that exceed a given 

threshold. 

Then the least-squares estimate of A is 
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where 
F

  denotes the  -norm and 


 denotes the Moore-Penrose inverse. Given the above 

estimates of Â  and Ĉ , the covariance matrix Q̂  and R̂  can be estimated directly from the 

residuals. 

According to equation (2), LDS implicitly simulates the observation sequence 
1:Y   using 

the subspace mapping matrix C  and its corresponding coefficient 
1:X  . In the task of human 

behavior recognition, the subspace matrix C  describes the action components, while the 

matrix A  is derived from 
1:X   and represents the motion dynamics. Therefore, we can use 

( , )M A C  to represent the motion sequence descriptor. Such a descriptor captures the 

dynamic and embedded components of a motion sequence and is very different from a local 

spatio-temporal gradient descriptor. 

However, there is a problem with using M  as a descriptor. In traditional LDS models, 

transformation matrix A  is not unique: it is affected by permutations, rotations, and linear 

combinations, as is output matrix C . Therefore, each line in C  can not uniquely identify the 

characteristics of the corresponding system. Therefore, we need to extract "invariant" features 

for each time series. 

 

 



 

 

 

 

3.2   Complex linear dynamic system 

 

Feature invariance is a very important attribute of LDS, and has been studied deeply in 

the system identification literature. Previous LDS may not generate features that correspond to 

the original data. Complex linear dynamic system noise variables follow the complex 

Gaussian distribution, and an important property of the complex Gaussian distribution is 

"rotation invariance." Therefore, we can be use it to obtain the "invariant" feature of the 

corresponding sequence. We show our model in this section and generating features that 

correspond to the original data is crucial for the classification. 

The complex linear dynamic system (CLDS) is defined by the following equation. 
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the noise vector follows a complex normal distribution,  1 00,w CN Q ,  0,iw CN Q , 

 0,jv CN R . Note that unlike traditional linear dynamic systems, CLDS allows parameters 

to be complex values, with the constraint that 
0Q , Q  and R  must be Hermitian positive 

definite matrices. Figure 1. shows the graphical model. It can be seen as a continuous linear 

Gaussian distribution over the hidden variable ,z s  and the observed value x .  

 

 

Fig. 1.  Graphical Model for CLDS. x  are real valued observations and z  are complex hidden variables. 

Arrows denote linear Gaussian distributions. 

The problem with learning is to estimate the best fit parameter  0 0, , , , ,u Q A Q C R  , 

passing a given observation sequence 
1 Nx x . We use Complex-Fit, a novel complex valued 

expectation-maximization algorithm towards a maximum likelihood fitting. 

The expected negative-loglikelihood of the model is 
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where the expectation   is over the posterior distribution of Z given X . 

Unlike the traditional linear dynamic system, the objective here is a complex valued 

function that requires nonstandard optimization in complex domain. In negative-loglikelihood, 

there are two sets of unknowns, parameters and posterior distributions. We will briefly 

describe the Complex-Fit here. The M-step is derived by taking the complex derivatives of the 

objective function and equating them to zero. It update the parameters to optimize  L  . 

During the E-step, we will compute the mean and covariance of the edge and joint posterior 

distribution  |nP z X  and  1, |n nP z z X . The E-step calculates the posterior distribution 

using a forward-backward sub steps (corresponding to Kalman filtering and smoothing in the 

traditional LDS). The overall idea of the Complex-Fit algorithm is to optimize the parameter 

set  , just as we know the posterior distribution, and then estimate the posterior distribution 

with the current parameters. It then takes turns to obtain the optimal solution. 

 

Once we have used Complex-Fit (with a diagonal transformation matrix) to best estimate 

these parameters, We can use the output matrix  ,M A C  in the CLDS as a feature to 

represent the motion sequence descriptor and compute the distance for it, then classify it using 

any off-the-shelf classifier. 

  

3.3   Distance Metric for complex LDS 

 

Given an action sequence, we use the complex LDS model parameter  ,M A C  as the 

motion sequence descriptor, with the dynamic matrix  A GL n , where  GL n  is the group 

of all n n  invertible matrices, and with the mapping matrix  ,C ST p n , where  ,ST p n  

is the Stiefel manifold. Since the model space has a non-Euclidean structure and the descriptor 

is in non-vector form, this naturally raises the issue of how to measure the similarity between 

two descriptors. Martin [24] defines a metric for stable ARMA models based on a comparison 

of their cepstrum coefficients. De Cock and De Moor [25] improve Martin’s work by using 

the subspace angles between two LDSs. The subspace angles are defined as the principal 

angles between the column spaces of infinite observability matrices 

     2
T

TTT n

i i i i i iO M C C A C A 


  
  

 for 1,2i  . 

Let  1 1 1,M A C  and  2 2 2,M A C  denote the two motion sequence descriptors. The 

computation of subspace angles is obtained by solving the Lyapunov equation 
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The equation of (6) is guaranteed to exist when 
1M  and 

2M  are stable. The cosines of the 

subspace angles 2cos i  are calculated as eigenvalues of matrix 1 1

11 12 22 21Q Q Q Q  , where 

   
T

kl k lQ O M O M   for , 1,2k l  . 

The subspace angles distance is defined as 
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1 2
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i
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

                                                (7) 

When we get the distance of the LDS, we can use any off-the-shelf classifier (such as 

KNN) to classify. Because KNN is too simple, we propose set a certain weight, found that the 

effect will be more ideal.  

4   Experiment 

4.1   Database 

 

In this paper, KTH and UCF sports behavioral data sets are used to test and verify the 

algorithm, using a leave-one-out verification method (LOOCV). The KTH dataset is the most 

widely recognized behavioral dataset in the field of behavioral recognition, including a total of 

2391 video samples of 6 types of actions performed by 25 individuals in 4 different scenarios. 

UCF dataset The dataset consists of 150 video sequences and consists of 10 behaviors, as 

shown in Figure 2. This dataset has a wide range of perspectives and has been used 

extensively in many studies such as motion recognition, motion localization and saliency 

detection. 

 

Fig. 2. UCF dataset sample. 

4.2   Feature Extraction 

 

To compute complex LDS, we extract sequential features from all the videos. Our 

proposed method can be used with different types of features, including raw pixels, provided 

that the features form a time series. Silhouettes or shape features [33] are useful, but they are 

difficult to obtain in unconstrained environments. In this paper, we use the motion boundary 

histograms [34] to characterize the action profile. The MBH encodes the relative motion 

between pixels by computing gradients of the x and y optical flow components separately. It 

suppresses most of the camera motion and background texture, and thus highlights the 

foreground subject. Some examples are illustrated in Figure 3. 



 

 

 

 

 

Fig. 3. Illustration of raw, optical flow and MBH (x, y) images of two action sequences from the KTH 

dataset (top) and the UCF sports dataset (bottom), respectively. For the optical flow and MBH images, 

gradient/flow orientation is indicated by color (hue) and magnitude by saturation. 

As suggested in [34], we resize the sequences into 64 128  pixels. The MBH is computed 

by quantizing the orientations into 9 bins with 2 2  blocks of 8 8  pixel cells. To improve 

the performance, block overlap (0.5) is also incorporated. Thus we obtain a total of 7 15  

blocks, where each block is described by a 4 9  histogram. The final histogram size is 3780 

for both x and y components of MBH (i.e., 7 15 36  ). 

 

4.3   Complex LDS 

 

Timing Modeling Using complex LDS When timing information is extracted, the state 

space dimensions of the model parameters and the number of iterations, our reference and 

experimental comparison, we find that the hidden state has a dimension of 6 and an iteration 

number of 100, will be better. 

 

4.4   Classifier 

 

In order to verify the validity of the algorithm, we test the recognition accuracy of the 

CLDS algorithm and T-LDS algorithm on KTH and UCF sports datasets. At the same time 

with several other timing algorithms Rb-LDS, CRF, SLDS and MEMM were compared. As 

can be seen from Table 1 and Table 2, the CLDS algorithm improves the recognition accuracy 

by 4% -5% over the traditional LDS algorithm on the KTH and UCF datasets. This shows that 

the extraction of "invariant" features in the processing of timing information using LDS plays 

an important role in video behavior analysis. 

In the KTH dataset, the recognition accuracy of CLDS algorithm reaches 92.37%, 

reaching the highest in the same timing model. Because the jogging and running behaviors 

themselves have a lot of similarities, it is easy to produce confusion, the recognition accuracy 

is relatively low, and other types of behaviors can basically be accurately identified. For UCF 

sports datasets with multiplayer behavior, the highest recognition rate is 81.56%, which is also 

the highest in the same time series model, so the algorithm has good performance for single 

person behavior and multiplayer behavior. 
 

 

 



 

 

 

 

Table 1.  Comparison of six methods on the KTH dataset. 

KTH Box Hand clap Hand wave Jog Run Walk average 

CLDS 1.0 0.90 1.0 0.84 0.87 0.89 0.9237 

Rb-LDS 1.0 1.0 1.0 0.84 0.77 0.89 0.9167 

T-LDS 1.0 0.86 0.97 0.82 0.73 0.87 0.8747 

CRF 0.96 0.97 0.97 0.79 0.84 0.84 0.8950 

SLDS 0.97 0.96 0.97 0.83 0.80 0.85 0.8955 

MEMM 0.93 0.87 0.90 0.76 0.73 0.81 0.8136 

 

Table 2.  Comparison of six methods on the UCF dataset. 

UCF sports Dive Golf Kick Lift Ride Run Skete Swing1 Swing2 Walk Average 

CLDS 0.94 0.88 0.85 0.83 0.68 0.63 0.75 0.84 0.86 0.82 0.8156 

Rb-LDS 0.93 0.89 0.85 0.83 0.67 0.62 0.75 0.85 0.85 0.82 0.8133 

T-LDS 0.88 0.83 0.82 0.80 0.65 0.60 0.73 0.81 0.83 0.80 0.7681 

CRF 0.91 0.87 0.83 0.82 0.68 0.64 0.73 0.85 0.84 0.81 0.8098 

SLDS 0.93 0.88 0.84 1.84 0.66 0.63 0.75 0.84 0.85 0.82 0.8130 

MEMM 0.87 0.82 0.81 0.79 0.63 0.58 0.72 0.78 0.81 0.77 0.7484 

 

5   Conclusion 

In the field of human behavior recognition, capturing temporal information features in 

video video is a challenging issue. In this paper, we introduce a simple and efficient CLDS 

learning algorithm to describe the dynamics of motion sequences. CLDS noise variables 

follow the complex Gaussian distribution, and an important property of the complex Gaussian 

distribution is "rotation invariance." Therefore, we can be used to obtain the "invariant" 

feature of the corresponding sequence. This is crucial for our dynamic system model distance 

metrics. We conducted a wide range of experiments on two public data sets. We evaluated 

CLDS in the selection of model parameters and compared it with the traditional LDS as well 

as four temporal methods, namely Rb-LDS [15], MEMM [35], CRF [13], and switching LDS 

[21] conversion to quantify the improvement in recognition rate. We compare the current state 

of the art results and show the great potential of our approach. Besides, our method can also be 

used as a feature extraction tool in other applications such as signal compression. 

Because related sequences often involve long-term changes, LDS can not describe 

embedded nonlinear dynamics alone. One possible approach is to develop a nonlinear 

dynamic system model, such as phase space reconstruction in a chaotic model. This is 

undoubtedly an interesting question that we will consider in our next step of work. 
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