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Abstract. Mobile opportunistic networks (MONs) have been attracting increasing 
amounts of attention in recent years. Characterizing user contact behavior provides a 
baseline to evaluate the performance of these networks. However, because the contact 
distribution of nodes in MONs is conventionally modeled from a large-scale perspective, 
i.e., by aggregating all node pairs, the contact features of nodes with multiple social 
relationships are not reflected. Thus, it is not clear whether friends and strangers have 
similar or different contact behaviors. In this study, we aggregated the contact 
information of users from the real world, and discovered that two phenomena exist: (1) 
Most friends or strangers make contact at public hotspots, rather than private hotspots; (2) 
The distribution of intra-contact time (ICT) exhibits different decay factors—the ICT 
distribution of strangers is predominantly faster than that of friends. 

Keywords: Mobile opportunistic networks; User contact behavior; Social relationship; 
Hotspots. 

1   Introduction 

Concomitant with the significant advancements in microelectronic and communication 
technologies, numerous sensors and wireless interfaces are now integrated into portable 
devices such as smart-phones and personal digital assistants (PDAs). This has resulted in the 
emergence of a new communication paradigm called Mobile Opportunity Networks (MONs). 
In contrast to traditional mobile cell networks and ad hoc networks, MONs do not have a 
connected path between sources and destinations. Instead, messages are transmitted with a 
store-carry-and-forward style. This new feature in MONs creates various exciting 
opportunities and many interesting applications, ranging from mobile offloading [1] to urban 
computing [2], are being envisioned.  

Characterizing user contact behavior provides a foundation to evaluate the performance of 
MONs, because the mobility of people plays a significant role in the applications being 
envisioned [3] [4] [5]. For example, before supplementary municipal planning facilities can be 
deployed in Beijing, a key issue would be determination of the potential. Collecting user’s 
trajectories and detecting their activities in order to ascertain the primary gathering places may 
be a good choice [6].  

Over the past years, several user mobility analysis studies have been conducted [7] [8], 
where two primary contact features are considered, inter-contact time and intra-contact time [1] 
[9][10] [11] [12] . Numerous experiments have revealed that both features follow a power-law 
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[3] [13] or an exponential distribution [5] [14] [15]. However, because most studies model the 
contact distribution of nodes from a large-scale perspective, i.e., by aggregating all node pairs, 
the contact features of nodes with multiple social relationships is not reflected [13]. For 
example, their models cannot determine whether friends and strangers have similar or 
different contact behaviors.  

Taking this issue into account, we characterize user contact behavior from a social 
relationship perspective [14] [16] [17]. Specifically, we first divide the Access Points (APs) 
into two categories---public hotspots (i.e., APs with higher weights) and private hotspots (i.e., 
APs with lower weights)---and classify users into friends and strangers, respectively. We call 
two users friends if their contact duration is greater than the average contact time; otherwise, 
we call them strangers [18]. Analysis of their GPS traces revealed the existence of two 
phenomena: (1) Most friends or strangers make contact at public hotspots, instead of private 
hotspots; (2) The distribution of intra-contact time (ICT) exhibits different decay factors—the 
ICT distribution of strangers is predominantly faster than that of friends.  

The remainder of this paper is organized as follows. We first discuss the related work and 
introduce preliminaries. Next, we outline our proposed classification method for hotspots and 
user’s relationship. Subsequently, we present and analyze the results experiments conducted. 
Finally, we present concluding remarks. 

2   Related work 

Social interaction plays an important role in human community applications. An accurate 
and reasonable model is vital to reflect the spread of a disease, characterize the traffic of urban 
transportation etc. For example, the authors of [19] focused on the impact of the epidemic on 
the social networks. Sekara et al. [20] analyzed the interaction between the mobile social 
network and the physical space. 

 Much research, therefore, has been conducted on the distribution of inter-contact time 
and intra-contact time in mobile opportunistic networks [13]. For example, Mcnett and 
Voelker [21] studied the access behaviors of wireless PDA users by first collecting a trace 
from 275 freshmen with HP Jornada PDAs over 11 weeks, from September 22, 2002 to 
December 8, 2002. They developed a tool called the wireless topology discovery (WTD) tool 
to periodically collect information on each PDA installation and studied user’s mobility and 
analyzed the number and duration of AP sessions. They also developed two wireless network 
topology models and used the evolutionary network topology model as a case study to 
evaluate ad hoc routing algorithms.  

Natarajan and Motani et al. [11] subsequently analyzed user interactions from Bluetooth 
contact traces. In their study, they collected more than 350,000 contact records from 10,000 
unique devices, and proposed several new metrics to evaluate user behaviors. They found that 
most of their metrics followed a power law, except for inter-pair-contact time. The 
predictability of these metrics facilitates the design of smart routing algorithms. Chaintreau et 
al. [9] also studied the impact of human mobility on opportunistic forwarding schemes. They 
employed a simplified model that incorporated the renewal theory, and proved that the power-
law condition can be solved with a finite expected delay by oblivious forwarding algorithms, 
but only if the heavy tailed index of the distribution is greater than one. That is to say, when 
the heavy tailed index is less than one, it cannot limit the expected delay for any forwarding 
algorithm; the queue in the relay device is ignored.  



Similarly, Karagiannis et al. [10] studied the distribution of inter-contact times between 
mobile devices and subsequently proposed the dichotomy hypothesis, which states that the 
distribution of intercontact time obeys the power law until it has decayed to a certain point, 
beyond which it becomes an exponential distribution. Yuan et al. [22] studied human behavior 
in both virtual and physical spaces, using inter-action time (IAT) to reflect the relationship of 
people in both spaces. They subsequently stated that the complementary cumulative 
distribution function (CCDF) of IAT also follows a power law with an exponential decay.  

Moon and Helmy [15] investigated the periodicity and regularity of nodal encounter using 
the power spectral. They found that mobile nodes with few encounters have strong periodicity, 
and vice versa. Wei et al. [23] studied the specific movement characteristics of nodes while 
taking social relationships into account. They divided social ties into two types: static and 
dynamic. They considered static social relations to have long time granularity and stabilize 
over time, whereas dynamic social relations have relatively short time granularity and may be 
change over time. They found that a node pair from the same community makes contact more 
frequently than those from different communities. Therefore, they classified node pairs into 
two classes: familiar and unfamiliar. Their experimental results showed that familiar pairs and 
unfamiliar pairs of nodes have the same inter-contact time distribution, and that both 
approximately followed the power-law decay to a certain point, beyond they are subject to 
exponential decay. Their results also indicated that the inter-contact time distribution of 
familiar pairs decays faster than inter-contact time distribution of unfamiliar pairs. In other 
words, the probability of contact for familiar node pairs is much greater than that for 
unfamiliar node pairs. 

3   Preliminaries 

We used the well-known Dartmouth datasets [24] to analyze the distribution of user 
contacts. The original data was collected with 20 Nokia N95 phones carried by students and 
staff members at Dartmouth College from July 28 to August 11, 2008. The dataset includes 
the following information for each user: accelerometer raw data and GPS location coordinates. 
Considering the same periodicity of human mobility, we extract data pertaining to a period of 
seven days, from August 2 to 8, 2008. The data comprised 1838 users, 129 hotspots, and 6119 
records.  

Preprocessing: We first converted the hexadecimal data to decimal and used a five-tuples 
set (User ID, AP ID, Turn-on time, Turn-off time, Contact time) to denote the contact between 
a user and an AP, where start time denotes the moment when a user enters the coverage range 
of an AP and end time denotes the moment when the link between them is disconnected. The 
difference between the end time and the start time is the contact duration. Table 1 examples of 
the various parameter values in the dataset.  



Table 1.  Part of records of user contacts. 

User ID AP ID Turn-on Turn-off Contact time 
… … … … …
1 104 28832 31534 2700
1 104 81292 81302 10
1 104 84419 84429 10
1 104 28465 31449 3000
1 104 40395 44482 4080
1 104 44966 50372 5400
1 104 66383 71268 4860
1 104 75202 75212 10
1 104 78538 80930 2340

… … … … …
2 88 83515 62 2940
2 88 80343 86288 5940
2 88 77503 81905 4440
2 88 81905 81915 10
3 0 77173 79505 2340
4 0 71826 75578 3720
4 0 48207 48858 660

… … … … …
 
3.1   Hotspot Weights 

The weights of hotspots characterize their popularities. In general, the larger the value is, 
the more popular is that hotspot. We here take a simple but efficient solution to estimate the 
weight of hotspots, called count process[25]. This method calculates the number of stay points 
in each hotspot and normalizes the sampling counts, so as to calculate the weight of each 
hotspot. Let c denote the number of total contacts between users and APs within a week, and 
ci represent the contact number between users and the ith hotspot, we have 
 

  1,2,3...i iw c c i                            (1) 

 
Where wi denoted the weight of the ith hotspot. 
Using Equation 1, we plotted the weight distribution of all the hotspots, as shown in 

Figure 1(a). From the figure, it is clear that the weights of hotspots fluctuate considerably. The 
maximum fluctuation is over 5%, whereas the minimum tends to zero. In order to classify 
hotspots, we sort the hotspots according to the weight, as shown in Figure 1(b). Subsequently, 
we got the median of 128 nodes, 0.005, as a threshold, and obtained 64 private hotspots (with 
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