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Abstract
An accurate understanding of air pollutants in a continuous space-time domain by spatiotemporal inter-

polation is critical for meaningful assessment of the quantitative relationship between the public health and
perennial environmental exposures. Existing spatiotemporal interpolation algorithms are usually based on
unrealistic assumptions by restricting the interpolation models to the ones with explicit and simple math-
ematical descriptions, thus neglecting plenty of hidden yet critical influence factors. We developed an
efficient deep-learning-based spatiotemporal interpolation algorithm which can generate more accurate
estimation for air pollution on a large geographic scale and over a long time period. The experimental
results demonstrate the efficacy and efficiency of our novel algorithm.
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1 Introduction
With the advancement of geo-spatial technologies, especially Geographic Information Systems (GIS), en-
vironmental exposure analysis has made significant progress. An accurate understanding of PM2.5 in a
continuous space-time domain is critical for meaningful assessment of the quantitative relationship between
the risk of lung cancer and the concentrations of PM2.5, which can help to identify, monitor, and evaluate
interventions, such as establishment and enforcement of air quality standards, reduction of industry or auto
emissions, and local community-based efforts. Since air pollution data is commonly recorded at scattered
or localized sampling locations, it is often necessary to predict or estimate air pollution concentrations at
new data points within the range of a discrete set of known data points, which is known as interpolation in
numerical analysis.

Compared with the traditional spatial interpolation, an additional time dimension needs to be considered
in the spatiotemporal interpolation. Besides, plenty of hidden factors such as meteorlogy, land use, traf-
fic flow, human activities etc. also affect the concentration of air pollutants. What’s more, most existing
spatiotemporal interpolation methods restrict the interpolation models to explicit and simple mathematical
descriptions. On the other hand, the real relationship between the air pollutants and the influential factors is
unknown, and can be so complicated that no explicit mathematical model fits for it. Black box approaches
are preferred in this situation as alternatives to traditional models for input–output mathematical models.

Deep learning algorithms can extract high-level, complex abstractions as data representations through a
hierarchical learning process [10]. The hierarchical learning architecture is motivated by the artificial intel-
ligence emulating the deep, layered learning process of the primary sensorial areas of the neocortex in the
human brain, which automatically extracts features and abstractions from the underlying data [1, 2, 3]. Be-
cause the air quality process is inherently complicated, they are perfect candidates as black-box approaches
to automatically consider the hidden factors and build the model for air pollution data. Among various deep
learning methodologies, deep recurrent neural network (DRNN) [9] is particularly suitable for time series
forecasting and modeling because it not only considers the current input but also takes into account a trace
of previously acquired information via recurrent connections, which allows a direct processing of temporal
dependencies and other hidden correlations.

Our main contribution of this paper is to develop an efficient DRNN-based spatiotemporal interpolation
algorithm which allow for the generation of more accurate estimation of air pollution on a large geographic
scale and over a long-time period. Section 2 briefly describes our methods. The data sets, experiments
settings and results are shown in Section 3. We conclude in Section 4.
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2 Problem Statement and Methods
2.1 Spatialtemporal Interpolation

Suppose there are n different monitoring stations {S1, . . . , Sn} over an area A. The observation from
each station Si at a specific time stamp t can be described as a tuple xi,t = (logi, lati, t, vi), where v is
the observed air pollutant concentration, log and lat desribe the longitude and latitude of the station Si,
respectively. Therefore, the input data set can be denoted as n time series, {ts1, . . . , tsn}. Each time series
tsi = (xi,1, . . . ,xi,T ) is the sequence of observed data from a single station Si. Our target is to estimate
v for any position in A at any time. In the spatial dimension, local air quality is usually influenced by
the adjacent areas as air pollutants may disperse or transmit through the atmosphere with the wind. In
the temporal dimension, historical states of the air pollutants can affect the current and future states. For
instance, the air quality during the last day will effect the air quality during the next day. Another example
is that the air quality tends to have similarities in the same season over recent years. In a word, the air
quality data at given area has internal temporal correlation. Therefore, both spatial and temporal correlations
should be taken into account when interpolating air pollutant’s concentration spatiotemporally. Except all
the above influence factors, lots of hidden factors such as meteorlogy, land use, traffic flow, human activities
etc. can also trigger the change of air quality in both spatial and temporal dimensions and thus affect the
concentration of air pollutants. Due to the lack of details in the data description, which only provides three
influence factors, i.e. longitude, latitude and time, it is quite challenging to build a perfect mathematical
model to estimate the concentration of air pollutants.

2.2 Bidirectional Long Short Term Memory RNN

Deep learning, also known as artificial neural network (ANN), enables the computer to extract high-level,
complex abstractions as data representations through a hierarchical learning process. It can also avoid hand-
crafted features that are usually expensive to create and require expert knowledge of the field. Typical ar-
chitecture designs of deep learning includes Convolutional Deep Neural Networks (CDNN), Deep Sparse
Autoencoder (DSA),Deep Recurrent Neural Networks (DRNN),Multi-Layer Perceptions (MLP),Deep Re-
stricted Boltzmann Machines (DRBM), etc. [8]. Among them, Recurrent neural network (RNN) is particu-
larly suitable for time series forecasting and modeling. RNN employs self-connected neurons to implement
a cyclic structure in the network, which helps to “memorize” the historical input. In other words, RNN not
only considers the current input but also takes into account a trace of previously acquired information via
recurrent connections, which allows a direct processing of temporal dependencies.

3 Experiments
3.1 Data Set Description and Measure of Performance

To demonstrate the efficacy and efficiency of our new method, we explored the daily PM2.5 data set in 2009
over the contiguous southeast region of the U.S., i.e. Georgia and Florida. This data set is measured by U.S.
EPA’s Air Quality System (AQS) monitoring sites and can be obtained from on the U.S. EPA website [5].
In this data set, each data entry is identified as a tuple (id, log, lat, t, v), where log and lat are the longitude
and latitude coordinates of the monitoring stations, t = (year,month, day) denotes the date when a PM2.5

measurement is taken, and v is the measured PM2.5 value. The original data set contains invalid entries,
meaning no measurements are available at a particular site and on a particular day. After deleting all the
invalid entries, there were 11, 056 daily measurements at 114 monitoring sites on all 365 days in the year
2009.

We adopted three performance indexes to evaluate the performance of the proposed model. These indexes



are the mean absolute error (MAE), the root-mean-square error (RMSE), and the mean absolute percentage
error (MAPE); The previous two indexes are used to evaluate the absolute error, while the third one is used
to measure the relative error. In other words, RMSE and MAE reflect the extremum effect and error range
of the predicted values, and MAPE reflects the specificity of the average predicted value [4]. The optimal
structure of our model was determined when the MAPE was minimized.

We adopted three performance indexes to evaluate the performance of the proposed model. These indexes
are the mean absolute error (MAE), the root-mean-square error (RMSE), and the mean absolute percentage
error (MAPE); The previous two indexes are used to evaluate the absolute error, while the third one is used
to measure the relative error. In other words, RMSE and MAE reflect the extremum effect and error range
of the predicted values, and MAPE reflects the specificity of the average predicted value [4]. The optimal
structure of our model was determined when the MAPE was minimized.

3.2 Our Framework and Implementation Details

In the spatiotemporal interpolation, we assume that the local air quality is not only influenced by the adjacent
areas but also correlated with the historical and future records at the adjacent areas. Our proposed framework
employs the Bi-LSTM DRNN to capture the spatial and temporal correlations.

When training the neural networks, it is common to encounter the overfitting problem, which means that
the performance on the training set is much better than the performance on the testing set. In other words,
the model is over-trained such that it “memorizes” the training data but does not “learn” to generalize from
trend. We adopted the k-cross validation [7] and dropout strategy [11] to address the overfitting problem
and improve the robustness of the our method.

According to the Tobler’s First Law of Geography (Page 236) [12], which states “all places are related,
but nearby places are more related than distant places”, the similarity of two locations should decrease with
the increasing distance. We assume the effect from the k nearest neighbors dominates the influence from
the other neighbors. In our experiment, k-d tree was adopted to store the data set as k-d tree is an efficient
data structure for searching the nearest neighbors. It has been proven that the average time complexity of
searching k nearest points is O(logn) [6], where n is the number of points in the space and k is a constant.
We also assume the current air quality is highly correlated with the air pollution concentrations in the past
t days and future t days.

Next, three experiments were designed to demonstrate the effectiveness of our method.

Experiment 1: Our first experiment is to explore how the geographical neighbors effect the air quality
of the interested point. In this experiment, the dropout rate is set to be 0 and t ∈ {1, 2}. The proposed
algorithm ran for k ∈ {1, 3, 5, 7} and the statistic measurements were collected in Table 1. A visualization
of the MAPE values is shown in Figure 1. From the Figure 1, we can observe that the MAPE tends to
decrease when the algorithm takes into account of more neighbors of the interested point.

Table 1: Measurements for our algorithm considering different number of neighbors.

(a) t = 1

k MAE RMSE MAPE
1 2.0480 3.5485 0.2986
3 2.0383 3.5039 0.3070
5 1.8922 3.4682 0.2803
7 2.0542 3.8856 0.2803

(b) t = 2

k MAE RMSE MAPE
1 2.0161 3.7223 0.2886
3 1.9338 3.8701 0.2633
5 2.3622 4.4404 0.3167
7 1.6352 3.5060 0.2246



Figure 1: MAPE for our algorithm considering different number of neighbors.
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Experiment 2: Our second experiment is to investigate how the current state of the air pollutants affects
the future states, and how many past states can be related with the current state. In this experiment, we fix
the dropout rate as 0 and suppose the number of nearest neighbors is from {1, 2}. Our algorithm ran for
t ∈ {1, 2, 4, 6, 8, 10}. The statistic measurements were collected in Table 2 and a visualization of theMAPE
values is shown in Figure 2. From the Figure 2, we can observe that the MAPE tends to decrease when the
algorithm takes into account of more past and future states.

Table 2: Measurements when considering different numbers of influential days.

(a) k = 1

t MAE RMSE MAPE
1 2.0480 3.5485 0.2986
2 2.0161 3.7223 0.2886
4 1.8494 3.5499 0.2613
6 2.1739 4.0725 0.3005
8 2.2621 4.0321 0.3217
10 1.6479 3.4898 0.2288

(b) k = 3

t MAE RMSE MAPE
1 2.0383 3.5039 0.3070
2 1.9338 3.8701 0.2633
4 2.4623 4.0582 0.3543
6 1.7969 3.6649 0.2494
8 2.1296 2.5744 0.2415
10 1.7349 3.6652 0.2345

Figure 2: MAPE when considering different numbers of influential days.
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Experiment 3: Our last experiment is comparing the Bi-LSTM DRNN with the LSTM DRNN in order to
explore whether the current state of the air pollutants is correlated with the future states. In this experiment,
we fix the dropout rate as 0. Suppose the number of nearest neighbors is 3 and the number of the influencing
days is from {1, 2}. The statistic measurements were collected in Table 3. We can observe that the MAPE
for the Bi-LSTM DRNN is smaller than the MAPE for the LSTM DRNN. Therefore, we can claim that
taking the future states into account helps to learn more accurate air pollution concentrations.

Table 3: Measurements for Bi-LSTM DRNN and LSTM DRNN.

(a) k = 3, t = 1

Model MAE RMSE MAPE
Bi-LSTM 2.0383 3.5039 0.3070
LSTM 2.6837 4.0523 0.4160

(b) k = 3, t = 2

Model MAE RMSE MAPE
Bi-LSTM 1.9338 3.8701 0.2633
LSTM 2.1659 4.0645 0.3018



4 Conclusion
In this paper, we proposed a novel deep neural network to interpolate the spatiotemporal data. Our method
follows the Tobler’s First Law of Geography: “all places are related, but nearby places are more related than
distant places”. We consider the “close” points in spatial and temporal dimensions at the same time when
interpolating an interested point. In particular, both past and future information are taken into account. We
employed the bidirectional LSTM RNN to split the neurons of a regular LSTM RNN into two directions
in order to memorize the past and future information. Our experiments demonstrate the effectiveness of
our method. To the best of our knowledge, it is the first time to apply the bidirectional LSTM RNN in the
spatiotemporal interpolation. Our experiments were conducted on the daily PM2.5 data over the Georgia
and Florida. In the future, we are going to explore larger data sets such as hourly air pollution data across a
large area, say the whole U.S. There are many other factors effecting the air quality. However, our current
data set only contains longitude, latitude and time information. We will study more complicated data set
which contains other influential factors such as temperature, wind speed, wind direction, etc. A larger and
more complicate data set will inevitably make our proposed method less efficient as more computations are
needed. In the future, we will explore how to speed up the proposed method by deploying the experiments
on the cluster computing frameworks.
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