
1

Application of FMCW Radar for Dynamic

Continuous Hand Gesture Recognition
Zhenyuan Zhang, Zengshan Tian, Mu Zhou, Yi Liu

zhangzhenyuangm@gmail.com, tianzs@cqupt.edu.cn, zhoumu@cqupt.edu.cn, liuyi21@cqupt.edu.cn

Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and

Telecommunications

Chongqing 400065, China

Abstract

Recently, dynamic hand gesture recognition system is of great importance for human-computer interaction

research. However, real-world dynamic hand gesture recognition system still exists some challenging problems, such

as: 1) the system should be robustness to illumination conditions; 2) it is difficult to recognize diverse gestures

performed by different people; 3) to avoid noticeable lag between its classification and performing a gesture, the system

must detect and recognize continuous gestures utilizing unsegmented input streams. To solve these challenges, we

present a novel system in this paper for recognizing dynamic continuous hand gestures based on Frequency Modulated

Continuous Wave (FMCW) radar sensor. The radar system is not affected by noise, lighting or atmospheric conditions.

We use a recurrent three-dimensional convolutional neural network to perform hand gesture classification. In addition,

in order to improve recognition performance, Connectionist Temporal Classification (CTC) algorithm is utilized to

predict class labels using unsegmented input streams. The experimental results demonstrate that the proposed system

is able to achieve high recognition rate of 96%, which outperforms the state-of-the-art gesture recognition systems.

What’s more, the conclusion in this paper can be applied to real-time hand gesture recognition system design.

Index Terms

FMCW radar system, dynamic continuous hand gesture recognition, convolutional neural network, connectionist

temporal classification

I. INTRODUCTION

Hand gesture recognition (HGR) is an interesting topic in the area of human-computer interaction[1-6], focusing

on interpreting hand gestures based on various sensors and machine learning algorithms. Recently, HGR has

been regarded as an effective interface for machines to understand human instructions. For example, with the

popularisation of wearable devices, HGR system has been applied to micro portable electronic apparatus to replace

small buttons and touch screens, which brings reliability and design flexibility improvements. In driver assistance
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systems, HGR has realized non-contact interaction between drivers and vehicle navigation systems, improving

driving security and operation convenience.

Compared to traditional camera-based HGR systems, radar-based systems have low computational resource cost

and show promising performance in fine-gained gesture recognition under various illumination conditions. However,

there is a number of open challenges existing in real-world radar-based systems for dynamic continuous HGR[7].

Firstly, to avoid noticeable lag between classification and performing a gesture, HGR systems must be capable of

detecting and classifying gestures simultaneously using continuous streams of unprocessed radar data. Secondly, it

is advantageous to address hand gesture segmentation and classification jointly, since they are highly interdependent.

Thirdly, a dynamic hand gesture includes three temporally overlapping phases: preparation, nucleus, and retraction.

In the preparation and retraction phases, there are similar actions cross different hand gestures, such as settling back

a hand and stretching out. The nucleus mainly contains key hand movement features, such as different movement

durations and trajectories. Compared to the other two phases, nucleus is the most discriminative. Therefore, for

a dynamic HGR system, the key challenge is how to extract the nucleus phase from the above three phases. In

addition, it is difficult for users to segment nucleus from the unsegmented input streams.

In this paper, we propose a Connectionist Temporal Classification (CTC) algorithm[8] based method for dynamic

continuous HGR to address the above challenges. CTC algorithm makes gesture classification be performed based

on the nucleus phase with no demand of explicit pre-segmentation. The system is based on a 24GHz FMCW radar

platform. Diverse hand gestures are classified by the combination of three-dimension Convolutional Neural Network

(3D-CNN), Long Short Term Memory (LSTM) network and CTC algorithm. The main contributions of this paper

are summarized as follows.

• We present a radar-based dynamic HGR system. An end-to-end trained fusion network is proposed, which

includes 3D-CNN and LSTM neural networks, and extracts motion features from not only short clip of input

radar frames, but also long-term temporal information existing in hand movement sequences.

• CTC algorithm is utilized to recognize dynamic continuous hand gestures with no demand of hand gesture

pre-segmentation.

II. SYSTEM DESCRIPTION

A. Radar system description

To satisfy the the range and velocity resolutions demand for HGR, the chirp frequency bandwidth is B = 4GHz

and pulse duration is T = 1ms, achieving a range resolution ∆R = c
2B = 3.75cm. The transmitted signal of a

FMCW radar can be modeled as:

ST (t) = exp
(
j2π

(
fct+ 0.5Kt2

))
(1)

where fc denotes the carrier frequency, K = B/T . By assuming that a reflected signal with the distance R and

moving radial velocity vr, the received signal can be expressed as:

SR (t) = exp
(
j2π

(
fc (t− τ) + 0.5K(t− τ)

2
))

(2)
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where τ = 2 (R+ vrt) /c is the round trip time-delay and c is the speed of light. In FMCW radar systems, the

intermediate frequency signal SIF (t) of the low-pass filter output is then obtained:

SIF (t) = exp
(
j2π

(
fcτ +Ktτ − 0.5Kτ2

))
(3)

At last, 2D Fourier transform algorithm is applied to detect moving targets and estimate range information. From

the the recorded spectrograms, as shown in Figure 1, it is easy to observe that different hand gestures have their

own special trajectory features. From the spectrograms of sliding a hand from right to left, sliding a hand from left

to right, pushing, and pulling, we can find the inverse hand movements have inverse trajectories.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Spectrograms of eight hand gestures: (a) sliding a hand from right to left, (b) sliding a hand from left to right, (c) pulling, (d) pushing,

(e) knocking, (f) moving a hand up and down, (g) waving a hand, (h) patting.

(1)3D-CNN

In this paper, 3D-CNN is utilized to extract spatial-temporal feature from short consecutive radar spectrograms.

The difference between 2D-CNN and 3D-CNN is that 3D-CNN uses a convolution kernel cube, rather than traditional

2D convolutional kernel, to perform the 3D-convolution operation. Formally, the value at position (x, y, z) on each

feature map can be given as

F (x, y, z) = ReLU (b+X (x, y, z)⊗H (x, y, z))

= ReLU

(
b+

H1−1∑
i=0

H2−1∑
j=0

H3−1∑
k=0

X (x+ i, y + j, z + k)H (i, j, k)

)
(4)

where X (x, y, z), H (x, y, z), and F (x, y, z) stand for the values at position (x, y, z) in previous radar spectrograms,

convolution kernel cube, and feature map. b is the bias for this feature map. This system uses Restricted Linear Units

(Relu ()) function as the activation function. H1, H2 and H3 is the length, width, and height of the convolution

kernel cube. Similar to 2D-CNN, 3D-CNN relies on 3D pooling operation to down sample the feature map.

We start by formalizing the operation performed by the system. Firstly, we use a volume C(t) ∈ Rk×l×m

((m ≥ 1)) to represent a radar spectrogram clip having m sequential spectrograms with k × l spatial size at time

t. Using a 3D-CNN F3D−CNN, f(t) = F3D−CNN

(
C(t)

)
, each spectrogram clip is transformed into a feature map

f (t).

(2) LSTM CTC
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The traditional LSTM cannot classify a sequence of diverse hand gestures in real-time, because it only outputs a

classification result after several timesteps. However, LSTM CTC, the combination of LSTM and CTC algorithm,

can recognize a sequence of gestures in real-time. LSTM has several advantages over traditional Recurrent Neural

Network (RNN). For example, LSTM is not limited to fixed length input, which is widely used in sequential data

modeling. In addition, by introducing learned gating functions, LSTM units allow state to be propagated without

modification, be updated, and be reseted. The core of LSTM units is memory cells. A memory cell includes input

gate, forget gate, cell, and output gate. As stated above, 3D-CNN extracts the feature vector at time t, so an

input feature sequence can be described as f =
(
f (1), f (2), · · · f (T )

)
. The input gate is a sigmoid unit, which takes

activation from the current data input f (t) and the hidden layer at the previous timestep. The forget gate is responsible

for learning to flush the memory of the internal state. The cell in LSTM memory cell has a self-connected recurrent

edge with fixed unit weight. In addition, in LSTM network, error can flow across several timesteps without vanishing

or exploding, which is because that the edge spans adjacent timesteps with constant weight. At last, by multiplying

the internal state by the output gate, the output of LSTM memory cell is obtained.

In this system, CTC algorithm is used as a cost function for sequence modeling based on unsegmented spectrogram

streams. CTC is utilized to detect and recognize the nucleus of hand gestures, while assigning the no gesture class

to represent the remaining sequence input clips and addressing the alignment of class labels to particular clips in

the radar data.

As shown in Figure 1, let L = {L1, L2, · · ·L6} denote the label dictionary of existing hand gestures. Firstly,

the dictionary is extended with a no gesture class: L′ = L∪ {no gesture}. Therefore, the output of softmax layer

contains a class-conditional probability for this additional no gesture class. In this paper, an input radar sequence is

described as γ = {γ0, γ1, · · · γp−1}, where γi represents a training sample mini-batch in the form of unsegmented

radar spectrogram data. Each radar spectrogram data includes T clips, making γ is composed of N = T ×P clips.

The network aims to compute the probability of observing a particular gesture (or no gesture) k at time t in an

input sequence γ, p (k, t|γ) = skt ∀t ∈ [0, N), rather than averaging predictions across clips in a pre-segmented

hand gesture.

Then, it is assumed that the output probabilities at each timestep is independent to those at other timesteps (or

rather, conditionally independent given γ). π denotes a path which possibly maps of the input sequence γ into a

sequence of labels y. p (π|γ) =
∏
t s
πt
t is the probability of observing path π ,where πt is the class label predicted

at time t in path π.

Considering the fact that different paths could lead to the same label sequence, we define a many-to-one function

ψ as y = ψ (π) to remove no gesture labels and condense repeated labels. For instance, ψ (1 ∗ ∗1 ∗ ∗ ∗ ∗2 ∗ ∗) =

ψ (∗ ∗ ∗11 ∗ ∗12) = 12, where 1, 2 denote actual gesture labels and ∗ is no hand gesture label. By operator ψ,

different paths lead to the same gesture sequence y. Given an input sequence γ, the probability of observing a

particular sequence y is the sum of the conditional probabilities of all paths π mapping to that sequence, p (y|γ) =∑
π∈ψ−1(y)

p (π|γ), where ψ−1 (y) = {π : ψ (π) = y}. We can compute p (y|ψ) simply by dynamic programing.

Then a new vector ŷ is defined by inserting a no gesture label before and after each gesture clip in y. By assuming

that y contains P labels, the length of ŷ is P̂ = 2P + 1.
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For sequence q with the length r, q1:p and qr−p:r represent its first and last symbols respectively. Then for

a label sequence y, the forward variable gt (s) is defined to be the total probability of y1:s at time t, gt (s) =∑
π∈NT

ψ(π1:t)=y1:s

t∏
t′=1

s
πt′
t′ .

It is allowed for hand gesture sequence to start with either no gesture or the first hand gesture in y(y1). Therefore,

we initialize the forward variable by the probability of a path beginning with no gesture or the probability of a

path beginning with the first actual hand gesture. In addition, a valid path is not allowed to begin with a later hand

gesture. The rules for initialization is given as follows:
b1 (1) = sno gesture1

b1 (2) = sy1

1

b1 (s) = 0, ∀s > 2

(5)

and the transition function is

bt (s) =



(bt−1 (s) + bt−1 (s− 1)) sŷs

t

if ŷs = no gesture or ŷs−2 = ŷs

(bt−1 (s) + bt−1 (s− 1) + bt−1 (s− 2)) sŷs

t

otherwise

(6)

At last, any valid path π must end with the last gesture ŷP ′−1 or with no gesture at time N − 1. Therefore,

p (y|γ) can be represented by p (y|γ) = bN−1

(
P̂ − 1

)
+ bN−1

(
P̂
)

. Therefore, we can defined the CTC loss to

be LCTC = − ln (p (y|γ)).

Though CTC is used as a training loss function only, by inserting the extra no gesture label, it has the influence

on the architecture of the network.

III. EXPERIMENTAL RESULTS

A. Continuous Hand Gesture Recognition

To test dynamic continuous hand gesture recognition, radar data sequence is collected for 80 seconds. The

comparison of the recognition performance of ”LSTM” and ”LSTM CTC” is shown in Figure 2. This figure also

shows the network predictions and ground truth labels during continuous operation on the sequence. Different

hand gestures is represented by various colors and line types. The nucleus phase of each gesture is described by

the ground truth in the top row. The experimental result shows that ”LSTM CTC” achieves higher recognition

performace in HGR: 96.25% and 90.3% in terms of ”LSTM CTC” and ”LSTM”, respectively. In addition, it is

obvious to find that the two networks behave differently when the same hand gesture is performed sequentially by

observing that instances of the same gesture conducted at 22-35s and 54-70s. The LSTM CTC network generates

an individual peak for each repetition, whereas LSTM merges them into a single activation.

CONCLUSION

In this paper, we propose a novel radar-based HGR system, which is capable of recognizing diverse dynamic

hand gestures in real-time. We employ the combination of 3D-CNN and LSTM networks to extract spatial-temporal
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Fig. 2. Comparison of the recognition performance of LSTM and LSTM CTC.

features from radar sequence data. In addition, CTC algorithm is responsible for classifying gestures with zero or

negative lag using unsegmented input data in our system. The experimental results demonstrate that the proposed

system is able to achieve higher recognition rate compared to the state-of-art systems. In the future, we will

continue to study how to extract the spatial-temporal features of dynamic gestures using single network to reduce

the computational resource.
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