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Abstract 
The shortest path finding algorithm is used in many problems on graphs and networks. This article will introduce the 

algorithm to find the shortest path between two vertices on the extended graph. Next, the algorithm finds the shortest path 

between the pairs of vertices on the extended graph with multiple weights is developed. Then, the shortest path finding 

algorithms is used to find the maximum flow on the multicommodity multicost extended network is developed in the article 

[12]. 
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1. Introduction

The shortest path finding algorithm is used in many 

problems on graphs and networks. This article will 

introduce the algorithm to find the shortest path between 

two vertices on the extended graph. Next, the algorithm 

finds the shortest path between the pairs of vertices on the 

extended graph with multiple weights is developed. Then, 

the shortest path finding algorithms is used to find the 

maximum flow on the multicommodity multicost extended 

network is developed in the article  [12]. 

2. The problem of finding the shortest path in

extended graph 

Given extended graph G = (V, E) with a set of vertices 

V and a set of edges E, where edges can be directed or 

undirected. Each edge eE is assigned a weight we(e). For 

each vertex vV, we denote Ev the set of edges incident 

vertex v. For each vertex vV  and each of pair of edges 

(e,e’)EvEv, ee’ is assigned switch weight wv(v,e,e’). 

The sets (V, E, we, wv) are called extended graph. 

Let p be a path from a vertex u to a vertex v through the 

edges ei, i = 1, …, h+1, and vertices ui, i = 1, …, h,  as 

following: 

p = [u, e1, u1, e2, u2, …, eh, uh ,eh+1, v]        (1) 

Define the length of the path p, denoted l(p), as 

following: 

l(p) = 




1

1

)(
h

j

jewe  + 




h

j

jjj eeuwv
1

1),,(    (2) 

• The problem of finding the shortest path

       Given extended graph G = (V, E, we, wv) and vertices 

s, tV . Find the shortest path from s to t. 

• Algorithm

◊ Input. The extended graph G = (V, E, we, wv) and

vertices s, tV. 

◊ Output. l(t) is the length of the shortest path from s to t,

and the shortest path (if l(t)<+). 
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◊ Procedure

The algorithm uses the following notations: 

       S is a set of the vertices that found the shortest path 

starting from s; 

       T = V - S; 

        l(v) is the length of the shortest path from s to v; 

        le(v) is the edge that leads to the vertex v on the 

shortest path from s to v; 

        VE = {(v,e) | vV{s} & eEv}{(s,)} is the set of 

pairs of  vertices and incident edges; 

       SE  is a set of vertex-edge excluded from VE; 

       TE = VE - SE; 

       L(v, e) is the label of the vertex-edge pair (v,e)VE 

       P(v, e) is the vertex-edge adjacent before (v,e)VE. 

// Initialization 

Asign to 

S =  ; T = V ; 

VE = {(v,e) | vV{s} & eEv}{(s,)}; 

SE = ; TE = VE; 

L(v,e) = +; (v,e)VE, L(s,) = 0; 

     for (v,e)VE: P(v,e) = ; 

do 

{ 

 Calculate m = min{L(v,e) | (v,e)TE}. 

  if (m < +) 

   { 

  Choose (vmin,emin)TE  such that 

  L (vmin,emin) = m; 

 TE = TE  {(vmin,emin)};  SE = SE  {(vmin,emin)}; 

 if (vminS) 

 { 

 le(vmin) = emin; S = S{vmin}; 

 l(vmin) = L(vmin,emin) ; T = T–{vmin}; 

 } 

       if  (t <> vmin) 

 { 

  for (v,e)TE adjacent after (vmin,emin) 

   {   

   if (vmin==s) 

    L’(v,e) = L(s,)+we(vmin,v); 

  else 

 L’(v,e)=L(vmin,emin) + 

  we(vmin,v)+wv(vmin,emin,e); 

   if (L(v,e) > L’(v,e)) 

  { 

   L(v,e) = L’(v,e); P(v,e) = (vmin,emin); 

  } 

      } 

  } 

      } 

} while (m < + or t <> vmin) 

if (m == +) ‘no path exists from s to t’; 

else  // finding the shortest path 

{ 

       Assign to l(t)=L(t,le(t)); // shortest path length from s 

to t. 

        // Moves from t, in reverse direction, to the preceding 

vertex-edges, we get the shortest path as follows: 

   k=1; (vk,ek) = P(t,le(t)); 

    while ((vk,ek) <> (s,)) 

    { 

          k=k+1; (vk,ek) = P(vk1,ek1); 

   } 

 } 

// Describe the shortest path is 

s  vk  vk1  …  v1  t 

//  End 

● Theorem 2.1. The algorithm that finds the shortest path

in the extended graph is correct and has an algorithmic 

complexity of  O(n3) (n is the number of vertices in the 

graph). 

     Proof [7] [8] 

3. The problem of finding the shortest path on

the multiple-weighted extended graph 

Given extended graph G = (V, E) with a set of vertices 

V and a set of edges E, where edges can be directed or 

undriected. On the graph there are r edge weights wei and 

switch weights wvi, i=1..r. 

The set (V, E, {wei, wvi | i=1..r}) is called the multiple-

weighted extended graph 

Let p be the path from the u to v through the edges ei, i 

= 1, …, h+1, and vertices ui, i = 1, …, h,  as follows 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

Define the length of the path p by edge weight wei and 

switch weights wvi, the symbol li(p), i=1..r, using the 

following formula: 

li(p) = 



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• The problem of finding the shortest path

Given the multiple-weighted extended graph G = (V, E, 

{wei, wvi | i=1..r}). Assume for each weight i, i=1..r, there 

are ki source-destination pairs (si,j, ti,j), j=1..ki.  

The path length from the source node si,j to the 

destination node ti,j is given by the function li, i=1..r, 

j=1..ki. 
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The problem is to find, among the source-destination 

pairs (si,j, ti,j), i=1..r, j=1..ki, the one that has the smallest 

shortest path length. 

• Algorithm

◊ Input. Multiple-weighted extended graph G = (V, E, {wei,

wvi | i=1..r}). The source-destination pairs (si,j, ti,j), i=1..r, 

j=1..ki. 

◊ Output. The source-destination pair (simin,jmin, timin,jmin)

with the smallest shortest path length. lmin is the shortest 

path length from simin,jmin to timin,jmin, and the shortest parth 

(if lmin <+). 

 Procedure 

lmin = + ; 

for (i=1 ; i<=r ; i++) 

for (j=1 ; j <= ki ; j++) 

{ 

S =  ; T = V ; 

VE = {(v,e) | vV{si,j} & eEv}{(si,j,)}; 

SE = ; TE = VE; 

L(v,e) = +; (v,e)VE, L(si,j,) = 0; 

for (v,e)VE: P(v,e) = ; 

do 

{ 

    Calculate m = min{L(v,e) | (v,e)TE}. 

if (m < lmin) 

{ 

Choose (vmin,emin)TE  such that 

 L(vmin,emin) == m; 

TE = TE  {(vmin,emin)}; 

SE = SE  {(vmin,emin)}; 

if (vminS) 

{ 

   le(vmin) = emin; S = S{vmin}; 

   l(vmin) = L(vmin,emin) ; T = T–{vmin}; 

} 

if  (ti,j <> vmin) 

    { 

 for (v,e)TE adjacent after (vmin,emin) 

        {    

  if (vmin==si,j) 

 L’(v,e) = L(s,)+we(vmin,v); 

 else 

 L’(v,e) = L(vmin,emin)+ 

 we(vmin,v)+wv(vmin,emin,e); 

  if (L(v,e) > L’(v,e)) 

  { 

    L(v,e) = L’(v,e); 

 P(v,e) = (vmin,emin); 

} 

        } 

 } 

    }     

} while (m < lmin or ti,j <> vmin) 

if (L(ti,j,le(ti,j))<lmin) and (ti,j = vmin) //edge to (i,j) 

   {    imin = i; jmin = j; lmin = L(ti,j,le(ti,j)); 

 emin= le(ti,j); // edge to ti,j

 for (v,e)VE: Pmin(v,e) = P(v,e); 

     } 

}// end for...for          

// find the shortest path 

 if (lmin < +) 

 { 

     // Moves from timin,jmin, in reverse direction, to the 

preceding vertex-edges, we get the shortest path as 

follows: 

 k=1; (vk,ek) = Pmin(timin,jmin, emin); 

  while ((vk,ek) <> (simin,jmin,)) 

  { 

     k=k+1; (vk,ek) = P(vk1,ek1); 

  } 

// Deduced the shortest path is 

simin,jmin  vk  vk1  …  v1  timin,jmin

 // End 

• Theorem 3.1. The algorithm that finds the smallest

shortest path between the pairs of vertices on the multiple-

weighted extended graph is correct and has an algorithmic 

complexity O(k.n3), where n is the number of vertices and 

k=k1+…+kr. 

Proof.  The correctness of the algorithm derives from 

theorem 2.1. The algorithm that finds the shortest path 

between the source-destination vertices has the complexity 

O(n3), which inferred the algorithm finding the smallest 

shortest path between the k of the destination source pair 

has complexity O(k.n3). 

4. The problem of maximum flow on extended

Linear multicommodity multicost network 

The model of multicommodity multicost network was 

built in the article [12]. 

Given a multicommodity multicost extended G=(V,E, 

ce, ze, cv, zv, {bei, bvi, qi |i=1..r}). Assume for each 

commodity i, i=1..r, with ki source-destination pairs (si,j, 

ti,j), j=1..ki, each of pair assigned a quantity of commodity 

type i, which needs to be transferred from source node si,j 

to destination node ti,j. 

The problem is to find the multicommodity flow such 

that the flow value is maximal. 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1



Chien Tran Quoc, Hung Ho Van 

4 

• Algorithm

◊ Input: Given a multicommodity multicost extended

G=(V,E, ce, ze, cv, zv, {bei, bvi, qi |i=1..r}). Assume for 

each of commodity type i, i=1..r, there are ki source-

destination pairs (si,j, ti,j), j=1..ki,  each pair assigned a 

quantity of commodity type i which needs to be transferred 

from source node si,j to destination node ti,j. 

 is the approximation to be achieved. 

◊ Output: Maximum flow F represents the set of converged

streams at the edges 

F = {xi,j(e) | eE, i=1..r, j=1..ki } 

  Procedure 

// The symbol n=|V|, m=|E|. Calculate  and   

  = 1 )1/(1  ; 

  = (1+)
  


/12 )()1(

1

nm 
; fv=0; 

for eE : le(e)=; xi,j(e)=0 ; 

for vV :  lv(v)= ;  

do 

{ 

Using the algorithm to find the source-destination pair 

(si,j, ti,j), 1ir and 1jki, with the smallest shortest path 

from si,j to ti,j with edge weight le(e), eE, and swicth 

weights at nodes are lv(v), vV.     

Symbol 

imin và jmin are index pairs of the source-destination 

nodes has the shortest path. 

 is the shortest path length;  

p is the shortest path;  

c is the smallest capacity of passing edges and vertice 

of p: 

c=min{min{ce(e).ze(e)|ep},min{cv(v).zv(v)|vp}}; 

// Adjust the flow: 

ep, ximin,jmin(e)= ximin,jmin(e)+c; fv=fv+c ; 

 le(e)= le(e).(1+.c/(ce(e).ze(e))); 

vp, lv(v)= lv(v).(1+.c/(cv(v).zv(v))); 

} while ( <1) 

// Calculating the value resulted from flow F and value of 

flow fv.  

xi,j(e)=xi,j(e) /








1
log1 ,i=1..r,j=1..ki,eE; 

fv = fv / 








1
log1 ; 

// Calculating the flow on the undriected edge 

for (i=1 ; i<=r ;i++) 

for (j=1 ; j<=ki ;j++) 

for eE, e undriected 

   if xi,j(e)>=xi,j(e’)// e’ is the opposite edge e 

      { 

    xi,j(e)=xi,j(e) xi,j(e’) ; 

         xi,j(e’)=0 ; 

 } 

   else 

      { 

         xi,j(e’)=xi,j(e’) xi,j(e) ; 

         xi,j(e)=0 ; 

      } 

//End 

• Theorem 4.1. The algorithm is correct and has an

algorithmic complexity 

O( 2.k.n3.(m+n).ln(m+n)), 

where n is the number of vertices, m is the number of 

edges and k=k1+…+kr. 

Proof. See [12]. 

5. Example

 Showing an extended network diagram in Figure 1. 

Figure 1. The Network has 6 nodes, 6 directed edges and 3 

undirected ones. 

The data given in the following tables 

Table 1. Node flow capability 

Nodes cv 

1 100 

2 100 

3 50 

4 100 

5 50 

6 100 

Table 2. Commodity converting coefficient 

Commodity q 

1 1 

2 2 

3 3 
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Table 3: Pairs of source-target nodes 

Commodity si,j ti,j

1 1 5 

2 2 4 

3 3 6 

Table 4: Edge capability and cost 

Notes: Type 1 is directional, type 0 is undirectional. 

Edge Type ce be1 be2 be3 

(1,2) 1 50 4 5 6 

(1,3) 1 50 4 5 6 

(2,3) 0 70 4 5 6 

(3,2) 0 70 3 4 5 

(2,5) 1 50  5 6 

(3,4) 1 50 4 5 6 

(3,5) 0 70 4 5  

(5,3) 0 70 3  5 

(4,6) 1 50 4 5 6 

(4,5) 0 70 4  6 

(5,4) 0 70 3 5  

(5,6) 1 50 4 5 6 

Table 5. Switch cost 

Node Edge 1  Edge 2 bv1 bv2 bv3

2 (1,2) (2,3) 1 2 3 

2 (1,2) (2,5) 1 2 3 

2 (3,2) (2,5) 1 2 3 

3 (1,3) (3,4) 1 2 3 

3 (1,3) (3,5) 1   

3 (1,3) (3,2) 1   

3 (5,3) (3,2) 1 2 3 

3 (5,3) (3,4) 1 2 3 

3 (2,3) (3,4) 1 2 3 

3 (2,3) (3,5) 1 2 3 

4 (3,4) (4,6) 1 2 3 

4 (3,4) (4,5) 1 2 3 

4 (5,4) (4,6) 1 2 3 

5 (2,5) (5,3) 1   

5 (2,5) (5,4) 1   

5 (2,5) (5,6) 1 2 3 

5 (3,5) (5,4) 1 2 3 

5 (3,5) (5,6) 1 2 3 

5 (4,5) (5,3) 1 2 3 

5 (4,5) (5,6) 1 2 3 

The algorithm is coded in C++ and gives correct results. 

Below is the result of the above example.  

Coeficient of approximation:0.070000 

Total output: 148.908624  

Total cost  : 1877.662162 

Flow for commodity type 1, which needs to be 

transferred from source node 1 to destination node 5  

1   2 8.396823 

1   3 41.500042 

2   3 8.396823 

3   5 49.896862 

Flow for commodity type 2, which needs to be 

transferred from source node 2 to destination node 4  

2   3 0.093091 

3   4 0.093091 

Flow for commodity type 3, which needs to be 

transferred from source node 3 to destination node 6  

3   2 49.375553 

2   5 49.375553 

3   4 49.543118 

4   6 49.543118 

5   6 49.375553 

6. Conclusion

The article develops the algorithm finding the shortest 

path in extended graphs (Section 2), the algorithm finding 

the shortest path on the multiple-weighted extended graph 

(Section 3). Based on the duality theory of linear 

programming, an approximation algorithm with polynomial 

complexity is developed on the base of the algorithm finding 

shortest paths in section 2 and 3. This is also the main result 

of the article. Correctness and algorithm complexity are 

justified and the algorithm is stored in C++ and given an 

exact result. The results of this article are the basis for 

studying the applications of multicomodity multicost flow 

optimization . 
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