
EAI Endorsed Transactions 
on Industrial Networks and Intelligent Systems Research Article 

1 

Applying algorithm finding shortest path in the multiple-

weighted graphs to find maximal flow in extended linear 

multicomodity multicost network 

Chien Tran Quoc 1,  Hung Ho Van 2

1 University of Da Nang, tqchien@dce.udn.vn 
2 Quang Nam University, hovanhung@qnamuni.edu.vn 

Abstract 
The shortest path finding algorithm is used in many problems on graphs and networks. This article will introduce the 

algorithm to find the shortest path between two vertices on the extended graph. Next, the algorithm finds the shortest path 

between the pairs of vertices on the extended graph with multiple weights is developed. Then, the shortest path finding 

algorithms is used to find the maximum flow on the multicommodity multicost extended network is developed in the article 

[12]. 

Key word: Graph; Network; Multicommodity Multicost flow; Optimization; Linear Programming. 

Received on  12 October 2017, accepted on 7 December 2017, published on 21 December 2017
Copyright © 2017 Chien Tran Quoc and  Hung Ho Van et al., licensed to EAI. This is an open access article distributed 

under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited 

use, distribution and reproduction in any medium so long as the original work is properly cited. 

doi: 10.4108/eai.21-12-2017.153499

 ________________________  
2 Corresponding author: Hung Ho Van. Email: hovanhung@qnamuni.edu.vn 

1. Introduction

The shortest path finding algorithm is used in many 

problems on graphs and networks. This article will 

introduce the algorithm to find the shortest path between 

two vertices on the extended graph. Next, the algorithm 

finds the shortest path between the pairs of vertices on the 

extended graph with multiple weights is developed. Then, 

the shortest path finding algorithms is used to find the 

maximum flow on the multicommodity multicost extended 

network is developed in the article  [12]. 

2. The problem of finding the shortest path in

extended graph 

Given extended graph G = (V, E) with a set of vertices 

V and a set of edges E, where edges can be directed or 

undirected. Each edge eE is assigned a weight we(e). For 

each vertex vV, we denote Ev the set of edges incident 

vertex v. For each vertex vV  and each of pair of edges 

(e,e’)EvEv, ee’ is assigned switch weight wv(v,e,e’). 

The sets (V, E, we, wv) are called extended graph. 

Let p be a path from a vertex u to a vertex v through the 

edges ei, i = 1, …, h+1, and vertices ui, i = 1, …, h,  as 

following: 

p = [u, e1, u1, e2, u2, …, eh, uh ,eh+1, v]        (1) 

Define the length of the path p, denoted l(p), as 

following: 

l(p) = 




1

1

)(
h

j

jewe  + 




h

j

jjj eeuwv
1

1),,(    (2) 

• The problem of finding the shortest path

       Given extended graph G = (V, E, we, wv) and vertices 

s, tV . Find the shortest path from s to t. 

• Algorithm

◊ Input. The extended graph G = (V, E, we, wv) and

vertices s, tV. 

◊ Output. l(t) is the length of the shortest path from s to t,

and the shortest path (if l(t)<+). 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1

mailto:tqchien@dce.udn.vn
mailto:hovanhung@qnamuni.edu.vn
http://creativecommons.org/licenses/by/3.0/


Chien Tran Quoc, Hung Ho Van 

2 

◊ Procedure

The algorithm uses the following notations: 

       S is a set of the vertices that found the shortest path 

starting from s; 

       T = V - S; 

        l(v) is the length of the shortest path from s to v; 

        le(v) is the edge that leads to the vertex v on the 

shortest path from s to v; 

        VE = {(v,e) | vV{s} & eEv}{(s,)} is the set of 

pairs of  vertices and incident edges; 

       SE  is a set of vertex-edge excluded from VE; 

       TE = VE - SE; 

       L(v, e) is the label of the vertex-edge pair (v,e)VE 

       P(v, e) is the vertex-edge adjacent before (v,e)VE. 

// Initialization 

Asign to 

S =  ; T = V ; 

VE = {(v,e) | vV{s} & eEv}{(s,)}; 

SE = ; TE = VE; 

L(v,e) = +; (v,e)VE, L(s,) = 0; 

     for (v,e)VE: P(v,e) = ; 

do 

{ 

 Calculate m = min{L(v,e) | (v,e)TE}. 

  if (m < +) 

   { 

  Choose (vmin,emin)TE  such that 

  L (vmin,emin) = m; 

 TE = TE  {(vmin,emin)};  SE = SE  {(vmin,emin)}; 

 if (vminS) 

 { 

 le(vmin) = emin; S = S{vmin}; 

 l(vmin) = L(vmin,emin) ; T = T–{vmin}; 

 } 

       if  (t <> vmin) 

 { 

  for (v,e)TE adjacent after (vmin,emin) 

   {   

   if (vmin==s) 

    L’(v,e) = L(s,)+we(vmin,v); 

  else 

 L’(v,e)=L(vmin,emin) + 

  we(vmin,v)+wv(vmin,emin,e); 

   if (L(v,e) > L’(v,e)) 

  { 

   L(v,e) = L’(v,e); P(v,e) = (vmin,emin); 

  } 

      } 

  } 

      } 

} while (m < + or t <> vmin) 

if (m == +) ‘no path exists from s to t’; 

else  // finding the shortest path 

{ 

       Assign to l(t)=L(t,le(t)); // shortest path length from s 

to t. 

        // Moves from t, in reverse direction, to the preceding 

vertex-edges, we get the shortest path as follows: 

   k=1; (vk,ek) = P(t,le(t)); 

    while ((vk,ek) <> (s,)) 

    { 

          k=k+1; (vk,ek) = P(vk1,ek1); 

   } 

 } 

// Describe the shortest path is 

s  vk  vk1  …  v1  t 

//  End 

● Theorem 2.1. The algorithm that finds the shortest path

in the extended graph is correct and has an algorithmic 

complexity of  O(n3) (n is the number of vertices in the 

graph). 

     Proof [7] [8] 

3. The problem of finding the shortest path on

the multiple-weighted extended graph 

Given extended graph G = (V, E) with a set of vertices 

V and a set of edges E, where edges can be directed or 

undriected. On the graph there are r edge weights wei and 

switch weights wvi, i=1..r. 

The set (V, E, {wei, wvi | i=1..r}) is called the multiple-

weighted extended graph 

Let p be the path from the u to v through the edges ei, i 

= 1, …, h+1, and vertices ui, i = 1, …, h,  as follows 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

Define the length of the path p by edge weight wei and 

switch weights wvi, the symbol li(p), i=1..r, using the 

following formula: 

li(p) = 




1

1

)(
h

j

ji ewe  + 




h

j

jjji eeuwv
1

1),,(

• The problem of finding the shortest path

Given the multiple-weighted extended graph G = (V, E, 

{wei, wvi | i=1..r}). Assume for each weight i, i=1..r, there 

are ki source-destination pairs (si,j, ti,j), j=1..ki.  

The path length from the source node si,j to the 

destination node ti,j is given by the function li, i=1..r, 

j=1..ki. 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1



Applying algorithm finding shortest path in the multiple-weighted graphs to find maximal flow in extended linear multicomodity 
multicost network 

3 

The problem is to find, among the source-destination 

pairs (si,j, ti,j), i=1..r, j=1..ki, the one that has the smallest 

shortest path length. 

• Algorithm

◊ Input. Multiple-weighted extended graph G = (V, E, {wei,

wvi | i=1..r}). The source-destination pairs (si,j, ti,j), i=1..r, 

j=1..ki. 

◊ Output. The source-destination pair (simin,jmin, timin,jmin)

with the smallest shortest path length. lmin is the shortest 

path length from simin,jmin to timin,jmin, and the shortest parth 

(if lmin <+). 

 Procedure 

lmin = + ; 

for (i=1 ; i<=r ; i++) 

for (j=1 ; j <= ki ; j++) 

{ 

S =  ; T = V ; 

VE = {(v,e) | vV{si,j} & eEv}{(si,j,)}; 

SE = ; TE = VE; 

L(v,e) = +; (v,e)VE, L(si,j,) = 0; 

for (v,e)VE: P(v,e) = ; 

do 

{ 

    Calculate m = min{L(v,e) | (v,e)TE}. 

if (m < lmin) 

{ 

Choose (vmin,emin)TE  such that 

 L(vmin,emin) == m; 

TE = TE  {(vmin,emin)}; 

SE = SE  {(vmin,emin)}; 

if (vminS) 

{ 

   le(vmin) = emin; S = S{vmin}; 

   l(vmin) = L(vmin,emin) ; T = T–{vmin}; 

} 

if  (ti,j <> vmin) 

    { 

 for (v,e)TE adjacent after (vmin,emin) 

        {    

  if (vmin==si,j) 

 L’(v,e) = L(s,)+we(vmin,v); 

 else 

 L’(v,e) = L(vmin,emin)+ 

 we(vmin,v)+wv(vmin,emin,e); 

  if (L(v,e) > L’(v,e)) 

  { 

    L(v,e) = L’(v,e); 

 P(v,e) = (vmin,emin); 

} 

        } 

 } 

    }     

} while (m < lmin or ti,j <> vmin) 

if (L(ti,j,le(ti,j))<lmin) and (ti,j = vmin) //edge to (i,j) 

   {    imin = i; jmin = j; lmin = L(ti,j,le(ti,j)); 

 emin= le(ti,j); // edge to ti,j

 for (v,e)VE: Pmin(v,e) = P(v,e); 

     } 

}// end for...for          

// find the shortest path 

 if (lmin < +) 

 { 

     // Moves from timin,jmin, in reverse direction, to the 

preceding vertex-edges, we get the shortest path as 

follows: 

 k=1; (vk,ek) = Pmin(timin,jmin, emin); 

  while ((vk,ek) <> (simin,jmin,)) 

  { 

     k=k+1; (vk,ek) = P(vk1,ek1); 

  } 

// Deduced the shortest path is 

simin,jmin  vk  vk1  …  v1  timin,jmin

 // End 

• Theorem 3.1. The algorithm that finds the smallest

shortest path between the pairs of vertices on the multiple-

weighted extended graph is correct and has an algorithmic 

complexity O(k.n3), where n is the number of vertices and 

k=k1+…+kr. 

Proof.  The correctness of the algorithm derives from 

theorem 2.1. The algorithm that finds the shortest path 

between the source-destination vertices has the complexity 

O(n3), which inferred the algorithm finding the smallest 

shortest path between the k of the destination source pair 

has complexity O(k.n3). 

4. The problem of maximum flow on extended

Linear multicommodity multicost network 

The model of multicommodity multicost network was 

built in the article [12]. 

Given a multicommodity multicost extended G=(V,E, 

ce, ze, cv, zv, {bei, bvi, qi |i=1..r}). Assume for each 

commodity i, i=1..r, with ki source-destination pairs (si,j, 

ti,j), j=1..ki, each of pair assigned a quantity of commodity 

type i, which needs to be transferred from source node si,j 

to destination node ti,j. 

The problem is to find the multicommodity flow such 

that the flow value is maximal. 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1



Chien Tran Quoc, Hung Ho Van 

4 

• Algorithm

◊ Input: Given a multicommodity multicost extended

G=(V,E, ce, ze, cv, zv, {bei, bvi, qi |i=1..r}). Assume for 

each of commodity type i, i=1..r, there are ki source-

destination pairs (si,j, ti,j), j=1..ki,  each pair assigned a 

quantity of commodity type i which needs to be transferred 

from source node si,j to destination node ti,j. 

 is the approximation to be achieved. 

◊ Output: Maximum flow F represents the set of converged

streams at the edges 

F = {xi,j(e) | eE, i=1..r, j=1..ki } 

  Procedure 

// The symbol n=|V|, m=|E|. Calculate  and   

  = 1 )1/(1  ; 

  = (1+)
  


/12 )()1(

1

nm 
; fv=0; 

for eE : le(e)=; xi,j(e)=0 ; 

for vV :  lv(v)= ;  

do 

{ 

Using the algorithm to find the source-destination pair 

(si,j, ti,j), 1ir and 1jki, with the smallest shortest path 

from si,j to ti,j with edge weight le(e), eE, and swicth 

weights at nodes are lv(v), vV.     

Symbol 

imin và jmin are index pairs of the source-destination 

nodes has the shortest path. 

 is the shortest path length;  

p is the shortest path;  

c is the smallest capacity of passing edges and vertice 

of p: 

c=min{min{ce(e).ze(e)|ep},min{cv(v).zv(v)|vp}}; 

// Adjust the flow: 

ep, ximin,jmin(e)= ximin,jmin(e)+c; fv=fv+c ; 

 le(e)= le(e).(1+.c/(ce(e).ze(e))); 

vp, lv(v)= lv(v).(1+.c/(cv(v).zv(v))); 

} while ( <1) 

// Calculating the value resulted from flow F and value of 

flow fv.  

xi,j(e)=xi,j(e) /








1
log1 ,i=1..r,j=1..ki,eE; 

fv = fv / 








1
log1 ; 

// Calculating the flow on the undriected edge 

for (i=1 ; i<=r ;i++) 

for (j=1 ; j<=ki ;j++) 

for eE, e undriected 

   if xi,j(e)>=xi,j(e’)// e’ is the opposite edge e 

      { 

    xi,j(e)=xi,j(e) xi,j(e’) ; 

         xi,j(e’)=0 ; 

 } 

   else 

      { 

         xi,j(e’)=xi,j(e’) xi,j(e) ; 

         xi,j(e)=0 ; 

      } 

//End 

• Theorem 4.1. The algorithm is correct and has an

algorithmic complexity 

O( 2.k.n3.(m+n).ln(m+n)), 

where n is the number of vertices, m is the number of 

edges and k=k1+…+kr. 

Proof. See [12]. 

5. Example

 Showing an extended network diagram in Figure 1. 

Figure 1. The Network has 6 nodes, 6 directed edges and 3 

undirected ones. 

The data given in the following tables 

Table 1. Node flow capability 

Nodes cv 

1 100 

2 100 

3 50 

4 100 

5 50 

6 100 

Table 2. Commodity converting coefficient 

Commodity q 

1 1 

2 2 

3 3 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1



Applying algorithm finding shortest path in the multiple-weighted graphs to find maximal flow in extended linear multicomodity 
multicost network 

5 

Table 3: Pairs of source-target nodes 

Commodity si,j ti,j

1 1 5 

2 2 4 

3 3 6 

Table 4: Edge capability and cost 

Notes: Type 1 is directional, type 0 is undirectional. 

Edge Type ce be1 be2 be3 

(1,2) 1 50 4 5 6 

(1,3) 1 50 4 5 6 

(2,3) 0 70 4 5 6 

(3,2) 0 70 3 4 5 

(2,5) 1 50  5 6 

(3,4) 1 50 4 5 6 

(3,5) 0 70 4 5  

(5,3) 0 70 3  5 

(4,6) 1 50 4 5 6 

(4,5) 0 70 4  6 

(5,4) 0 70 3 5  

(5,6) 1 50 4 5 6 

Table 5. Switch cost 

Node Edge 1  Edge 2 bv1 bv2 bv3

2 (1,2) (2,3) 1 2 3 

2 (1,2) (2,5) 1 2 3 

2 (3,2) (2,5) 1 2 3 

3 (1,3) (3,4) 1 2 3 

3 (1,3) (3,5) 1   

3 (1,3) (3,2) 1   

3 (5,3) (3,2) 1 2 3 

3 (5,3) (3,4) 1 2 3 

3 (2,3) (3,4) 1 2 3 

3 (2,3) (3,5) 1 2 3 

4 (3,4) (4,6) 1 2 3 

4 (3,4) (4,5) 1 2 3 

4 (5,4) (4,6) 1 2 3 

5 (2,5) (5,3) 1   

5 (2,5) (5,4) 1   

5 (2,5) (5,6) 1 2 3 

5 (3,5) (5,4) 1 2 3 

5 (3,5) (5,6) 1 2 3 

5 (4,5) (5,3) 1 2 3 

5 (4,5) (5,6) 1 2 3 

The algorithm is coded in C++ and gives correct results. 

Below is the result of the above example.  

Coeficient of approximation:0.070000 

Total output: 148.908624  

Total cost  : 1877.662162 

Flow for commodity type 1, which needs to be 

transferred from source node 1 to destination node 5  

1   2 8.396823 

1   3 41.500042 

2   3 8.396823 

3   5 49.896862 

Flow for commodity type 2, which needs to be 

transferred from source node 2 to destination node 4  

2   3 0.093091 

3   4 0.093091 

Flow for commodity type 3, which needs to be 

transferred from source node 3 to destination node 6  

3   2 49.375553 

2   5 49.375553 

3   4 49.543118 

4   6 49.543118 

5   6 49.375553 

6. Conclusion

The article develops the algorithm finding the shortest 

path in extended graphs (Section 2), the algorithm finding 

the shortest path on the multiple-weighted extended graph 

(Section 3). Based on the duality theory of linear 

programming, an approximation algorithm with polynomial 

complexity is developed on the base of the algorithm finding 

shortest paths in section 2 and 3. This is also the main result 

of the article. Correctness and algorithm complexity are 

justified and the algorithm is stored in C++ and given an 

exact result. The results of this article are the basis for 

studying the applications of multicomodity multicost flow 

optimization . 

7. References

[1]  Naveen Garg, Jochen Könemann: Faster and Simpler 

Algorithms for Multicommodity Flow and Other 

Fractional Packing Problems, SIAM J. Comput, 

Canada, 37 (2), 2007, pp. 630-652.  

[2] Xiaolong Ma, Jie Zhou: An Extended Shortest Path 

Problem with Switch Between Arcs, Proceedings of 

the International Conference on Engineers and 

Computer Scientists 2008 Vol IIMECS 2008, 19-21 

March, 2008, Hong Kong.  

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1



Chien Tran Quoc, Hung Ho Van 

6 

[3] Tran Quoc Chien: Linear multitransport network 

calculation, ministerial scientific research, code 

B2010DN-03-52.  

[4]  Tran Quoc Chien, Tran Thi My Dung: Applying of 

algorithm finding the shortest path for maximum 

multicommodity flow. Journal of Science & 

Technology, University of Danang, 3 (44) 2011.  

[5]  Tran Quoc Chien: Applying of algorithm finding the 

shortest path for maximum simultaneous 

multicommodity flow. Journal of Science & 

Technology, University of Danang, 4 (53) 2012.   

[6]   Tran Quoc Chien: Applying of algorithm finding the 

shortest path for minimum cost maximum 

simultaneous multicommodity flow. Journal of 

Science & Technology, University of Danang, 5 (54) 

2012. 

[7]  Tran Quoc Chien: The algorithm findsing the shortest 

path in the general graph, Journal of Science & 

Technology, University of Da Nang, 12 (61) / 2012, 

16-21.  

[8]  Tran Quoc Chien, Nguyen Mau Tue, Tran Ngoc Viet: 

The algorithm finding the shortest path on the 

extension graph. Proceeding of the 6th National 

Conference on Fundamental and Applied Information 

Technology (FAIR), Proceedings of the Sixth 

National Conference on Scientific Research and 

Applying, Hue, 20-21 June 2013. Natural Science and 

Technology Publishing House. Hanoi 2013. p.522-

527. 

[9]  Tran Quoc Chien: Applying of algorithm finding the 

fastest path for maximum multi-transport linearity of 

minimum cost on extension transportation networks, 

Journal of Science & Technology, University of Da 

Nang . 10 (71) 2013, 85-91.  

[10] Tran Ngoc Viet, Tran Quoc Chien, Nguyen Mau Tue: 

Optimized Linear Multiplexing Algorithm on 

Extension Transportation Networks, Journal of 

Science & Technology, University of Da Nang. 3 

(76) 2014, 121-124.  

[11] Tran Ngoc Viet, Tran Quoc Chien, Nguyen Mau Tue: 

The calculation of linear multitransport on 

transportation network. Proceedings of the 7th 

National Conference on Fundamental and Applied 

Information Technology Research (FAIR'7), ISBN: 

978-604-913-300-8, Proceedings of the 7th National 

Scientific Conference on "Fundamental and Applied 

Research IT ", Thai Nguyen, 19-20 / 6/2014. NXB 

Natural Science and Technology. Hanoi 2014. p.31-

39.  

[12]  Tran Quoc Chien, Ho Van Hung: The multicommodity 

multi flow expansion network and the algorithm used 

to find the maximum flow FAIR-2017, August, 2017. 

EAI Endorsed Transactions on

Industrial  Networks  and Intelligent Systems 
02 2017 - 12 2017 | Volume 4 | Issue 11 | e1


