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Abstract

Well defined concurrent replicated data structure is very important to design collaborative editing 
system, particularly, certain properties like out-of-order execution of concurrent operations and data 
convergence. In this paper, we introduce novel linear data structure based on unique identifier 
scheme required for indexed communication. These identifiers are real numbers holding specific 
pattern of precision. Based on the uniqueness and the total order of these identifiers, here, we 
present two concurrency control techniques to achieve high degree of concurrency according to 
strong and lazy happened-before relations. Our data structure preserves data convergence, yields 
better performance and avoids overheads as compared to existing approaches.
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and then are propagated to all other sites so that 
all copies of the document could be updated. 
Due to replication and arbitrary exchange of 
operations, convergence maintenance in a 
decentralized manner is a challenging problem. 
Traditional concurrency control techniques, such as 
(pessimistic/optimistic) locking and serialization, 
turned out to be ine ective because they may 
ensure consistency at the expense of responsiveness 
and loss of operations [2, 6, 10]. Another 
technique, called Operational Transformation 
(OT) is proposed in [2]. Generally, it consists of 
application-dependent transformation algorithm 
which modifies the parameters (e.g. position 
numbers) of operations to execute them are 
propagated to all other sites so that all copies of the document 
could be updated. Due to replication and arbitrary exchange 
of operations, convergence maintenance in a decentralized 
manner is a challenging problem. Traditional concurrency 
control techniques, such as (pessimistic/optimistic) locking 
and serialization,

1. Introduction

In collaborative editing, a group of individuals may edit 
shared document simultaneously. Collaborative editing 
tools are designed to provide environment in which 
authorized users edit a shared document. A user or 
participant may know others working on the shared 
document, and watch the changes/modifications (in 
real time) performed by other users. Using collaborative 
editing tools, multiple users are able to make changes 
at the same time. A group of users could be in the same 
location or dispersed geographically [1, 2, 8, 9, 11]. Such tools 
prefer to manipulate shared objects that own linear structure 
in which each element (e.g. character, line, object or 
paragraph) is indexed by an identifier (say position number). 
Each user is supposed to have copy (local) of the shared 
document so that the availability of data could be ensured. In 
general, the collaboration is supposed to be performed as 
follows: each user’s operations (e.g. inserting a new element or 
deleting existing element at certain position) are locally 
executed in nonblocking manner
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turned out to be ineffective because they may ensure 
consistency at the expense of responsiveness and loss of 
operations [2, 6, 10]. Another technique, called Operational 
Transformation (OT) is proposed in [2]. Generally, it consists 
of application-dependent transformation algorithm which 
modifies the parameters (e.g. position numbers) of operations 
to execute them regardless of reception order. Identifying 
elements by position numbers is not suÿcient to ensure data 
convergence using OT approach. It is also claimed that all 
previously proposed transformations fail to achieve such 
convergence [4, 5].

1.1. Related work
A comparison of several approaches to the problem of 
collaboratively editing a shared text is presented by 
Ignat et al. [3]. Operational transformation (OT) [2, 9] 
considers collaborative editing based on non-commutative 
operations. To this end, OT transforms the arguments of 
remote operations to take into account the e
ects of concurrent executions. To execute concurrent 
operations in either order, OT requires two correctness 
conditions which remain diÿcult to satisfy. Imine et al. [4, 5] 
prove that all previously proposed transformations fail to 
satisfy these conditions. More recently, Weiss et al. [12, 13] 
and Preguiça et al. [7] proposed a new data type, called CRDT 
(Commutative Replicated Data Types), for collaborative 
editing. Weiss et al. proposed the Logoot CRDT which uses a 
sparse n-ary tree rather than Treedoc’s dense binary tree [7]. 
In Logoot, a position identifier is a list of (long) unique 
identifiers, and Logoot does not flatten. Also, Logoot has a 
high overhead compared to Treedoc. The approaches 
presented in [7, 12, 13] have some inconveniences:

Updates

Character, Identifier

A B

Character, Identifier

Character, Identifier Character, Identifier

Figure 1. Identifier exchange scenario

(Figure 1) in which two users A and B insert character

concurrently and interchange identifiers.

Let after exchange of points (updates), two identifiers

(by Weiss et al. approach [12, 13]) are

p = 〈0, sA, c〉

and

q = 〈0, sB, c〉

(with sA and sB are identifiers of sites for users A and B

respectively, such that sA < sB).

Now, suppose that, user B inserts only one new

character between characters having identifiers p and

q, then new identifier is 〈1, sB, c〉. This new identifier

takes the place as given below which explores an

p = 〈0, s, c〉 < 〈1, s, c〉 < 〈0, s, c〉 = q

ambiguous order alteration problem in the automatic

storage buffer of identifiers.

Similarly, constructing an example for Preguiça et al.

approach [7], let user A inserts character ’c’ and user B

inserts character ’d’ and user C inserts character ’e’ in a

shared document.

One of the possible choices of constructing tree is:

node e is the right child of node c and node d is the

left child of e. Now let users start concurrent operations

between character ’c’ and character ’d’ then new nodes

will be mini-nodes as siblings.

Let dismbiguator of user B be

(counter, siteID) = (c1, 2)

2

1. The data structure may grow indefinitely because

the deletion operation has no physical effect on

the state. Indeed, they mark deleted elements as

tombstones in order to converge all replicas.

2. The position identifiers are very long; sometimes

the size of identifier can exceed the size of

document.

Unlike [7, 12, 13], we use very dense identifiers 
(real numbers) to uniquely identify all elements 
inside the shared document and, instead of tree data 
structure, we describe the shared document by a 
simple sequence data structure. Moreover, we remove 
elements without using tombstones. Another recent 
work [14] uses rational numbers to uniquely identify 
the elements of the shared document but the size of the 
document increases during collaboration sessions as the 
removed elements are only hidden (they use a form of 
tombstones).

Furthermore, approaches in [7, 12, 13] are to be 
revised because we observe that proposed algorithms 
for generating unique position identifiers do not sup-

port some critical situations, that leads to cause prob-

lems like replica divergence and order preservation 
over identifiers. As an example, we analyse these two 
approaches by proposing identifiers exchange scenario
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at the time of insertion of character ’d’. Let he/she

intends to insert another character ’f’ between c and d,

there must be increment in counter, let it be (c2, 2). To

make insertion possible, it must holds

(c2, 2) < (c1, 2)

but

c2 > c1 (normal increment in counter).

It means insertion is not possible or problem of order

alteration occurred. Further:

POSID of d = 10(0, c1, 2)

POSID of f = 10(0, c2, 2)

POSID of c < POSID of d (assumed.)

Thus, after exchange of identifiers, we observe that, new

identifier computed for one of the users does not lie

within the previous two identifiers or this new identifier

is not comparable by definition (propose by authors)

of comparison for two identifiers, consequently it may

cause divergence. Treedoc approach is a modified

form of approach proposed by Weiss et al. [12, 13]

and complicated to implement, for example, to find

order, one has to make walk of the tree. Technique

to reduce overheads consists in removing information

about identifiers that may cause serious problems in

retrieving these identifiers from storage buffer. Our

approach is simple and avoid these drawbacks.

1.2. Contributions

This paper presents a novel concurrent replicated

data structure for collaborative editors, in which, each

element is identified by a unique real number. Based

on a specific pattern of precision, our unique identifier

scheme guarantees order preservation (compatible with

the order of the elements) and achieves easily data

convergence. Moreover, to each user (or peer), we

assign a unique real value as an identifier, also

generated under specific precision. A shared document

is supposed to be mapped on an interval I = [a, b] with

0 ≤ a < b for a, b ∈ R. For the operations performed by

users in the network, corresponding unique identifiers

are computed over the interval I such that these

identifiers are assigned to elements (e.g. characters or

lines) of the shared document or object. Based on

the uniqueness and the total order of our identifiers,

we present two concurrency control techniques to

achieve high degree of concurrency according to

strong and lazy happened-before relations. The first

technique relies on time-stamp vectors and it allows

the concurrent operations to be executed in either

order. This technique is well-suited for collaborative

editors where the number of users is fixed. The second

technique relies on lazy happened-before relation and

it enables us to extend the concurrency even for

operations generated by the same user. Using this

technique, a collaborative editor can be deployed easily

on P2P networks as it can supports dynamic groups

where users can leave and join at any time. We validate

our data structure with a performance evaluation which

shows that our unique identifier scheme is appropriate

for linear data structure.

The current manuscript is organized as follows. Section

2 describes the ingredients of our concurrent replicated

data structure. Section 3 presents our technique to

generate unique identifiers and a view of editing

and modifying a document. In Section 4 we suggest

two concurrency control techniques in order to use

our concurrent data structure. Section 5 gives a

performance evaluation of our data structure. Section

1.1 compares with previous work and conclusion is

described in Section 6.

2. Introducing New Concurrent Replicated Data
Structure

This section consists in introducing new data structure

for concurrent editing. It is known that collaborative

editors manipulate shared objects that own a linear

structure [2, 9, 11]. This structure can be modeled

as a sequence of elements from any data type. For

instance, an element may be regarded as a character,

a paragraph, a page, an XML node, etc. In [11], it has

been shown that this linear structure can be easily

extended to a range of multimedia documents, such

as MicroSoft Word and PowerPoint documents. We

consider a shared, replicated document as a sequence

of elements and mapped the document to an interval of
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real numbers. An element is simply identified by a real
number in the interval.

2.1. UniquePositionWeights

We consider a shared document as an ordered set of

elements indexed by unique position identifiers that are

real numbers. We call these identifiers position weights
to distinguish them from the traditional position

numbers. The position weights have the following

properties:

• Each element in the document (can be thought

of as separate storage buffer) has a weight in

the corresponding interval used to generate new

weights.

• Two elements in the document have two different

weights: we can always order two different

elements.

• The weight of an element is volatile: any position

weight can be removed and inserted again at any

time without allowing weight redundancy inside

the document.

• Order of position weights is compatible with the

order of elements: the set of position weights is

totally ordered and consistent with the position

numbers of the shared document.

For instance, the position wieghts are denoted with

ω, ω′ , ω1, ω2, . . . etc. Moreover, position weights or

identfiers hold a strict order relation “<”. To insert

a new element between two existing holding position

weights ω1 and ω2, such that ω1 < ω2, requires only

to compute a new position weight ωnew in such a way

that ω1 < ωnew < ω2. Since the position weights are

real numbers that would require theoretically infinite

precision. Therefore, their machine representation are

carefully used in order to preserve the property (i.e.,
avoiding weight redundancy). In Section 3, we will

present method to compute position weights based on

the assumptions described above.

2.2. Shared Data

Shared data structure could be considered as a sequence

of pairs (element, weight) where the elements are

ordered by their corresponding weights. Users are able

to modify replicas of the data structure by performing

any of the following editing operations:

(i) Insert(element, ωnew), inserts new element in the

document by associating new weight.

(ii) Remove(ωexist) removes an element with an existing

weight (ωexist) such that this weight is to be recreated

next time.

Multiple users are able to edit shared document

concurrently and the operations may replayed on each

site as soon as received. Unique position weights

guarantee the convergence even if the operations

performed at different sites in different orders.

3. Practical Implementation
This section describes method to create unique

identifiers. These identifiers are real numbers, follow

a specific pattern and have low storage overhead as

compared to recent available approaches (best to our

knowledge) [7, 12, 13].

Definition 1. We define precision as the number of digits

following the decimal point of a value (rounded to

decimal places/to significant digits), e.g., the precision

of the values 12.34600 and 12.345 is 5 and 3

respectively.

3.1. Developingthe Basic Rules

In this section we explain basic assumptions made to

develop the method.

Mapping a Document to an Interval. To identify each

element by a unique position weight, we associate

the shared document to an interval I in such a way

that 0 and 1 correspond to the begin and the end

of the document, respectively. For simplicity we take

the initial real interval as I = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}.
Note that the real interval I can be taken up to desired

positive length.

Rounding a Value. To create unique identifiers, as a first

step, we introduce Function 1 that rounds a given value

according to definition 1.

Function 1 takes two parameters, for example,
′′Round a value(x, pr )′′ rounds the decimal part of an

expression ′x′ to the prth decimal place and ′′round(x)′′
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Function 1:(Round a value)

Function: Round a value
Input: Value to be rounded, Desired precision
Output: Rounded Value

1 begin
2 Let dp := Desired precision;
3 x := Value to be rounded;
4 prec←− 10dp;

5 y :=
round(x ∗ prec)

prec
;

6 Rounded value←− y;
7 return Rounded value;
8 end

(see line 5, Function 1) rounds an expression ′x′ to the

nearest integer.

For instance, round(−2.4) returns −2 and
′′Round a value(15.0766647, 4)′′ returns 15.0767

by performing computation over Maple 12. We denote
′′Round a value(x, pr )′′ by

∣∣∣∣x∣∣∣∣
pr

, i.e., value x rounded

over precision pr by the Function 1.

Let x ∈ I be a real number. We say that x is correctly

rounded to d-decimal number, which is denoted by x(d),

if the rounded error is |ε| ≤ 1
2 × 10−d . When the rounded

error |ε| = 1
2 × 10−d .

Precision Pattern. To create unique identifiers, we

introduce precision control technique keeping the

following assumptions.

• A1 : We denote default precision by ′′pd ′′ (that

commonly taken by programming language)

over which we perform computations.

For example, in Maple, the precision can be fixed

by the global variable “Digits” and floating

point arithmetic is done in decimal with

rounding, so one can set pd = Digits.

• A2 : We denote rounding precision taken for

small positive real numbers ε by ′′pε ′′ , and

value for ε is taken as user/site’s identifier.

• A3 : We denote final rounding precision taken to

compute unique identifier by ′′pr
′′ and is

kept less than both of pε and pd . Moreover

if we round user/site identifier over ′′pr ′′ ,

the resulting value is negligible and has no

significant effect on position weights.

By summarizing above assumptions, we get the

following inequality

pr < pε < pd (1)

and we keep inequality 1 as the basic principle to

create unique identifiers and to perform computations

accordingly.

3.2. CreatingPositionWeights for Insertion

Now, suppose that the default precision and the round-

ing precision are fixed according to the assumptions.

To insert an element between two elements p and q, it

requires only information about weights of p and q. It

is known that the classical midpoint formula computes

midpoint of two real values ’say’ a and b as (a + b)/2. To

compute each time different and finite many midpoints

for the same interval, it requires certain modifications.

As many users compute all possible midpoints over

interval I , we are interested in, that:

• Weights computed for a user’s modifications

must be different from weights computed for all

operations performed by other users;

• Set of weights computed computed for operations

related to each user must be an ordered set.

For a certain rounding precision (say with a fixed

d decimal places) and a user identifier δ created

by keeping the required conditions, we modify the

classical midpoint formula such that ∀ x, y ∈ I with x <

y, as given below

f (x, y) = x + (
y − x

2
)(d) − δ (2)

where x = x(d), y = y(d) (x and y are rounded to d-

decimal places). Notice that the weight computed in

this way will not be equidistant from the weights x and

y due to the subtraction of δ which is a small real value.

Function 2 gives how to compute new position weight

for a given user (i.e., with user identifier δ).

Example 1. Consider an empty document with corre-

sponding interval I = [ 0, 1 ] and rounding precision
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Function 2: middle( How to compute new point
between two weights)

Function: middle
Input: ω1, ω2 ∈ I (with ω1 < ω2), user identifier δ.
Output: ω ∈ I .
Requires: ω1 < ω < ω2

1 begin
2 a←− ω(d)

1

3 b←− ω(d)
2

4 ∇ ←− a + (
b − a

2
)(d)

5 ω←− ∇ − δ
6 end
7 return ω

with d = 1. Let δ1 = 0.004 and δ2 = 0.00001 be two user

identifiers. According to Function 2, both users δ1 and

δ2 obtain the same value∇ = 0.5 in Line 4. But, as δ1 and

δ2 are different and δ(d)
1 = δ

(d)
2 = 0, each user computes

a different ω in Line 5. This line ensures always to

compute unique and different position weights as it

subtracts δ which is different from one user to another.

Indeed, user δ1 (resp. δ2) obtains new weight ω = 0.496

(resp. ω = 0.49999) between ω1 = 0 and ω2 = 1. Both

new weights are different and not equidistant from

ω1 = 0 and ω2 = 1.

3.3. Editing a Documentand Behaviorof Identifier

The main idea of our approach is to provide a

non-conflicting execution between concurrent editing

operations. We ensure eventual consistency (i.e., the

final state of replicas is identical at all sites), provided

that every site executes every operation in an order

consistent with some happened-before order (See

Section 4 which presents two forms of happened-

before order). When the data type is a sequence

of elements (such as a text document), the out-of-

order execution between insertions in the sequence

can be obtained with a unique and totally ordered

identifiers for each element. Our approach is based on

associating a position weight to each element. These

position weights are unique and totally ordered. Figure

2 presents an overview of, how a single user make

insertion, corresponding to unique identifiers, starting

with an empty document. First position weight is

A
L
G
O
R
I
T
H
M

S
I
N
G
L
E

U
S
E
R

P1

EMPTY DOCUMENT

   p3     p1     p2

 p4    p3     p5      p1      p6     p2      p7

p    p4     p    p3    p     p5    p     p1    p    p6   p    p2  p   p7   p

[B,...,p,p,p,...p1,...,p,p,p,...E]

updating

first point

Figure 2. Situation for single user.

presented by p1, then all other weights are presented

by p′s. Note that, new position weights could be on the

left or right side of the existing weight. In Figure 2,

’updating’ denotes updates of the document after each

modification (insertion).

Example 2. Suppose that multiple users are participating

in collaborative edition, we explain in this example,

how the corresponding identifiers are generated. Such

situation is described in figure 3. In the model that we

proposed, a user can modify the document by inserting

or removing elements (e.g., lines or paragraphs). To

perform this task, corresponding weights are created

and removed. Millions of weights can be created with

chosen value of user identifier (i.e., δ) and by selecting

appropriate rounding precision. These weights can

be created locally as well as based on the remote

identifiers of the elements during the exchange of

elements between the users in the network. To compute

new weights, same criteria has to follow for all users

in the network. Suppose that a shared document

marked with ’Beg’ and ’End’ mapped to an interval

[0, 1] and ’updating’ action updates modification to all

participants. Suppose d = 1 for the rounding precision.

Suppose that there are three users U1 (assigned a user

identifier 0.007), U2 (assigned a user identifier 0.004)

and U3 (assigned a user identifier 0.001) start editing

the shared document at three different sites (site 1, site

2 and site 3) as shown in the Figure 3. Let userU3 inserts

first character ’A’ in the empty document then the first
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EndBeg

0.499 10

A

EndBeg A B

10 0.499 0.799

X EndBBeg Y A

0.293 10.7990 0.296 0.499

X EndBTBeg Y S A

0.293 10.7990.6960 0.296 0.393 0.499

X EndBTBeg Y S

0.293 10.7990.6960 0.296 0.393

charactersidentifiers

U3

site 1

U1

site 3

U3

site 2

U2

user updating

Figure 3. Multipleusers are in action

associated weight 0.499 is computed. Again, user U3

inserts a second character ’B’ between character ’A’

and ’End’, this time the corresponding weight between

0.499 and 1 is computed as 0.799. Now, document

is updated and at each site sequence of characters

’AB’ is appeared. Let user U1 and user U2 intend to

insert two characters ’X’ and ’Y’ between ’Beg’ and ’A’

concurrently. Notice that weights for both characters

are to be computed between 0 and 0.499 and they

are 0.293 and 0.296 respectively. Again, updates are

performed and each user have sequence of characters

’XYAB’. Now, user U1 inserts character ’S’ between

’Y’ and ’A’, weight for ’S’, 0.393 is computed using

neighboring weights of characters ’Y’ and ’A’. Similar

insertion of character ’T’ between characters ’A’ and

’B’ by user U2 is attempted. Weight for ’T’, 0.696 is

computed using neighboring weights of characters ’A’

and ’B’. At the same time user U3 removes character ’A’.

Updates are executed and each site has a sequence of

characters ’XYSTB’. Notice that removal of ’A’ does not

affect the insertion by other users because of each site

has its own replicas.

4. Two Concurrency Control Techniques
A stable state in a collaborative editor is achieved when

all generated editing operations have been performed

at all sites. Let o1 and o2 be two editing operations.

A collaborative editor is consistent iff it satisfies the

following properties:

• Causality preservation: if o1 happens before o2 then

o1 is executed before o2 at all sites.

• Convergence: when all sites have performed the

same set of operations, the copies of the shared

document are identical.

To satisfy the above consistency criteria, we present

in this section two concurrency control techniques

in order to manipulate our concurrent replicated

data structure. Each technique implements strong/lazy

happened-before relation and ensures the convergence

property.
4.1. ConcurrencyControlwithStrong Causality
Relation
Let o1 and o2 be operations generated at sites i and

j, respectively. We say that o2 causally depends on o1,

denoted o1 → o2, iff:

• i = j and o1 was generated before o2; or,

• i , j and the execution of o1 at site j has happened

before the generation of o2.

Operations o1 and o2 are said to be concurrent,
denoted by o1 ‖ o2, iff neither o1 → o2 nor o2 → o1.

As a long established convention in collaborative

editors [2, 9], the time stamp vectors are used to

determine the causality and concurrency relations

between operations. A time-stamp vector is associated

with each site and each generated operation. Every

time-stamp is a vector of integers with a number of

entries equal to the number of sites. For a site j, each

entry Vj [i] returns the number of operations generated

at site i that have been already executed on site j. When

an operation o is generated at site i, a copy Vo of Vi
is associated with o before its broadcast to other sites.

Vi[i] is then incremented by 1. Once o is received at

site j, if the local vector Vj “dominates”1 Vo, then o is

1We say that V1 dominates V2 iff ∀ i, V1[i] ≥ V2[i].
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ready to be executed on site j. In this case, Vj [i] will be

incremented by 1 after the execution of o. Otherwise,

the o’s execution is delayed.

Let Vo1
and Vo2

be time-stamp vectors of o1 and

o2, respectively. Using these time-stamp vectors, the

causality and concurrency relations are defined as

follows:

• o1 → o2 iff Vo1
[i] < Vo2

[j];

• o1 ‖ o2 iff Vo1
[i] ≥ Vo2

[j] and Vo2
[j] ≥ Vo1

[j].

Given our concurrent data structure to describe a

shared document, all concurrent editing operations

(Insert and Remove operations) are executed in any

order provided that the above causality relation is

respected. Unfortunately, the time-stamp vectors do not

enable dynamic groups (i.e., users may join or leave the

group at any time) since each time-stamp is a vector

of integers with the number of entries is equal to the

number of users.

4.2. ConcurrencyControlwithLazy Causality
Relation

The time-stamp vectors implement a false causality

relation. Indeed, some editing operations performed

by a user could be permuted without effect on the

state of the document. For instance, two successive

insertions can be executed in any order because

their position weights are unique totally ordered. As

no two different users produce the same position

weight, an insert must happen-before a removal

with the same position weight. They can never be

concurrent. Consequently, the only causality relation to

be preserved is Insert(element, ωe) → Remove(ωe). All

other operations, not constrained by this relation, can

be performed in either order. Using only this simple

causality relation enables us to deploy a collaborative

editor on P2P networks for supporting dynamic groups.

Next, we present two scenarios which show that

exchanging naively editing operations may cause

consistency issues. For each scenario, we illustrate the

consistency problem and we sketch a solution for this

problem.

First Scenario. Consider the scenario given in Fig-

ure 4.(a) where two users remove simultaneously the

Site 1 Site 2

a b
ω1 ω2

a b
ω1 ω2

o1 = Insert(e, ωe) // o1 = Insert(e, ωe)

a e b
ω1 ωe ω2

a e b
ω1 ωe ω2

o2 = Remove(ωe)

((

o3 = Remove(ωe)

vv

a b
ω1 ω2

a b
ω1 ω2

(a) The loss of deletions.
Site 1 Site 2

a b
ω1 ω2

a b
ω1 ω2

o1 = Insert(e, ωe)

''

o3 = Insert(f , ωf )

a e b
ω1 ωe ω2

a f b
ω1 ωf ω2

o2 = Remove(ωe)

++

o1 = Insert(ωe , e)

a b
ω1 ω2

o2 = Remove(ωe)

o3 = Insert(f , ωf )

??

a f b
ω1 ωf ω2

(b) Out-of-order execution for insertions.

Figure 4. ConsistencyIssues.

same character e added by operation o1. When the

remove operation o2 (resp. o3) arrives at site 2 (resp.

site 1), it cannot performed because the position weight

ωe does not exist. Should we consider o2 and o3 as not

causally ready? If yes, o2 and o3 will be never causally

ready as we have no information whether or not ωe has

been added. Consequently, the waiting queue would

increase drastically.

To overcome this problem, we propose that each site

maintain a log where the local remove operations will

be stored. In this way, o2 and o3 are logged respectively

at sites 1 and 2. When o3 arrives, it is easy to verify

inside the local log of site 1 that ωe has been already

removed. Thus, o3 can be ignored. Similarly, the same

processing is carried out for o2 at site 2.

Second Scenario. As shown in Figure 4.(b), suppose a

user adds character “e” between “a” and “b” (operation
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o1), removes it (operation o2) and next adds at the

same position another character f (operation o3). What

happens if o3 arrives before o1 at site 2? Note that

the position weights ωe and ωf are computed by

the same user (or site) on the same adjacent position

weights, ω1 and ω2. In this case, ωe and ωf are equal.

This redundancy breaks the structure of our shared

document. Indeed, in this case, the same position

weight indexes two different characters “e” and “f”.

Moreover, at site 2, o3 may remove either “e” or “f”. This

can lead to inconsistency situation.

To still create different position weights, we propose

to add a monotonically increasing counter that is

incremented by each local insertion operation. Hence,

we redefine the set of position weights as W =

{(ω, c) | ω ∈ I and c ∈ N} the set of which are totally

ordered by the relation ≺ such that (ω1, c1) ≺ (ω2, c2) iff

• ω1 < ω2, or;

• ω1 = ω2 and c1 < c2.

Note that the first component ω will be still computed

according to Function 2. In this case, characters “e” and

“f”, generated at site 1, will have two different weight

positions (the same ω but with different counters).

5. Performance Evaluation

To verify the effectiveness of our approach, an

experimentation study has been conducted using a

text document as a shared data with various sizes.

In collaborative editors, shared data is represented to

user as a linear structure and insertion and deletion

of elements are based on their position numbers in

this structure (i.e data view). In our case, we store for

each element in the shared Based on the uniqueness

and the total order of our identifiers, we present two

concurrency control techniques to achieve a high degree

of concurrency according to strong and lazy happened-

before relations. The first technique relies on time-

stamp vectors and it allows the concurrent operations

to be executed in either order. This technique is well-

suited for collaborative editors where the number of

users is fixed. The second technique relies on lazy

happened-before relation and it enables us to extend

the concurrency even for operations generated by

the same user. Using this technique, a collaborative

editor can be deployed easily on P2P networks as it

can supports dynamic groups where users can leave

and join at any time. We validate our data structure

with a performance evaluation which shows that our

unique identifier scheme is appropriate for linear data

structure. data its position weight. To choose the

adequate structure, we investigate the implementation

of two versions of our data structure, either based on

linear structure or on binary tree structure. We denote

by n the size of the current state, and by list and tree

the structures used in both versions.

5.1. Local Insertion / Local Deletion

Whatever the used structure, the following operations

are performed to insert a new element e (delete an

existing one) at position i in the view:

• Search the adjacent position weights ωi and ωi+1

in the case of insertion, and the position weightωe
corresponding to the position i of the element to

be removed.

• Execute the operation (Insert(e,ωe) (or

Remove(ωe).

• update the view.

Since insertion/deletion is performed over a given

position in the view, a linear structure has the advantage

that adjacent position weights ωi and ωi+1 (or ωe
in the case of deletion) are returned by list[i] and

list[i + 1] (or by list[i]), respectively, in a constant time.

However when using a tree structure, to return either

the adjacent weightsωi andωi+1 of the element to insert

(or the ωe of the element to be removed), the ascending

list of all position weights stored in the tree must be

computed in O(n) time to extract the required weights.

The second step consists in inserting/deleting

position weight in list/tree. The third step corresponds

to inserting/deleting element e in the shared data

and to refresh user view. The complexity time of the

third step is O(n) in each structure. But operation

Insert(e,ωe)/Remove(ωe) in the second step is

executed in O(n) over list and in O(log(n)) over tree.
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5.2. RemoteInsertion / RemoteDeletion

At the reception of a remote insertion/deletion

operation of element e (with weight ωe), we proceed as

follow:

• Search the position of ωe in list/tree.

• Execute the operation (Insert(e,ωe) (or

Remove(ωe).

• Update the view.

Since list is an ordered set of weights, thus for a given

element weight ωe its position in list is computed in

O(log(n)) time. It is used first to insert/remove element

in list and also to update the view. In case of tree

structure, the correspondence between a given weight

ωe and its position is found by first computing the

ascending list of all weights stored in the tree (O(n)

time), and next the position is returned by a binary

search executed in O(log(n)) time over the computed

list.

Best-case Worst-case
List Tree List Tree

Local operation cst n +
log(n)

2.n 2.n +
log(n)

Remote operation log(n) n +
2.log(n)

2.n +
log(n)

2.(n +
log(n))

Table 1. Linear/Tree structurecomplexity time.

In Table1 we summarize the overall of all complexity

time over list/tree in the cases of local/remote

operations and either in the worst-case (inserting

element at the beginning of the view/deleting the first

element) or in the best-case (inserting element at the

end of the view/deleting the last element).

Figure 5. Local/Remoteoperation evaluationtime.

In each structure, all local operations (resp. remote

operations) have the same complexity time. In Figure 5

we present the evaluation of the insertion over a text

document with size varying from 10000 to 100000

elements (we take an element as a small paragraph). It

is clear that a linear structure based-implementation is

more efficient. Tree structure offers good performance

in term of search, insertion and deletion of data defined

with its position weight (case of remote operation).

There operations are often performed in O|log(n)| time.

However, the poor performance encountered in a tree

structure is due to the correspondence, for a given

element, between its associated position weight and

its position in the view. As approaches in [7, 12,

13] are based on tree structure, it is clear that their

implementations will present poor performance.

6. Conclusion
This paper presented a new data structure that is well-

suited for linear structure-based shared documents

(such as text documents) in collaborative editors. To

ensure a high degree of concurrency, we proposed

a new technique to uniquely identify elements

inside the shared document. These identifiers are

simply real numbers which are manipulated under

a precision control in order to avoid the problem

of infinite precision. This technique is quite simple

and guarantees the uniqueness of these identifiers.

According to two (strong and lazy) forms of happened-

before relation, we proposed two concurrency control

procedures: the first procedure allows the concurrent

operations to be executed in either order. The

second one enables us to extend the concurrency

even for operations generated by the same user as

our identifiers are unique and totally ordered. We

performed a performance evaluation which shows that

our unique identifier scheme is well-suited for linear

data structure. In future work, we intend to investigate

the impact of our work when undoing operations.

Furthermore, we plan to extend our unique identifier

scheme to other data structures such as trees and

graphs.
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