
Achieving Security Assurance with
Assertion-based Application Construction
Carlos E. Rubio-Medrano1, Gail-Joon Ahn1,∗, Karsten Sohr2

1Arizona State University, 699 S. Mill Avenue, Tempe, Arizona, 85282, USA
2Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany

Abstract

Modern software applications are commonly built by leveraging pre-fabricated modules, e.g. application
programming interfaces (APIs), which are essential to implement the desired functionalities of software
applications, helping reduce the overall development costs and time. When APIs deal with security-related
functionality, it is critical to ensure they comply with their design requirements since otherwise unexpected
flaws and vulnerabilities may consequently occur. Often, such APIs may lack sufficient specification details,
or may implement a semantically-different version of a desired security model to enforce, thus possibly
complicating the runtime enforcement of security properties and making it harder to minimize the existence
of serious vulnerabilities. This paper proposes a novel approach to address such a critical challenge by
leveraging the notion of software assertions. We focus on security requirements in role-based access control
models and show how proper verification at the source-code level can be performed with our proposed
approach as well as with automated state-of-the-art assertion-based techniques.

Received on 02 March 2015; accepted on 25 August 2015; published on 21 December 2015
Keywords: security assurance, software specification, software assertions, role-based access control, API, SDK

Copyright © 2015 Carlos E. Rubio-Medrano et al., licensed to EAI. This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.21-12-2015.150819

1. Introduction
In recent years, there has been an increasing interest
in using heterogeneous pre-fabricated software modules,
e.g. application programming interfaces (APIs) and soft-
ware development kits (SDKs), in order to not only reduce
the overall development costs and time in producing
high-quality applications, but also minimize the num-
ber of incorrect behaviors (bugs) observed in the final
product. However, recent literature has shown that such
modules often lack the proper specification details (in
the form of formal or informal documentation) that
are essential to guide how a module should be used
correctly for implementing security-related function-
ality [2] [3]. Common pitfalls include missing code
assumptions or prerequisites, as well as the lack of
foundation on a standardized, well-defined security

HA preliminary version of this paper appeared in the Proceedings of
the 2014 IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom) [1].
∗Corresponding author. Email: gahn@asu.edu

model that serves as a common reference to help devel-
opers understand and correctly implement security-
related code. Such a problem may potentially become
the source of serious security vulnerabilities, as devel-
opers may not be fully aware of the omissions and flaws
they may introduce into their applications by failing to
implement a security model in a proper way. In order
to solve this problem, we propose an assertion-based
approach to capture security requirements of security
models and create well-defined representations of those
requirements. This way, the security features could be
effectively understood by all participants in the soft-
ware development process, in such a way that they can
leverage these features when implementing security-
related functionalities for multi-module applications,
at the same time they engage in a highly-collaborative
environment. These assertion-based security specifica-
tions would be used in conjunction with existing state-
of-the-art methodologies and tools to verify security
properties at the source-code level. In this paper, we
choose the well-known role-based access control (RBAC)
[4] as the security model to enforce access control

1 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3
EAI

European Alliance
for Innovation

Research Article

EAEAI Endorsed Transactions
on Collaborative Computing

C. E. Rubio-Medrano et al.

requirements over an application that is in turn com-
posed of several heterogeneousmodules. Concretely, we
show how the semantic variations, the lack of proper
specification, and the absence of proper verification
techniques can lead to the existence of non-trivial access
control vulnerabilities in mission-critical applications
such as banking applications. Moreover, we provide a
well-defined description of RBAC based on the standard
provided by the American National Standards Institute
(ANSI) [5]. We model this reference description by
using assertions which are later used to provide access
control constraints. To inject assertions as part of the
documentation devised for software modules, we also
adopt design by contract (DBC) [6] paradigm. For such a
purpose, we leverage the Java Modeling Language (JML)
[7], a DBC-like specification language for Java, to serve
as a vehicle for aproof-of-concept implementation of our
approach. Also, we utilize existing tools to verify a set
of security properties, thus providing a way to locate
and possibly correct potential security vulnerabilities in
software applications.
This paper is organized as follows: we start by

providing some background on the topics addressed in
this paper in Section 2. Next, we examine the general
problem, as well as the problem instance addressed in
this work in Section 3. We then present our approach in
Section 4, and a case study depicting three Java-based
software applications and our experimental results in
Section 5. In Section 6, we provide some discussion
on the benefits and shortcomings of our approach as
well as some related work. Finally, Section 7 presents
directives for our future developments and concludes
the paper.

2. Background
Software assertions are commonly described as formal
constraints intended to describe the behavior of a
software system, e.g., what it is expected to do at
runtime, and are commonly written as annotations
in the system’s source code [8]. Using assertions,
developers can specify what conditions are expected to
be valid before and after a certain portion of code gets
executed, e.g. the range of values that the parameter of
a given function is allowed to take. Design by contract
(DBC) [6] is a software development methodology
based on assertions and the assumption that the
developers and the prospective users (clients) of a given
software module establish a contract between each other
in order for the module to be used correctly. Commonly,
such a contract is defined in terms of assertions in the
form of pre and post conditions, among other related
constructs. Before using a DBC-based software module
M, clients must make sure that M’s preconditions
hold. In a similar fashion, developers must guarantee
that M’s postconditions hold once it has finished

1 public interface Account{

2
3 //@ public instance model double balance;

4
5 //@ public invariant balance > 0.0;

6
7 /*@ public normal_behavior

8 @ requires amt > 0.0;

9 @ assignable balance;

10 @ ensures balance == (\old(balance) - amt);

11 @*/

12 public void withdraw(double amt)

13 throws SecurityException;

14
15 }

Figure 1. AnExcerpt of a JML-annotatedBankingApplication.

execution, assuming its corresponding preconditions
were satisfied beforehand. The Java Modeling Language
(JML) [7], is a behavioral interface specification language
(BISL) for Java, with a rich support for DBC contracts.
Using JML, the behavior of Java modules can be
specified using pre- and postconditions, as well as class
invariants, which are commonly expressed in the form
of assertions, and are added to Java source code as the
form of comment such as //@ or /*@...@*/. Fig. 1
shows an excerpt of a Java interface named Account,
which belongs to a banking application and has been
annotated with JML specifications.
The contract for the withdraw method (shown in

lines 7-11) makes use of the model field balance. In
JML, it is possible to define model fields, methods and
classes [9], which differ from their regular (concrete)
counterparts in the sense they are used for specification
purposes only, in an effort to better describe a given
JML contract in a higher level of abstraction, without
worrying about how it is implemented at the source
code level. The model field balance, shown in line 3,
is used to provide an abstract representation of the
amount of money held by the bank account represented
by interface Account. Following JML rules, a given
class implementing interface Account will be required
to provide a suitable implementation for it. The
preconditions of method withdraw (defined by means
of the requires keyword) require the value of the
method parameter amt to be greater than zero, as shown
in the assertion depicted in line 8. Postconditions for the
same method, which are in turn defined by the ensures
keyword, guarantee that the new value of model field
balance will be equal to its previous value before the
method was executed (as denoted by the \old keyword)
minus the value of the method parameter amt. The
set of memory locations, e.g. instance variables, that
are allowed to be modified by the withdraw method is
specified by means of the assignable clause (line 9).
Line 5 depicts an assertion representing an invariant:
the value of model field balancemust be always greater
than zero, before and after each method of interface
Account executes. Finally, specification contracts that
are expected to terminate normally, that is, without

2 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3
EAI

European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

diverging nor throwing exceptions at runtime, are
defined by means of the normal behavior keyword
(line 7). Conversely, contracts that allow a method to
throw a runtime exception are specified by means of
the exceptional behavior keyword. A summary of
the JML features exercised in this paper can be found
in [7] and [9].
In recent years, the American National Institute

of Standards (ANSI) released a standard document
that provides well-defined descriptions of the main
components and functions that define RBAC [5], and
it is mostly based on the well-known Z specification
language [10]. In addition, a dedicated profile [11]
has been introduced to provide support for expressing
RBAC policies by taking both the aforementioned ANSI
RBAC standard as a reference foundation as well as the
well-known eXtensible Access Control Markup Language
(XACML), which is a standard language for supporting
the distributed definition, storage and enforcement of
rich access control policies [12]. Fig. 2 shows an excerpt
of an RBAC policy that has been written in the RBAC
XACML profile: roles are encoded using so-called role
policy set (RPS) files (Fig. 2 (a)), which include the name
of the role (teller, lines 4-13) as well as a reference
to a permission policy set (PPS) file that includes the
set of access rights (permissions) authorized for such
a role (lines 16-18), and is in turn shown in Fig. 2 (b).
In the RBAC XACML profile, permissions are encoded
as XACML rules and role hierarchies are established
by allowing a PPS file P to reference other PPS files
containing the permissions that are assigned to roles
that happen to be junior to the roles whose RPS files
reference P. For instance, Fig. 2 (b) (lines 16-18)
references the PPS file defined for role employee (not
shown in Fig. 2 (a)), which happens to be a junior role
to teller.

3. Problem Description
As mentioned earlier, recent literature includes exam-
ples showing that mission-critical applications, e.g.,
banking mobile applications, have suffered from seri-
ous security vulnerabilities derived from an incorrect
use of their supporting security APIs at the source-
code level [2, 3]. Among the possible causes of this
problem, insufficient software specifications, including
the definition of prerequisites and hidden assumptions,
as well as the existence of multiple semantic variations
of a given security model, e.g., the lack of foundation
on a standardized, well-defined model serving as a ref-
erence, are cited as common sources of incorrect imple-
mentations. Moreover, the problem gets aggravated by
the lack of effective software verification procedures at
the source-code level, which could affect the chances of
identifying and potentially correcting security vulner-
abilities exhibited by applications before deployment

to a production system. In this paper, we address an
instance of this problem by choosing RBAC as the secu-
rity model to enforce access control requirements in a
software application that is in turn composed of several
modules. In addition, each of these modules may imple-
ment a different version of RBAC whose semantics may
or may not strictly adhere to an existing RBAC reference
model such as the ANSI RBAC [5]. We therefore aim
to verify that such heterogeneous modules, when used
to build a target application, correctly enforce a well-
defined and consistent high-level RBAC policy, despite
the differences they may exhibit with respect to their
inner workings related to RBAC features, which could
eventually result in security vulnerabilities.
As an illustrative example, Fig. 3 (a) and Fig. 3 (b)

show a Java-based example where a high-level RBAC
policy is enforced at runtime by placing authorization
checks before performing security-sensitive operations.
In both instances, a policy depicts a role manager
as a senior role to teller, and allows for users, who
are assigned to roles that happen to be senior to
manager, to execute both the transfer and withdraw
operations, whereas users holding teller role are allowed
to execute the withdraw operation only, as shown
in Fig. 2. Moreover, Fig. 3 (a) shows a Java class
BankAccount, which implements the interface Account
described in Fig. 1 and leverages the Spring Framework
API [13] for implementing an authorization check
(lines 7-16). Similarly, Fig. 3 (b) shows another class
DebitBankAccount depicting an authorization check
using the Apache Shiro API [14] (lines 7-11). In
such a setting, it is desirable to evaluate the correct
enforcement of the aforementioned RBAC policy as
follows: first, the authorization checks depicted in
both examples must correctly specify the roles that
are allowed to execute each of the security-sensitive
operations. For instance, the authorization check
depicted in Fig. 3 (a) incorrectly allows for another
role agent to also execute the withdraw method, which
in turn represents a potential security vulnerability.
Second, the role hierarchy depicted in the high-level
policy must be correctly implemented at the source-
code level by leveraging both APIs. As roles that happen
to be senior to role manager should be allowed to
execute both the transfer and withdraw methods,
the role hierarchy must be correctly implemented by
placing accurate authorization checks within the source
code. In addition, the role hierarchy must be also
defined correctly in the supporting API configuration
files. as an incorrect implementation, e.g. missing
role names within the XML files defined for the
Spring API, may prevent users with the role manager
from executing the transfer method. A more serious
problem may be originated if users with the role
teller are allowed to execute the transfer method.
Finally, if users with the role manager are allowed

3
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3
EAI

European Alliance
for Innovation

C. E. Rubio-Medrano et al.

1 <PolicySet PolicySetId="RPS:teller:role" ...>

2 <Target>

3 <Subjects>

4 <Subject>

5 <SubjectMatch MatchId="...:string-equal">

6 <AttributeValue DataType="...#string">

7 teller

8 </AttributeValue>

9 <SubjectAttributeDesignator

10 AttributeId="...:attributes:role"

11 DataType="....#string"/>

12 </SubjectMatch>

13 </Subject>

14 </Subjects>

15 </Target>

16 <PolicySetIdReference>

17 PPS:teller:role

18 </PolicySetIdReference>

19 </PolicySet>

(a) Anexcerpt of a RPS File.

1 <PolicySet PolicySetId="PPS:teller:role" ...>

2 <Policy PolicyId="Permissions:for:teller" ...>

3 <Rule RuleId="withdraw:permission" Effect="Permit">

4 <Resource>

5 <AttributeValue DataType="...#string">

6 BankAccount

7 </AttributeValue>

8 </Resource>

9 <Action>

10 <AttributeValue DataType="...#string">

11 public void withdraw(double amt)

12 </AttributeValue>

13 </Action>

14 </Rule>

15 </Policy>

16 <PolicySetIdReference>

17 PPS:employee:role

18 </PolicySetIdReference>

19 </PolicySet>

(b) AnExcerpt of a PPS File.

Figure 2. A Sample Policy Usingthe RBACXACMLProfile

1 import org.springframework.security.core.*;

2 public class BankAccount implements Account{

3
4 public void withdraw(double amt)

5 throws SecurityException{

6
7 Iterator iter = SecurityContextHolder

8 .getAuthorities().iterator();

9
10 while(iter.hasNext()){

11 GrantedAuthority auth = iter.next();

12 if (!auth.getAuthority().equals("teller") ||

13 !auth.getAuthority().equals("agent")){

14 throw new SecurityException("Access Denied");

15 }

16 }

17 this.balance -= amt;

18 }

19 }

(a) Spring FrameworkAPI.

1 import org.apache.shiro.*;

2 public class DebitBankAccount{

3
4 public void transfer(double amt, BankAccount acc)

5 throws SecurityException{

6
7 if(!SecurityUtils.getSubject().hasRole("manager")){

8
9 throw new SecurityException("Access Denied");

10
11 }

12
13 acc.withdraw(amt);

14 this.balance += amt;

15
16 }

17
18
19 }

(b) ApacheShiro API.

Figure 3. Enforcingan RBACPolicy by Leveraging Heterogeneous Security Modules.

to execute the transfer method, but are disallowed
from executing the withdraw method (Fig. 3 (b)) by
incorrectly configuring the Spring API depicted in
Fig. 3 (a), a given object of class DebitBankAccount

may be left in an inconsistent state, thus also creating
a serious security problem.

4. Our Approach: Assertion-based Construction
In order to provide a solution to the problem
described in Section 3, we propose an approach that
combines the concepts of specification modeling and
software assertions for describing security features
at the source-code level. These so-called assertion-
based security models are intended to provide compact,
well-defined and consistent descriptions that may
serve as a common reference for implementing
security-related functionality. Our approach strives
to fill in the gap between high-level descriptions

of security features, which are mostly abstract and
implementation-agnostic, and supporting descriptions
focused at the source-code level, which are intended to
cope with both security-related and behavioral-based
specifications, such as the ones described in Section 2.
As it will be described in Section 6, previous work has
also explored the use of software assertions and DBC-
like contracts for specifying access control policies.
However, our approach is intended to leverage the
modeling capabilities offered by software specification
languages using a well-defined reference description of
a security model as a source, in such a way that it not
only allows for the correct communication, enforcement
and verification of security-related functionality, but
it also becomes independent of any supporting APIs
used at the source-code level, thus potentially allowing
for its deployment over applications composed of
several heterogeneous modules. Fig. 4 depicts our

4
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

proposed approach: an assertion-based security model
is intended to be enforced over a target application
that is in turn composed of two modules leveraging
security APIs and two modules whose security-related
functionality has been implemented from scratch.
This way, the semantic differences exhibited by such
modules, as shown in Section 3, can be effectively
mitigated. Moreover, by leveraging state-of-the-art
methodologies based on assertions, effective automated
verification of security properties at the source-code
level becomes feasible, thus providing a means for
discovering and possibly correcting potential security
vulnerabilities.
To address the problem instance discussed in this

paper, we leverage the JML modeling capabilities, e.g.
model classes [9], to describe the ANSI RBAC standard
described in Section 2. Later on, these model classes are
used to create assertion-based constraints, which are in
turn incorporated into the DBC contracts devised for
each module in an application. This way, a high-level
RBAC policy can be specified at the source-code level by
translating it into assertion-based constraints included
in DBC contracts. Following our running example,
Fig. 5 shows an excerpt of a model class JMLRBACRole,
which depicts the role component and some of its
related functionalities as devised in the ANSI RBAC
standard, e.g. role hierarchies. Such a model class is
leveraged in Fig. 7 to augment the JML-based contract
depicted in Fig. 1 with security-related assertions
restricting the execution of the withdraw method to
users who activate a role senior to teller. We start by
defining a model variable role, of type JMLRBACRole

(line 5), which is later used for defining access control
constraints in the two specification cases depicted in
Fig. 7: the first specification case, depicted in lines 9-14,
allows one to properly execute the withdraw method,
e.g. deducting from the balance of a given account, only
if the object stored in the role variable represents a role
senior to teller1. The second specification case, shown in
lines 16-20, allows for the withdraw method to throw
a runtime exception if the aforementioned constraint
is found to be false. In addition, such a specification
case also prevents any modification to the state (e.g.
private fields) of a given object of type BankAccount

from taking place.
Fig. 6 depicts our approach: a high-level RBAC policy,

which is encoded by means of the dedicated RBAC
profile provided by XACML [11], is translated into a
series of DBC contracts. Later on, such contracts, along
with the source code for a given software application,
are fed into JML-based automated tools for verification
purposes. Since such an application may be in turn

1Following the ANSI RBAC standard, a given role is always senior to
itself.

Module1

(API1)

Module2

(API2)

Module3
Own

Code

Software Application

Assertion-based Security Model

Figure 4. DeployingAssertion-based Security Models over a
Multi-moduleApplication.

1 package edu.asu.sefcom.ac.rbac;

2 public class JMLRBACRole

3 extends JMLRBACAbstractRole{

4
5 public boolean isSeniorRoleOf(

6 JMLRBACAbstractRole role){

7
8 if(this.equals(role)){ return true; }

9
10 return getAllJuniorRoles().contains(role);

11 }

12 }

Figure 5. AnExcerptof a JMLModel Class Depictingan ANSI
RBACRole Component.

<xml ...>

<....>

<..../>

Java
Source
Code

DBC/JML
Contracts

+
RBAC XACML

Policy Files
JML-based
Verification

Tools

API
Config.
Files

+

Figure 6. A FrameworkforAssertion-basedSecurity Assurance.

composed of heterogeneous modules and each of them
possibly represents a different API for implementing
security-related functionality, e.g. enforcing an RBAC
policy, the configuration files for such APIs must be also
taken into account when leveraging automated tools
for verification, as described in Section 3. In order to
automate the creation of DBC contracts such as the ones
depicted in Fig. 7, we designed an automated tool that
translates RBAC policies encoded in the RBAC XACML
profile into JML-based specifications, thus relieving
policy designers and software architects from crafting

5
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

1 //@ model import edu.asu.sefcom.ac.rbac.*;

2 public interface Account{

3
4 //@ public instance model double balance;

5 //@ public instance model JMLRBACRole role;

6
7 //@ public invariant balance > 0.0;

8
9 /*@ public normal_behavior

10 @ requires amt > 0.0;

11 @ assignable balance;

12 @ ensures role.isSeniorRoleOf(

13 @ new JMLRBACRole("teller")) ==>

14 @ (balance == \old(balance) - amt);

15 @ also

16 @ public exceptional_behavior

17 @ requires !role.isSeniorRoleOf(

18 @ new JMLRBACRole("teller"));

19 @ assignable \nothing;

20 @ signals_only SecurityException;

21 @*/

22 public void withdraw(double amt)

23 throws SecurityException;

24
25 }

Figure 7. Enhancing a DBC contract with Access Control
Assertions.

1 import org.springframework.security.core.*;

2 public class BankAccount implements Account{

3
4 //@ public represents role <- mapRole();

5
6 /*@ public pure model JMLRBACRole mapRole(){

7 @

8 @ JMLRBACRole newRole = new JMLRBACRole("");

9 @ RBACMonitor monitor = new RBACMonitor();

10 @

11 @ Iterator iter = SecurityContextHolder

12 @ .getAuthorities().iterator();

13 @

14 @ while(iter.hasNext()){

15 @ GrantedAuthority auth = iter.next();

16 @ if (auth.getAuthority().equals("teller")){

17 @ newRole = new JMLRBACRole("teller");

18 @ }

19 @ }

20 @

21 @ return newRole;

22 @ }

23 @*/

24 ...

25 }

Figure 8. AnExcerpt Showinga JMLAbstraction Function.

such contracts manually and eliminating a potential
source for errors.
Algorithm P shows a procedure for translating a set

of XACML files into a set of data structures depicting
an ANSI RBAC policy. The algorithm takes as an input
the set of RPS and PPS XACML files as introduced
in Section 2 and produces the set R of roles, the set
P of permissions, the permission assignment PA ⊆ R
× P relation involving the last two, and the RH ⊆ R
× R relation depicting a role hierarchy between the
roles included in R. The algorithm starts by initializing
the sets/relations to be returned as a result as well
as two auxiliary data structures: REF and ROLE-DICT

(lines 1-3). Entries in the REF relation store the file
references within PPS files that are used to establish
a role hierarchy. As an example, an entry of the
form (PPS:teller:role, PPS:employee:role) will be added
to REF when the policy reference shown in Fig. 2 (b)
(lines 16-18)) is processed. Conversely, the ROLE-DICT
relation is introduced to keep a map between the
names of the PPS files being referenced in the REF
relation and the actual role names depicted in their
corresponding RPS files. As an example, an entry of
the form (PPS:teller:role, teller) will added to ROLE-
DICT when processing the RPS and PPS files belonging
to the teller role depicted in Fig. 2. The first phase of
Algorithm P continues by retrieving the pair of RPS and
PPS files depicting both the role declaration as well as
the set of permissions that are assigned to such role.
First, the RPS file is retrieved and the name for a role
r is extracted. Such a name is then used to populate
the R set as well as to introduce an initial entry of
the form (r, r) to the RH relation indicating that each
role is always senior or junior to itself (lines 5-7). Next,
the PPS file corresponding to role r is retrieved, an
entry to the ROLE-DICT relation is added, and each of
the permissions included in such PPS file is parsed to
populate the PA relation (lines 8-14). The first phase
ends by processing each of the file references included
in the PPS file and adding corresponding entries into
the REF relation as discussed before. The second phase
of Algorithm P (lines 18-20) focuses on expanding the
RH relation by adding an entry for each pair of roles
in R that are in a senior-junior role relationship. We
model such calculation as a graph reachability problem
assuming RH to be a directed graph. With this in mind,
implement a depth-first search (DFS) algorithm over all
roles in R: each entry in the REF relation is retrieved, the
role name corresponding to the file acting as the senior
role is obtained from ROLE-DICT and the auxiliary
Algorithm expandRH is called. Such a algorithm takes
an initial role r as an input and populates the RH
relation by recursively obtaining all entries in REF and
ROLE-DICT that belong to roles that happen to be
junior to a given role r. The runtime performance of the
first phase of Algoritm P can be regarded to be O

(
| RPS |

+ | PPS |
)
≈ O

(
| R | + | P |

)
in the best case, which occurs

when every permission in P is assigned to only one
role in R. When several permissions in P are assigned
to several different roles in R then the performance
turns out to be O

(
| R | + | R | ∗ | P |

)
≈ O

(
| R | ∗ | P |

)
. In a

similar fashion, performance of the second phase can be
analyzed as follows: since the DFS algorithm is known
to run in O

(
E
)
for a graph having V nodes and E edges,

our implementation may then run on O
(
V ∗ E

)
≈ O

(
| R |

∗ | P |
)
in the best case when V = R and E = P, which

occurs when every permission in P is assigned to only

6 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3
EAI

European Alliance
for Innovation

one role in R. In the case when the same permission is
assigned to different roles in R, the running time may
be regarded as O

(
V ∗ E

)
≈O

(
| R | ∗(| R | ∗ | P |)

)
for V = R

and E = R × P.
Taking as an input the data structures produced

by Algorithm P, Algorithm T produces DBC contracts
written in a subset of the JML syntax defined in [15],
like the one shown in Fig. 7, by leveraging a template
in the form of an abstract syntax tree (AST), which is
shown in Fig. 9. The algorithm starts by exploring the
PA relation to obtain the entry depicting the junior-most
role being assigned to every permission in P (lines 2-
6). For such a purpose, line 4 of Algorithm T queries
the RH structure to determine if there exists a seniority
relationship between two nodes ri and rj (i , j) in R.
Such queries can be potentially answered in constant
time (O

(
1
)
), as it suffices to locate the entry (ri, rj) in

RH, due to the expansion procedure conducted by the
second phase of Algorithm P. Finally, the algorithm
produces a DBC/JML contract for each of the junior-
most entries obtained in the previous step (lines 7-
13). An alternative approach would include eluding
the aforementioned expansion procedure carried on by
Algorithm P and leaving any further algorithms, e.g.,
Algorithm T, with the duty of determining if a role
happens to be senior to another one. Such an alternative
approach may be beneficial in the case when only a
few permissions in P happen to be assigned to more
than one role in R, in such a way that the seniority
relation between those roles may need to be determined
when calculating the junior-most role only for such
few permissions. In Algorithm T, since we potentially
explore the entries in the PA relation twice, and such
a relation may be of size |R| * |P| in the worst case,
the runtime performance can be regarded as O

(
2∗ | R |

∗ | P |
)
≈ O

(
| R | ∗ | P |

)
. We present an analysis of the

correctness of our approach in Appendix A.
As described in Section 1, we aim to support

the verification of security properties in mission-
critical applications. For such a purpose, we leverage
an approach based on automated unit testing [16]
by adopting JET [16]: a dedicated tool tailored for
providing automated runtime testing of Java modules
with JML-based assertions, e.g. classes. Using JET,
testers can verify the correctness of a Java module
by checking the implementation of each method
against their corresponding JML specifications. In
addition, we also support the detection of potential
security vulnerabilities by means of static techniques
by leveraging the ESC/Java2 tool [7], which is
based on a theorem prover and internally builds
verification conditions (VCs) from the source code
being analyzed, and its corresponding JML-based
specifications, which the theorem prover then attempts
to prove, thus allowing for the automated analysis of

Algorithm P : Parsing RBAC XACML Files.
Data: Sets RPS and PPS of RBAC XACML files
Result: Sets R of roles, P of permissions, and the PA

and RH relations
1 Initialize R and P to empty sets;
2 Initialize PA and RH to empty relations;
3 Initialize ROLE-DICT and REF to empty relations;
4 for each file rps in RPS do
5 r = Get role name from rps;
6 R = R ∪ r;
7 RH = RH ∪ (r,r);
8 ref-pps = Get name of permissions file

referenced by r;
9 ROLE-DICT = ROLE-DICT ∪ (ref-pps, r);

10 pps = Get file from PPS using ref-pps;
11 for each permission p in pps do
12 if p < P then
13 P = P ∪ p;

14 PA = PA ∪ (r, p);

15 JUNIOR-PPS = Get names of files referenced by
pps;

16 for each junior-pps-name in JUNIOR-PPS do
17 REF = REF ∪ (ref-pps, junior-pps-name);

18 for each (senior-ref, junior-ref) in REF do
19 (senior-ref, role) = Get from ROLE-DICT using

senior-ref ;
20 RH = expandRH(role, senior-ref, RH, REF,

ROLE-DICT);

21 return R, P, PA and RH;

Algorithm expandRH : Constructing the RH of an
RBAC Policy.
Data: A role r ∈ R, a String key depicting a file

name, the RH, REF and ROLE-DICT relations
Result: The RH relation

1 Initialize JM and C to empty sets;
2 ENTRIES = Get entries from REF using key;
3 for each (senior-ref, junior-ref) in ENTRIES do
4 (junior-ref, junior-role) = Get from ROLE-DICT;
5 if (role, junior-role) < RH then
6 RH = RH ∪ (role, junior-role);

7 RH = expandRH(role, junior-ref, RH, REF,
ROLE-DICT);

8 return RH;

whole code modules without running the applications.
In particular, ESC/Java2 uses modular reasoning [17],
which is regarded as an effective technique when used
in combination with static checking since code sections
can be analyzed and their JML-based specifications can

7
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

Algorithm T : Transforming an RBAC Policy to
DBC/JML Contracts.
Data: The PA and RH relations depicting an ANSI

RBAC Policy
Result: A Set C of DBC/JML Contracts

1 Initialize JM and C to empty sets;
2 for each (r,p) in PA do
3 (r’,p) = Get entry from JM using p;
4 if (r’, p) , null and (r’,r) ∈ RH then
5 JM = JM \ (r’p) ;
6 JM = JM ∪ (r,p);

7 for each (r,p) in JM do
8 Create signature from p;
9 Get contract from C using signature;

10 if contract is null then
11 contract = Create using AST and signature;
12 C = C ∪ contract;

13 Add r to roles in contract;

14 return C;

JMLNormalSpecCase

JMLMethodContract

JMLExceptionalSpecCase

JMLPrecondition JMLPostcondition

JMLMethodCallAssertion JMLTrueDefaultAssertion

JMLPrecondition JMLSignalsOnly

JMLMethodCallAssertion JMLAssignableNothing

Figure 9. A SampleAST templateforProducingJMLSyntax.

be proved by inspecting the specification contracts of
the methods they call within their method bodies.
Later, in Section 5, we present our findings on

leveraging both techniques in a set of case studies
depicting mission-critical Java applications. In order to
support the verification process just described, proper
constructs are needed to map the modeling features
included in DBC contracts (as depicted in Fig. 7) and
the implementation source code of each heterogeneous
module. For such a purpose, we leverage the features
offered by the JML abstraction functions [9], which
allow for JML model features to be properly mapped
to source-code level constructs, thus providing a way
to verify that each heterogeneous module implements a
given high-level policy correctly. As an example, Fig. 8
shows an excerpt where a JML model method is used to
map the source code implementing security features as
provided by the Spring Framework API with the model
features depicted in Fig. 7.
In general, the correct enforcement of a security

model may involve the following cases: first, a high-
level security policy, which is based on a well-defined
security model definition, should be correctly defined
and all policy conflicts must have been resolved, e.g.

Table 1. Distribution of Responsibilities for Enforcing an
Assertion-basedSecurity ModelIn a Collaborative Setting.

Actor Description of Tasks

Security DomainExperts Develop an assertion-based security
model by using a precise definitio
as a reference, e.g. using the ANSI
RBACstandard.(See Fig. 5).

Policy Administrators Instantiate the security model to be
enforced,e.g. specificatio ofanRBAC
policy based on the ANSI RBAC
standard.(See Fig. 2).

SoftwareArchitects Incorporate the security policy
into DBC constructs by specifying
assertion-based constraints (See
Fig. 7).

Code Developers Correctlyimplementthe DBC specifi
cationsdefine by softwarearchitects
(includingsecurity checks).Providea
mappingbetween the security model
and the securityAPIsused for imple-
mentationpurposes(See Fig. 8).

Code Testers Verify both the functional and the
security related aspects of a given
software application based on their
DBC specification (See Section 5).

evaluating a given RBAC policy by using techniques
such as the ones discussed in [18]. Second, access
to all protected resources within a given application,
e.g. the withdraw operation depicted in Fig. 7, is
guarded by an authorization check (adhering to the well-
known principle of complete mediation). Following our
example, authorization checks should depict the RBAC
constructs defined in the overall policy, e.g. checking for
the correct roles and/or permissions before executing
any sensitive operation. Third, supporting components
for the security model features are implemented
correctly, e.g. RBAC role hierarchies. Finally, we also
require that the detection of runtime policy violations
is implemented properly, e.g. exception handling
and data consistency. With this in mind, for the
problem instance addressed in this paper, we make
the following assumptions: first, the ANSI RBAC model
is well-understood by all participants in the software
development process, e.g. policy designers, software
architects and developers. Second, the assertion-based
specification of the security model is correct: in other
words, it has been verified beforehand. Third, any
supporting RBACmodules, including security APIs and
SDKs, have been implemented correctly, even though
their semantics with respect to RBAC may differ, as
addressed in Section 3.
Finally, our approach is intended to be carried out by

the different participants in the software development
process, in such a way that the process of constructing
vulnerability-free software becomes a collaborative

8 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3
EAI

European Alliance
for Innovation

responsibility shared by all involved actors, obviously
including the source-code level developers. Table 1
shows a summary of the tasks devised for each
participant.

5. Case Study
In order to provide a proof-of-concept implementation
of our approach, we developed a reference description
of the security model under study by using a set of
JML model classes based on the case illustrated in
Fig. 5. Such a reference model contains 960 lines of
code grouped in 17 Java classes, including 1,383 lines of
JML specifications depicting the functionality desired
for RBAC as described in the ANSI RBAC standard. For
our case study, we leveraged a pair of open-source Java
applications: OSCAR EMR [19], which is a rich web-
based software platform tailored for handling electronic
medical records (EMR). It consists of approximately
35,000 lines of code organized into 110 classes and
35 packages. In addition, we also leveraged JMoney
[20], a financial application consisting of 7,500 lines of
code grouped into 45 classes. Moreover, we developed
a banking application depicting the running examples
shown in this paper. Such an application leverages the
Apache Shiro and Spring Framework Security APIs,
as well as our own RBAC monitor developed for
implementing security-related functionality. It consists
of 36 classes and contains 1,550 lines of code as well as
1,450 lines of JML specifications, which utilize our JML
model classes in DBC contracts, as shown in Fig. 7.
In addition, we performed an evaluation over the

automated translation tool described in Section 4 that
takes as an input a set of XACML files depicting an
ANSI RBAC policy and produces a set of DBC contracts
in the JML language. Such a tool consists of 6,246 lines
of code grouped in 25 classes in Java, and implements
the Algorithms labeled as P, T and expandRH, also
shown in Section 4 as well as the AST structure
shown in Fig. 9. In order to evaluate the effectiveness
of the tool we designed an experiment tailored to
measure the overall processing time in milliseconds
taken by the tool to process XACML-based policies and
produce their corresponding DBC/JML contracts. In
such experiments, we varied the policy size by varying
the number of roles included in the policy as well
as the number of permissions being assigned to each
role. In addition, we controlled the number of different
role hierarchies depicted by each policy as well as
the number of permissions that were simultaneously
assigned to the same role. Fig. 10 shows the results
of our experimental approach when allowing the tool
to process synthetically-created policies to produce
DBC/JML contracts such as the one shown in Fig. 7.
We produced 4 different policies varying the number of
roles from 5 to 20, as well as the number of permissions

5 10 15 20

10
2.4

10
2.5

10
2.6

10
2.7

10
2.8

10
2.9

Number of Permissions per Role

Performance of Translating Simulated XACML RBAC Policies

P
ro

ce
ss

 T
im

e
(m

s)

5 Roles 10 Roles 15 Roles 20 Roles

Figure 10. Runtimeperformanceof ourTranslationTool.

included on each role. All roles in the policy belonged
to the same role hierarchy and the same permission was
allowed to be assigned to at most two roles. As expected,
the execution time depicted by our tool remains linear
as the size of the policy given as an input is varied.
As described in Section 4, our approach is intended

to identify inconsistencies in the implementation of
security models that can eventually become security
vulnerabilities. In the context of the security model
addressed in this paper, an incorrect implementation
of an RBAC policy may end up introducing non-
trivial vulnerabilities to applications. Based on the
description of RBAC depicted by the ANSI RBAC
standard, inconsistencies on the implementation of
RBAC policies can be described as follows: first, an
incorrect mapping between access rights (permissions)
and sensitive operations performed by applications.
Sensitive operations should be properly guarded by
permissions, in such a way that the execution of such
operations is only allowed when the requesting entity is
found to be granted the permissions devised for them.
Failing to identify such sensitive operations as well as
the need to secure them by properly requesting for
the permissions, may also result in non-trivial security
vulnerabilities. Following our running example, the
transfer operation featured in Fig. 3 (b) must be
identified as security-sensitive and being guarded by
a permission to be assigned only to users holding
the manager role. Second, failures in the assignment
of permissions to roles may exist. As an example,
incorrect assignment of a given permission P to a role
R may allow R and roles that happen to be senior
to it to execute the unintended operations guarded
by P. On the other hand, unintended removal of P
from the list of permissions devised for R will deprive
such a role and all other roles senior to it from
exercising P and its related operations, possibly causing
an availability problem by restricting the number of
operations that such roles can execute in the context

9 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

of a given application. Third, there may be failures
in the implementation of role hierarchies. As an
example, the introduction or removal of a role or
a set of roles at a given level of the hierarchy may
produce vulnerabilities: introduction of an unintended
role R in a given hierarchy may allow for R to
unintentionally inherit the permissions assigned to all
roles that happen to be junior to R, and it may also
allow for senior roles to R to obtaining the permissions
assigned to R. Conversely, removal of a role R in a
given hierarchy may deprive roles senior to R from
obtaining the permissions assigned to it, which can
yield vulnerabilities such as the state inconsistency
problem described at the end of Section 3. In the
context of applications composed of heterogeneous
modules, the aforementioned inconsistencies can be
potentially introduced either in the source code of the
application itself, or by incorrect configuration of policy
files. As an example, failures in the implementation
of authorization checks, as the ones depicted in
Fig. 3, can be regarded as a common source of
potential inconsistencies at the source code level. In
addition, state-of-the-art security APIs, as the ones
depicted throughout this paper, leverage text files for
configuring security features. With respect to RBAC,
our featured APIs provide configuration files depicting
the assignment of permissions to roles. In summary, an
incorrect configuration of those files may also introduce
security vulnerabilities.
With this in mind, we modeled implementation

inconsistencies of the RBAC security model by lever-
aging an approach inspired by mutation testing [21]:
we inserted variations (also known as mutants) in both
the source code and the API configuration files of the
applications considered in our study. As an example,
Fig. 11 shows different mutants introduced to the RBAC
policy shown in Table 2: first, the original policy is
modified to add an unintended permission (transfer,
(t)) to a role employee (Fig. 11 (a)). Such a modification
creates a potential security vulnerability as it allows
employee, and all other roles senior to it, e.g. agent
and teller, to execute an operation that was originally
intended only for a role manager. A configuration file
depicting such modification is shown in Fig. 12 (lines
14, 19, 23). Similarly, Fig. 11 (b) shows a permission
(deposit, (d)) being removed from the employee role. Such
a modification produces an inconvenience to such a role
and all other roles that happen to be senior to it, as
execution of the deposit operation will be denied at
runtime. Fig. 11 (c) shows another example where the
original role hierarchy of the RBAC policy is modified
to introduce an unintended role (supervisor, (S)). This
way, the newly-introduced role creates a pair of security
vulnerabilities: first, it inherits the permissions from
all junior roles in the hierarchy, thus allowing for the
execution of unintended operations. Fig. 13 shows an

Table 2. A Sample RBACPolicy forEvaluationPurposes.

Role Junior Roles Allowed Operations

Employee - deposit

Teller Employee withdraw, deposit
Agent Employee close, deposit
Manager Teller, Agent transfer, withdraw, deposit, close

example depicting such modification (lines 6,7). Sec-
ond, it also allows for a senior role in the hierarchy
to obtain an extra permission (audit, (a)), thus possibly
allowing them to perform unintended operations as
well. Fig. 13 shows an excerpt of an XML configuration
file depicting the role hierarchy modification shown in
Fig. 11 (c) (lines 6-8). Finally, Fig. 11 (d) shows a case
when a role is removed from a role hierarchy: teller
is left aside by removing the relationships with both
the manager (senior) and the employee (junior) roles.
It exposes an inappropriate permission revocation not
only to users holding the role teller as it is prevented
from getting the permissions of its junior roles (e.g.
deposit, (d)), but also to senior roles since revocation
prevented them from getting the permissions assigned
to teller (e.g., withdraw, (w)) including all other permis-
sions that could be obtained from junior roles to teller.
In the rest of this section, we describe the

experimental procedure we have conducted on the
sampled software applications by leveraging existing
assertion-based tools to detect (kill) mutant-based
inconsistencies in the implementation of RBAC policies
like the ones described above, in an effort to show the
suitability of our approach for the effective verification
of security properties. In particular, we present the
results when applying both the dynamic and the
static approach to the aforementioned case-study
applications. Later, in Section 6, we highlight some
shortcomings we have identified in this experimental
process, and propose some alternative solutions.

5.1. ApplyingDynamicAnalysisTechniquesto
Assertion-basedVerificatio
As described in previous sections, we aim to support
the verification of security properties by leveraging an
approach based on automated unit testing [16] as well
as the JML specifications depicting our assertion-based
models that were introduced in Section 4. For such a
purpose, we adopted JET [16], which is a dedicated
tool tailored for providing automated runtime testing
of Java modules with JML-based assertions, e.g. classes.
Using JET, testers can verify the correctness of a
Java module by checking the implementation of each
method against their corresponding JML specifications.
As an example, the contract of a given method M
is used as a test oracle, by first translating it into

10
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

t

M

T

E

t

w

d

Ac

(a) Addinga Permission.

M

T

E

t

w

d

Ac

(b) Removinga Permission.

S

T

E

a

w

d

Ac

M t

(c) Addinga Role.

M

T

E

t

w

d

Ac

(d) Removinga Role.

Figure 11. IntroducingMutants in the RBAC Policy shown
in Table 2: roles are labeled using their uppercase initial.
Permissions are shownusing lowercaseinitials and dottedlines.
E.g., in Fig. 11 (a), role Manager is shownas a coloredcircle
labeled as M. Permission transfer is shownas a white circle
labeled as t. The assignmentof permission transfer to the role
Manager is shownas a dottedline.

runtime assertion checking (RAC) code. Then, proper
values (of either primitive or reference data types) are
randomly created for each of M’s formal parameters,
and compared for compliance against the RAC code
created for M’s precondition. If such a precondition is
satisfied, a valid test case is said to be created 2, andM’s
body is executed. If any exception not devised for M is
thrown, the test case is regarded as failed. Otherwise,
the RAC code for M’s postcondition is executed. If such
a postcondition is satisfied, the test is regarded as a
success, otherwise, it is regarded as failed as well. Many
different test cases can be created for M, as soon as
different combinations of values for M’s parameters are
created by JET.
Following the automated testing approach just

described, we conducted a set of experiments to mea-
sure the effectiveness of our assertion-based models,
along with our enhanced DBC contracts, in detecting
the mutations introduced into the applications tested
in our case study. Such experiments were carried out on
a PC equipped with an Intel Core Duo CPU running at
3.00 GHZ, with 4 GB of RAM, running Microsoft Win-
dows 7 64-Bit Enterprise Edition. First, we measured
the impact of our approach in the average execution
time of the applications. In order to provide a mapping
between the modeling features included in JML con-
tracts (as depicted in Fig. 7) and the implementation
code of each heterogeneous module, we leveraged the

2Otherwise, the test case is said to be meaningless, so it is discarded.

1 public static Ini getStaticIni(){

2 Ini ini = new Ini();

3 ini.addSection("roles");

4 ini.setSectionProperty("roles",

5 "manager",

6 "p:deposit, " +

7 "p:withdraw, " +

8 "p:close, " +

9 "p:transfer");

10 ini.setSectionProperty("roles",

11 "agent",

12 "p:close, " +

13 "p:deposit" +

14 "p:transfer");

15 ini.setSectionProperty("roles",

16 "teller",

17 "p:deposit, " +

18 "p:withdraw" +

19 "p:transfer");

20 ini.setSectionProperty("roles",

21 "employee",

22 "p:deposit " +

23 "p:transfer");

24 return ini;

25 }

Figure 12. Introducingmutants inanApacheShiroconfiguation.

1 <?xml ...>

2 <beans:bean id="roleHierarchy" ...>

3 <beans:property name="hierarchy">

4 <beans:value>

5 manager > supervisor

6 supervisor > teller

7 supervisor > agent

8 teller > employee

9 agent > employee

10 </beans:value>

11 ...

Figure 13. IntroducingMutants in Spring Framework.

features offered by the JML abstraction functions [9]: we
enhanced our supporting tool described in Section 4
to also produce abstraction functions for the referred
Spring Framework and Apache Shiro APIs. We then
executed a sample trace of the Java methods exposed
by our three applications and calculated the average
execution time over 1,000 repetitions. Such a trace was
created to contain representative operations for each
application, e.g. the trace created for the OSCAR EMR
application that contains Java methods used to update
a patient’s personal data as well as information about
medical appointments and prescriptions.

As shown in Table 3, the introduction of RAC code
has a moderate impact on the performance, which is
mostly due to the overhead introduced by the RAC
code generated to process both the JML contracts as
well as the abstraction functions. We then recorded
the results obtained by our tool while attempting
to detect (kill) the mutants introduced in both the
configuration of the Security APIs as well as the
authorization checks guarding each of the Java methods
contained in our sample traces, following the approach
depicted in Fig. 11. Table 3 shows a report on the
number of generated test cases, including the number of

11 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

Table 3. ExperimentalData UsingJET.

Banking JMoney OSCAR

Total methods 46 136 125
Analysis timeper method/s 4.56 17.32 15.4
Total analysis time/s 209.76 2355 1925
Runtimeoverhead/s 0.97 2.34 1.78
Generated test cases 1000 1000 1000
Meaningfultest cases 150 250 225

Table 4. ExperimentalData UsingESC/Java2.

Banking JMoney OSCAR

Analysis timeper method/s 0.43 2.07 0.5
Total analysis time/s 19.66 281.41 63.00

meaningful ones produced by the tool. 3 Our meaningful
test cases were able to kill all the mutants inserted into
our case study applications.
In an additional experiment, we compared the time

taken by our JML model classes to detect each of
the mutant generation techniques depicted in Fig. 11.
Once again, we used a trace of Java methods depicting
the main functionality for each application, and used
the automated mutant-generation tool described before
to generate different variations to an original RBAC
policy. The results, as shown in Fig. 14, show that
adding/removing a role to a given hierarchy is the
most costly mutation to be detected by the RAC code
through processing our assertion-based JML classes.
This is mostly due to the way how role hierarchies
are implemented in our JML classes, by using a series
of java.util.ArrayList objects to store references
to each senior/junior role in a given hierarchy, and
allowing for such references to be inspected recursively
when determining if there is a seniority relationship
between two given roles.

5.2. ApplyingStatic AnalysisTechniquesto
Assertion-basedVerificatio
As mentioned in previous sections, we also leverage the
ESC/Java2 tool for providing verification guarantees
based on static analysis techniques and our proposed
approach. However, despite the support provided
for JML-based constructs by such a tool, some
challenges must be addressed: first, in order to
prove the correctness of a certain source code C
against its corresponding JML contracts, the tool
additionally requires that the JML specifications of

3In JET, a test case T for a given method M is said to be meaningful if
the tool is able to randomly create values for M’s formal parameters
in such a way that M’s preconditions involving such parameters are
satisfied. Otherwise T is said to be meaningless.

10
2

10
3

10
4

10
5

10
6

Number of mutants introduced in RBAC Policy

Performance of JML Model CLasses against Mutation Techniques

P
ro

ce
ss

in
g

T
im

e
(m

s)

ADD PERM REM PERM ADD ROLE REM ROLE

Figure 14. Runtimeperformanceof ourVerificatio Approach.
each library called within C are available, including
the specifications of additional libraries the original
ones may eventually call later on. In some cases, such
a requirement may notoriously increase the amount
of VCs that need to be proved by the tool, so the
verification process becomes prohibitively expensive,
resulting in the specification-creep problem [17]. Second,
an additional problem arises from the lack of support
offered by the current tool for advanced JML concepts,
such as the JML model classes introduced in Section 4
and the JML abstraction functions depicted in in Fig. 8,
as the internally-produced VCs are too complex for the
tool to handle, which limits the applicability of our
assertion-based models.
Subsequently, we present an approach that addresses

these challenges while still providing verification
guarantees for our assertion-based approach. First,
we addressed the specification-creep problem. In
particular, as described in Section 4, we assumed the
Security APIs leveraged within our case study have
been implemented correctly and previously verified
elsewhere. Therefore, there is no need to include their
corresponding source code in our verification process.
Based on this observation, we provided specification
stubs for the leveraged Security APIs whose JML-based
annotations are trivially satisfied. Fig. 15 shows the
translated JML specifications for the method hasRole

of class Subject, which implements an authorization
check in the Apache Shiro API, as shown in Fig.
3 (b). One can see that a trivial method body has
been provided; for the task of static checking a Shiro
module only the contract and not the specification
of hasRole is needed by ESC/Java2. The process of
providing specification stubs can be carried out by
security domain experts (see Table 1) for the Security
APIs and must only be revised when new API versions
are released.
Second, as mentioned before, the JML model classes,

which are a core part of the approach shown in

12
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

1 public class Subject{

2
3 /*@ public normal_behavior

4 @ requires true;

5 @ ensures \result == true || \result == false;

6 @ also

7 @ public exceptional_behavior

8 @ requires false;

9 @ assignable \nothing;

10 @ ensures true;

11 @*/

12 public /*@ pure @*/ boolean hasRole(String r){

13 return true;

14 }

15 }

Figure 15. Specification Stubs for the ApacheShiro API.

1 public interface Account{

2
3 /*@ public normal_behavior

4 @ requires amt > 0.0;

5 @ assignable balance;

6 @ ensures

7 @ (SecurityUtils.getSubject()

8 @ .hasRole("teller") ||

9 @ SecurityUtils.getSubject()

10 @ .hasRole("manager"))

11 @ ==> ...

12 @*/

13 public void withdraw(double amt)

14 throws SecurityException;

15 }

Figure 16. TranslatingModelJMLClasses.

Section 4, are beyond the current capabilities of ESC/-
Java2. To overcome this limitation, we provided JML
specifications that do not employ the JML model
classes and use low-level JML concepts instead. Table 5
shows the implementation-independent model classes
and their corresponding low-level specifications for
each framework. As an example, the aforementioned
hasRole and getAuthoritymethods are directly called
rather than using JML model classes: the role hierarchy
depicted in Table 2 and Fig. 7, which checks that
the current user is granted a role senior to teller (e.g.
manager), can be translated into the JML contracts
shown in Fig. 16 (lines 7-10): the references to themodel
class JMLRBACRole have been substituted for the has-

Role method of class Subject provided by the Apache
Shiro API, and are integrated together by using the
operator || in JML, applied to all relevant senior roles
(e.g., themanager role in line 10). We call this technique
unrolling the role hierarchy. It is also supported by
the JML-based translation tool described in Section 4
by automatically translating XACML policies to JML
specifications suitable for ESC/Java2 and inserting
them into the corresponding source code. This step
relieves the software architect (see Table 1) from
manually providing JML contracts, which is an error-
prone process. Software architects can now leverage an
automated tool for this purpose.
In addition, web-based Java software frameworks,

e.g. Spring Framework, provide support for declarative

access control in addition to programmatic access
control (e.g. by using authorization checks). Declarative
authorization allows a developer to define role-based
restrictions on access to certain protected resources
such as a given Java method (see also Section 3). As an
example, in the Spring Framework we can define access
restrictions in an XML configuration file as follows:

<sec:protect method="BankAccount.withdraw"

access="teller"/>

In the dynamic analysis approach described before,
such declarative rules are implicitly considered because
the Spring framework enforces this role assignment
under the hood. However, in a static approach, we
must also include such configuration files to obtain
a complete picture about the access control features
implemented in the web application. Otherwise, we
would produce false positives because ESC/Java2would
falsely report that an authorization check is missing
although it has been defined in the XML configuration
file (and not in the code). To implement this additional
feature, we parse the XML configuration files to
retrieve the access control statements and insert their
corresponding JML assume statements in the body
of the referenced Java methods—the JML assume

statement lets ESC/Java2 unconditionally assume a
constraint without checking it [17]. For instance, the
XML configuration shown above can be translated into
the following specification that is to be inserted in the
implementation body of the withdraw method of class
BankAccount (Fig. 8):

//@ assume GrantedAuthority.getAuthorities()

//@ .contains("teller");

After the preparing steps, we applied our analysis
technique to the applications under our case study,
by following the mutation-based approach described
before. All mutants were automatically detected by
ESC/Java2 even if they were hidden within the many
methods of the real-world case studies JMoney (125
methods) and OSCAR EMR (136 methods). As an
example, in the following authorization check included
in the JMoney application

if(!currentUser.hasRole("accountant"))

throw new SecurityException("Permission denied!");

a user with the acountant role is permitted to execute
the method. If the user, however, has assumed a role
senior to accountant (e.g. owner), a security exception
is thrown, since the Apache Shiro library call has-

Role provides no native support for implementing role
hierarchies, which must be in turn encoded into a series
of nested hasRole calls listing all the roles that are
authorized to execute a given method.
We used a conventional Lenovo Thinkpad T510 lap-

top (Intel Core i7-620M Processor, 2.66GHz, 8 GB

13
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

Table 5. Mappingbetweenthe JMLRBACand Security-API-basedspecifications

JMLRBACRole.equals(new JMLRBACRole(r)) JMLRBACRole.isSeniorOf(new JMLRBACRole(r))

Spring Framework GrantedAuthority.getAuthorities().contains(r)
GrantedAuthority.getAuthorities().contains(r) ||...|| GrantedAu-

thority.getAuthorities().contains(mostSeniorRole)

Apache Shiro Subject.hasRole(r) Subject.hasRole(r) ||...|| Subject.hasRole(mostSeniorRole)

RBACMonitor RBACMonitor.hasRole(r) RBACMonitor.hasRole(r) ||...|| RBACMonitor.hasRole(mostSeniorRole)

RAM) for our experiments with the static analysis tech-
nique, in an effort to provide increased RAM capabil-
ities to the theorem prover serving as a back-end for
ESC/Java2. The runtime of the three applications under
our case study is given in Table 4, which confirmed
that the preparation steps enabled us to use ESC/Java2
efficiently. Specifically, we avoided the expensive anal-
ysis of container classes, e.g. java.util.Collection,
by applying the aforementioned specification stub tech-
nique. For example, the method getAuthorities()-

.contains() uses a container class of the Java type
Collection and by leveraging the stub technique we
succeeded in eliminating this problem.

6. Discussion and Related Work
In order for the approach presented in Section 4 to
properly detect implementation flaws at the source-
code level, a correct and sound translation from
such a model into our assertion-based constructs is
needed. With this in mind, a formal proof must
include the following: first, only the access rights
depicted in the original policy must be present in their
JML-based counterpart, that is, no potential security
vulnerabilities are introduced by adding extra access
rights in the resulting specifications. Second, all access
rights included in the original policy must be present in
the translated specifications, that is, no inconveniences,
e.g. preventing a legitimate access from taking place,
are introduced by missing access rights included in the
original policy. We present an sketch of such a proof in
Appendix A.
The experimental results depicted in Section 5.1 and

5.2 support our claim that our approach can effectively
expose the set of security vulnerabilities caused by the
incorrect source-code level implementations of security
models. In our approach, we have selected Java for our
proof-of-concept implementation due to its extensive use
in practice. Moreover, we have also chosen JML as the
specification language for defining our assertion-based
security models due to its enhanced tool support as well
as its language design paradigm, which supports rich
behavioral specifications. At the same time it strives to
handle the complexity of using complex specification
constructs, in such a way that it becomes suitable for
average developers to use [7] (see Table 1).
We believe that our approach can be extended to

other programming languages/development platforms.

For instance, Spec# [22] provides rich DBC-based
specifications for the C# language, depicting an
approach similar to JML. Moreover, our approach can
be also applied to other Java-based frameworks such as
JEE [23] or Android [24], which may help implement
authorization checks for guarding access to its core
system services.
Despite our success, some issues still remain in

the verification process. In particular, ESC/Java2 may
produce false positives (in case the built-in theorem
prover cannot prove a VC) and false negatives (e.g.,
restrictions on loop unrolling). To deal with this
situation, a possible solution may consider a runtime
testing approach, like the one we have described using
the JET tool, for all methods raising warnings by ESC/-
Java2, thus showing a way in which both techniques
can be used to provide stronger guarantees for the
verification. Second, as shown in Table 3, the number
of meaningful test cases produced by the JET tool is
considerably less than the number of test cases created,
which may affect the test coverage provided by the tool
and could allow for potential security vulnerabilities to
remain hidden during the verification process. This is
mostly due to the limitations on the automated testing
technique [16]. A possible solution would adopt a static
approach for those methods whose test coverage is
found to be below a given threshold. Finally, we have
found that extended static checking is valuable when
analyzing applications with respect to checking the
implementation of an assertion-based access control
model. In particular, we supported different concepts
depicted in our model, which are in turn based on the
ANSI RBAC standard, such as role hierarchies.
Furthermore, extended static checking represents a

promising approach as there is no need to provide
dedicated test cases nor implement a complete running
system, as software modules can be tested in isolation
by using modular reasoning techniques. Although
ESC/Java2 is quite mature as a research prototype,
some shortcomings still exist with respect to its current
tools and development kits. As there are currently
ongoing efforts for building a new extended static
checker for Java within the OpenJML initiative4, we
hope this approach can be applied to larger case
studies in industrial contexts, supporting advanced

4http://jmlspecs.sourceforge.net/

14
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

JML concepts, such as model features, as well as
complex data structures. This newer extended static
checker is expected to leverage more powerful backend
SMT solvers such as Yices [25]. At the time of
this writing, however, this tool does not completely
support advanced JML specifications, which we use in
our analysis and which are well-supported by ESC/-
Java2. For example, heavyweight JML specifications,
i.e. specifiations that contain normal and exceptional
behavior, are not correctly implemented by OpenJML’s
extended static checker as our early experiments have
shown. However, we use heavyweight specifications as
the basis for our assertations (for example see Fig. 7).
Our work is related to other efforts in software

security: Architectural risk analysis [26] attempts to
identify security flaws on the level of the software
architecture and hence is unrelated to the source-
code level addressed in this approach. Language-
based security approaches in the sense of Jif [27]
allow software to be verified against information
flow policies rather than supporting specific security
requirements for different Security APIs. In addition,
formal verification of RBAC properties has been already
discussed in the literature [18]. These approaches
are mostly focused on verifying the correctness of
RBAC models without addressing their corresponding
verification against an implementation at the source-
code level.
The work closely related to ours involves the use of

DBC, which was explored by Dragoni, et al. [28]. In
addition, Belhaouari et al. introduced an approach to
the verification of RBAC properties based on DBC [29].
Both approaches, while using DBC for checking RBAC
properties, do not include the use of reference models
to better aid the specification of DBC constraints in
the security context. Moreover, no support is provided
as API-independent constructs, such as the JML model
capabilities discussed in our approach.
Other works that apply a DBC approach based

on JML in the security context are presented by
Lloyd et al. (biometric authentication system) [30],
Cataño et al. [31] (smart card system), and Mustafa
et al. [32] (Android system services). These works,
however, do not cover applications consisting of
heterogeneous modules and do not use the combination
of dynamic and static analysis technique for assertion-
based verification.

7. Conclusions and Future Work
In this paper, we have addressed the problem originated
by the existence of security vulnerabilities in software
applications. We have shown how such vulnerabilities,
which may exist due to the lack of proper specification
and verification of security checks at the source-code
level, can be tackled by using well-defined reference

models with the help of software assertions, thus
providing a reference for the correct enforcement
of security properties over applications composed of
heterogeneous modules such as APIs and SDKs. Future
work would include the introduction of assertion-based
models to better accommodate other relevant security
paradigms, e.g., the correct usage of cryptography APIs.
We also plan to refine our proposed RBAC model
introduced in Section 4 by introducing an automated
translation from the specifications depicted in the ANSI
RBAC standard, which are written in the Z specification
language, to our supporting assertion-based language
JML. In addition, we plan to refine the translation
Algorithms shown in Section 4, in such a way their
runtime efficiency can be considerably improved.

Appendix A. Analyzing the Correctness of our
Proposed Approach
In this appendix, we present an analysis of the
correctness of our approach as presented in Section
4. Recall from Fig. 4, our approach is based on the
translation of ANSI RBAC security policies expressed
in the well-known XACML policy language into DBC
contracts written in the JML specification language.
Then, such contracts, along with the source code
of the software modules and any other supporting
configuration files are fed into JML-based tools for
automated verification. With this in mind, an analysis
for correctness may need to take into account the
following: first, the correct implementation of our
proposed JML-based Model Classes, which depict
the ANSI RBAC standard, must be verified. As
mentioned in Section 2, such a standard contains
functional specifications written in the Z language
that unambiguously describe the inner components of
RBAC as well as the interactions between them. We
have provided a manual translation of those Z-based
specifications into the JML language, in such a way the
implementation of our referred model classes can be
guided by them. Since we have proposed in this paper to
use of JML-tools for verification purposes, a natural step
will include to use such tools for verifying the correct
implementation of our model classes, in an approach
similar to the one we have described in Section 5.
We plan to carry on such process as a part of future
work, which may also focus on providing an automated
translation of Z-based specifications into JML, in such
a way any errors or redundancies introduced by our
manual translation effort can be detected and resolved.
Second, the correlation between our approach, the ANSI
RBAC standard, and the semantics of the JML language
needs to be explored. Concretely, a rigorous analysis
involving the semantics of DBC contracts written in
JML must be carried on to guarantee that a given RBAC
policy is correctly enforced at runtime by a software

15 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

module. For such a purpose, the work of Bruns [33]
may serve as a reference for a formal description of
the semantics of the JML language. We plan to work
on such challenging endeavor in the future as well.
Finally, in the remainder of this section, we focus on
showing the correctness the translation of an ANSI
RBAC policy into DBC/JML contracts. As mentioned
before, our approach is mostly concerned with verifying
that a given policy P is correctly enforced by a set
of heterogeneous modules that are used to build up a
software application S. More concretely, our approach
must guarantee that every role in P can potentially
exercise in S only the permissions that were originally
intended in the aforementioned policy P. With this in
mind, we base our correctness claims by showing that
the set of permissions that a given role in P can exercise
at runtime, namely effective runtime permissions, are
the same in both the original policy P as well as in
the produced DBC/JML contracts that are later used for
software verification as described in this paper.

A.1. Basics
As described in Section 4, an ANSI RBAC XACML
Policy can be parsed into the following: a set R of
roles, a set P of permissions, the permission assignment
relation (PA ⊆ R × P) and the role hierarchy RH ⊆ R ×
R where (ri, rj) ∈ RH if and only if ri is senior to role rj.
In addition, a role ri is always senior to itself, e.g., (ri,
ri) ∈ RH. For simplicity, and without loss of generality,
let us assume only a single permission exists for
executing each method in a given Java module. As an
example, given our sample policy depicted in Table 2,
we have: R = {Manager, Agent, Teller, Employee}, P =
{Transfer, Withdraw, Deposit, Close}, PA = {(Manager,
Transfer), (Manager, Withdraw), (Teller, Withdraw),
(Agent, Close), (Employee, Deposit)}, RH = {(Manager,
Manager), (Agent, Agent,) (Teller, Teller), (Employee,
Employee), (Manager, Agent), (Manager, Teller),
(Manager, Employee), (Agent, Employee), (Teller,
Employee)}. Finally, the set of DBC/JML contracts
can be modeled as a relation C ⊆ R × M when R
is the set of roles as described before and M is the
set of Java methods included in a given application
being the subject of a verification process. For each
role name enlisted in a given contract, an entry in C
is produced. As an example, the contract shown in
Fig. 7 can be modeled as an entry of the form (Teller,
withdraw(double)).

A.2. AuxiliaryAlgorithms
In order to support our analysis, we introduce two
auxiliary algorithms: first, Algorithm R takes a set
of DBC/JML contracts and produces the PA’ relation
obtained from the roles and permissions enlisted in
the contracts provided as an input, thus potentially

AlgorithmR : Reconstructing an ANSI RBAC policy
from DBC/JML Contracts.
Data: A Set C of DBC/JML Contracts
Result: the PA’ relation depicting an ANSI RBAC

Policy
1 Initialize PA’ to an empty relation;
2 for each (r, m) ∈ C do
3 p = Get permission from m;
4 if (r, p) < PA’ then
5 PA’ = PA’ ∪ (r, p);

6 return PA’;

Algorithm EP : Obtaining the set of effective
runtime permissions of a role in an ANSI RBAC
Policy.
Data: A role r ∈ R, the PA and RH relations
Result: the set EP of effective runtime permissions

1 Initialize EP to the empty set;
2 for each (r’, p) ∈ PA do
3 if (r, r’) ∈ RH then
4 EP = EP ∪ p;

5 return EP;

reversing the transformation procedure carried on by
our proposed Algorithm T. Second, Algorithm EP
calculates the set of effective runtime permissions for
a given role r in the set of roles R belonging to an
ANSI RBAC policy whose PA and RH relations are
provided as an input. Recall that following the ANSI
RBAC standard, the set of effective permissions that are
available to a given role r are those defined in the PA
relation of the policy plus all other permissions that
are also assigned to roles that happen to be junior to
it. As an example, executing Algorithm EP on the role
Manager defined in the policy described in Table 2 will
lead to the following permissions: {Transfer, Withdraw,
Deposit, Close}.

A.3. Correctness Analysis
We start our analysis by showing that the set
of produced DBC/JML contracts contains no extra
permissions other than the ones defined in the original
ANSI RBAC XACML policy. This way, we guarantee
that no security vulnerabilities are introduced by
our translation procedure into the generated set of
DBC/JML contracts by allowing a given role to execute
at runtime a permission not intended in the original
policy. We formalize such requirement in the following:

Lemma 1. All effective runtime permissions present in
the produced DBC/JML contracts are included in the
original ANSI RBAC XACML policy. Formally, given an

16 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

XACML RBAC policy encoded as (R, P, PA, RH), ∀r ∈ R,
@ p ∈ P s.t. p < EP (r, PA, RH) ∧ p ∈ EP (r,R (T (PA, RH)),
RH).

Proof. Let us assume ∃ p ∈ P s.t. p < EP (r, PA, RH) ∧ p
∈ EP (r, R (T (PA, RH)), RH) for some r ∈ R. In order to
have p ∈ EP (r,R (T (PA,RH)),RH), following Algorithm
EP (lines 2-4), there must be (r’, m) ∈ C for some (r, r’)
∈ RH and m = p (Algorithm R, lines 2-5). Moreover,
since (r’, m) ∈ C, then, following Algorithm T (lines 7-
13), there must be (r’, p) ∈ JM such that m = p. If (r’, p) ∈
JM, then (r’, p) ∈ PA since JM ⊆ PA, following Algorithm
T (lines 2-6). If (r’, p) ∈ PA and (r, r’) ∈ RH, then p ∈ EP
(r, PA, RH), which contradicts our assumption that p <
EP (r, PA, RH).

A.4. Soundness Analysis
In addition, we must also show that all the permissions
included in the original ANSI RBAC policy are also
included in the set of DBC/JML contracts. This way,
we also guarantee that no security vulnerabilities are
introduced into the produced contracts by missing
to include one or more permissions included in the
original policy. As described at the end of Section
3, failing to execute a permission originally included
in a given policy may be the source of non-trivial
vulnerabilities by leaving applications in an inconsistent
state. We formalize this requirement as follows:

Lemma 2. All effective permissions included in the
original RBAC XACML policy are included in the
produced DBC/JML contracts. Formally, given an
XACML RBAC policy encoded as (R, P, PA, RH), ∀r ∈
R, @ p ∈ P s.t. p ∈ EP (r, PA, RH) ∧ p < EP (r, R (T (PA,
RH)), RH).

Proof. Let us assume ∃ p ∈ P s.t. p ∈ EP (r, PA, RH) ∧
p < EP (r, R (T (PA, RH)), RH) for some r ∈ R. If p ∈
EP (r, PA, RH) then (r’, p) ∈ PA for some (r, r’) ∈ RH
following Algorithm EP lines 2-4. If (r’, p) ∈ PA, then
(r’, p) ∈ JM following Algorithm T (lines 2-6). Moreover,
since (r’, p) ∈ JM, then, following Algorithm T (lines 9-
11), there must be (r’, m) ∈ S such that m = p. Since (r’,
m) ∈ S, then (r’, p) ∈ PA’ following Algorithm R (lines
2-5). Subsequently, if (r’, p) ∈ PA’, then p ∈ EP (r, R (T
(PA, RH)), RH) following Algorithm EP (lines 3-4). This
contradicts our assumption that p < EP (r, R (T (PA,
RH)), RH).

A.5. Final Remarks
Finally, following the topics discussed in the beginning
of this Appendix, we formalize the correctness claims
of our translation approach by means of the following:

Theorem 1. The set of effective runtime permissions of
each role listed the original XACML RBAC policy and

the set of effective runtime permissions from the same
role obtained from the translated DBC/JML contracts
are the same. Formally, given an XACML RBAC policy
encoded as (R, P, PA, RH), ∀r ∈ R, EP (r, PA, RH) ≡ EP (r,
R (T (PA, RH)), RH).

Proof. The theorem follows from Lemma 1 and Lemma
2, as those two cases are sufficient to show that the set
of effective runtime permissions from the original ANSI
RBAC XACML policy and the ones from the DBC/JML
are the same.

Acknowledgement. The work of Carlos Rubio-Medrano and
Gail-Joon Ahn was partially supported by a grant from the US
Department of Energy (DE-SC0004308). The work of Karsten
Sohr was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 16KIS0074.

References
[1] Rubio-Medrano, C.E. and Ahn, G.J. (2014) Achieving

security assurance with assertion-based application
construction. In Proc. of the 10th Int’l Conf. on
Collaborative Computing: Networking, Applications and
Worksharing (Collaboratecom) (IEEE): 520–530.

[2] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,
D. and Shmatikov, V. (2012) The most dangerous code
in the world: validating SSL certificates in non-browser
software. In Proc. of the ACM Conf. on Computer and
comm. security: 38–49.

[3] Fahl, S., Harbach, M., Muders, T., Baumgärtner, L.,
Freisleben, B. and Smith, M. (2012) Why eve and
mallory love Android: an analysis of Android SSL
(in)security. In Proc. of the ACM Conf. on Computer and
communications security: 50–61.

[4] Sandhu, R.S., Coyne, E.J., Feinstein, H.L. and Youman,

C.E. (1996) Role-Based Access Control Models. IEEE
Computer 29(2): 38–47.

[5] American National Standards Institute Inc. (2004),
Role Based Access Control. ANSI-INCITS 359-2004.

[6] Hoare, C.A.R. (1969) An axiomatic basis for computer
programming. Communications of the ACM 12(10): 576–
580.

[7] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J.,
Leavens, G.T., Leino, K. et al. (2003) An overview of
JML tools and applications. In Proc. 8th Int’l Workshop
on Formal Methods for Industrial Critical Systems (FMICS
03): 73–89.

[8] Rosenblum, D.S. (1995) A practical approach to
programming with assertions. IEEE Trans. Softw. Eng.
21(1): 19–31.

[9] Cheon, Y., Leavens, G., Sitaraman, M. and Edwards, S.

(2005) Model variables: cleanly supporting abstraction
in design by contract: Research articles. Softw. Pract.
Exper. 35(6): 583–599.

[10] Spivey, J.M. (1989) The Z notation: a reference manual
(Upper Saddle River, USA: Prentice-Hall, Inc.).

[11] OASIS (2014), XACML v3.0 Core and Hierarchical
Role Based Access Control (RBAC) Profile Version

17
EAI Endorsed Transactions on

Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

Achieving Security As surance withAs sertion-basedApplication Construction

C. E. Rubio-Medrano et al.

1.0. http://docs.oasis-open.org/xacml/3.0/xacml-
3.0-rbac-v1-spec-cd-03-en.html.

[12] OASIS (2014), eXtensible Access Control Markup
Language (XACML) TC. https://www.oasis-open.

org/committees/xacml/.
[13] Pivotal, Inc. (2013), Spring security 3.1.2. http://

static.springsource.org/spring-security/site/

index.html.
[14] The Apache Software Foundation (2013), Apache shiro

1.2.1. http://shiro.apache.org/.
[15] G. T. Leavens and E. Poll and C. Clifton and

Y. Cheon and C. Ruby and D. Cok and J. Kiniry

(2004), JML Reference Manual. http://www.eecs.ucf.
edu/~leavens/JML/jmlrefman/jmlrefman_toc.html.

[16] Cheon, Y. (2007) Automated random testing to detect
specification-code inconsistencies. In Proc. of the 2007
Int’l Conf. on Software Engineering Theory and Practice
(Orlando, Florida, U.S.A.).

[17] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson,

G., Saxe, J.B. and Stata, R. (2002) Extended static
checking for Java. In Proc. of the ACM SIGPLAN Conf. on
Prog. language design and implementation: 234–245.

[18] Hu, H. and Ahn, G.J. (2008) Enabling verification and
conformance testing for access control model. In Proc.
of the 13th ACM Symp. on Access Control Models and
Technologies: 195–204.

[19] OSCAR EMR (2014), OSCAR ElectronicMedical Records
System. http://oscar-emr.com/.

[20] J. Gyger and N.l Westbury (2014), JMoney Financial
System. http://jmoney.sourceforge.net/.

[21] Jia, Y. and Harman, M. (2011) An analysis and survey of
the development of mutation testing. IEEE Transactions
on Software Engineering 37(5): 649 –678.

[22] Barnett, M., Leino, R. and Schulte, W. (2005) The spec#
programming system: An overview. In Proc. of the 2004
Int’l Conf. on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (Berlin: Springer-Verlag): 49–
69.

[23] Oracle Inc. (2014), Java Platform Enterprise Edition.
http://www.oracle.com/technetwork/java/javaee/

overview/index.html.
[24] Google Inc. (2014), Android. http://www.android.

com.
[25] Dutertre, B. and de Moura, L. (2006) A fast linear-

arithmetic solver for dpll(t). In Proc. of the 18th Int’l
Conf. on Computer Aided Verification, CAV’06 (Berlin:
Springer): 81–94.

[26] McGraw, G. (2006) Software Security: Building Security In
(Addison-Wesley).

[27] Sabelfeld, A. and Myers, A.C. (2003) Language-based
information-flow security. IEEE J. Selected Areas in
Communications 21(1): 5–19.

[28] Dragoni, N., Massacci, F., Naliuka, K. and Siahaan,

I. (2007) Security-by-contract: Toward a semantics
for digital signatures on mobile code. In Public Key
Infrastructure (Springer Berlin), LNCS 4582, 297–312.

[29] Belhaouari, H., Konopacki, P., Laleau, R. and Frappier,

M. (2012) A design by contract approach to verify access
control policies. In 17th Int’l Conf. on Engineering of
Complex Computer Systems (ICECCS): 263 –272.

[30] Lloyd, J. and Jürjens, J. (2009) Security analysis of a
biometric authentication system using UMLsec and JML.
In MoDELS (Springer), Lecture Notes in Computer Science
5795: 77–91.

[31] Cataño, N. andHuisman,M. (2002) Formal specification
of Gemplus’s electronic purse case study. In FME 2002
(Springer), LNCS 2391: 272–289.

[32] Mustafa, T. and Sohr, K. (2014) Understanding the
implemented access control policy of android system
services with slicing and extended static checking.
International Journal of Information Security : 1–20doi:10.
1007/s10207-014-0260-y, URL http://dx.doi.org/

10.1007/s10207-014-0260-y.
[33] Bruns, D. (2010) Formal semantics for the java modeling

language. In Informatiktage (GI), LNI S-9: 15–18.

18 EAI Endorsed Transactions on
Collaborative Computing

12 2015 | Volume 1 | Issue 6 | e3EAI
European Alliance
for Innovation

