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Abstract. Despite the growing understanding of DNA methylation’s role in cancer biology, 
many existing studies focus on analyzing individual methylation sites or predefined gene 
sets, leaving the interactions between co-methylated regions largely unexplored. In this 
study, we apply a network-based approach to explore methylation features across six 
cancer types using the OhmNet model. By constructing co-methylation networks and 
utilizing multi-layer network embedding, we identify significant co-methylation patterns 
associated with key genes implicated in tumorigenesis. Through pathway enrichment 
analysis, we discovered key pathways related to cell adhesion and axonogenesis, 
suggesting a novel link between DNA methylation and nerve-cancer crosstalk. Our work 
not only reveals unique insights into the methylation landscape of cancers but also 
introduces a scalable, label-free network-based approach for studying complex epigenetic 
regulation. 
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1 Introduction 

Cancer research has made significant progress in recent decades, but the molecular mechanisms 
driving tumorigenesis remain a focal point for understanding and targeting the disease. DNA 
methylation is one of the crucial epigenetic mechanisms in regulating gene expression. 
Aberrations in DNA methylation patterns are now recognized as key features of various cancer 
types, contributing to the silencing of tumor suppressor genes and activation of oncogenes. 
These changes are pivotal for cancer initiation, progression, and metastasis. Analyzing these 
patterns allows researchers to understand cancer biology better and potentially identify 
biomarkers for early diagnosis, prognosis, and treatment stratification. 

DNA methylation is an epigenetic modification involving adding a methyl group to the 5-carbon 
of cytosine in CpG dinucleotides, primarily facilitated by DNA methyltransferases (DNMTs) 
[1]. This modification can regulate gene expression, typically by silencing genes when it occurs 
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in gene promoter regions. Aberrant DNA methylation has been implicated in various diseases, 
including cancer, where it is known to play a dual role. Tumor suppressor genes are often 
hypermethylated and silenced in cancer cells, while global hypomethylation can lead to genomic 
instability and the activation of oncogenes [2]. 

DNA methylation alterations are highly dynamic in the context of cancer, often exhibiting 
cancer-type-specific patterns. These methylation changes are not only markers of cancer but can 
also play active roles in driving tumorigenesis [1]. Understanding these patterns can inform 
targeted therapies, as epigenetic drugs that modify methylation status are increasingly being 
explored as therapeutic agents. 

In recent years, machine learning and network analysis have become powerful tools in biology. 
The OhmNet model [3], a hierarchy-aware unsupervised node feature learning method, has 
demonstrated its potential in analyzing complex, multi-layered biological networks by focusing 
on the hierarchical organization of proteins across different tissues. In prior studies, OhmNet 
has been used to classify tissue-specific functions by integrating protein-protein interactions 
across different tissues. This model emphasizes multi-scale tissue organization, offering better 
predictions of cellular functions than flat network models. 

Similar to protein-protein interaction (PPI) networks, the relationships among genes can be 
modeled as interactions that reflect co-regulation, co-methylation, or mutual influence in various 
biological contexts. By treating methylation profiles as a multi-layer network where each layer 
corresponds to a specific cancer type, we can explore the similarities and differences in 
methylation patterns across cancers. 

One key advantage of applying OhmNet to methylation data is its ability to analyze large-scale 
molecular interactions without requiring prior labeling, much like its application in PPI 
networks. Methylation data, like protein-protein interactions, often lacks clearly defined 
categories or labels, especially when investigating epigenetic changes in cancer. OhmNet, as an 
unsupervised model, can identify patterns of co-methylation that might indicate functional 
groupings of genes or pathways involved in cancer development without needing predefined 
labels or categories [4]. 

Using a network-based approach allows for the identification of co-methylated gene modules, 
which could provide insights into common pathways affected by epigenetic alterations in 
different cancers. This modular view of methylation patterns has the potential to highlight key 
regulatory nodes that are disrupted across multiple cancers or that are unique to specific cancer 
types [5]. 

The main contributions and advantages of our study: 

• Comparative Analysis Across Cancer Types: By constructing methylation networks for 
different cancer types, we aim to uncover both conserved and cancer-specific methylation 
signatures. This could reveal shared epigenetic mechanisms across cancers, suggesting 
common pathways of tumorigenesis. 

• Identifying Epigenetic Biomarkers: Methylation signatures are increasingly being used as 
biomarkers for cancer diagnosis and prognosis.[2] Network analysis of methylation data 
could identify clusters of co-methylated genes that serve as robust biomarkers for specific 
cancer types. 



 

 

2 Methods 

2.1 Data Collection and Processing 

We collected Illumina HumanMethylation450K data for six types of cancer from the TCGA and 
BioStudies databases: Breast invasive carcinoma, Ovarian serous cystadenocarcinoma, Uterine 
Corpus Endometrial Carcinoma, Stomach adenocarcinoma, Lung squamous cell carcinoma, and 
Liver hepatocellular carcinoma. The data were integrated and processed to remove any missing 
values (NA) to ensure the quality and completeness of the dataset for subsequent analyses. 

2.2 Co-methylation Network Construction 

We performed a correlation analysis on the DNA methylation levels of CpG sites to explore co-
methylation relationships between different CpG loci. We conducted multiple random 
extractions of the beta values for 10,000 CpG sites (beta values reflect the methylation levels of 
CpG loci, ranging from 0 to 1). We then calculated the Pearson correlation coefficient for every 
pair of CpG sites to quantify their linear relationship. 

Let B represent the matrix containing the beta values of all CpG sites across samples, where 
rows correspond to CpG loci and columns correspond to samples. For each pair of CpG sites i 
and j, their correlation is computed using the following formula. 

𝑟!" =
𝑐𝑜𝑣&𝐵! , 𝐵")
𝜎#!𝜎#"

(1) 

In equation (1), where rij denotes the correlation between CpG sites i and j, cov(Bi, Bj) represents 
the covariance between the beta value vectors of the two sites, and σBi and σBj are the standard 
deviations of the respective vectors. 

To filter out noise and non-significant correlations, we applied a correlation threshold T. Only 
pairs of CpG sites with an absolute correlation value |rij| greater than the threshold T were 
retained for subsequent analysis. 

2.3 Feature Learning Using Ohmnet 

Based on the CpG site correlation analysis, we constructed an undirected network, referred to 
as the co-methylation graph. Each node represents a CpG site, and edges between two nodes 
indicate that the Pearson correlation coefficient between the two CpG sites exceeds a predefined 
threshold T. Connections between CpG pairs that do not meet this threshold are considered 
insignificant and thus excluded from the network. 

After inputting this network into the Ohmnet model, the model generated an embedding for each 
CpG site. Ohmnet uses a multilayer network embedding technique to map the original high-
dimensional network structure into a lower-dimensional vector space, where each CpG site is 
represented as a vector in this space. 

We applied dimensionality reduction algorithms, t-distributed Stochastic Neighbor Embedding 
(t-SNE), and Principal Component Analysis (PCA), to project the embeddings from the high-
dimensional space into two dimensions. We labeled each CpG site based on the cancer type of 
the sample. 



 

 

2.4 Pathway Enrichment Analysis 

We divided the space into multiple equally sized grid cells based on the PCA results. The size 
of each grid cell was determined by the parameter grid width, and each data point was assigned 
to its corresponding grid cell based on its coordinates in the 2D space. 

We recorded the number of CpG sites corresponding to different cancer types for each grid cell. 
To ensure that a grid cell contained a significant co-methylation pattern, we retained only those 
grid cells that included at least min points data points for each cancer type. CpG sites in these 
enriched cells were considered potential key regulatory sites within these cancers. 

We then mapped the CpG sites from the enriched cells to their corresponding genes and 
performed Gene Ontology (GO) enrichment analysis on the resulting gene set. The GO analysis 
encompassed three domains: Molecular Function (MF), Cellular Component (CC), and 
Biological Process (BP). We employed hypergeometric testing, combined with the Benjamini-
Hochberg multiple hypothesis testing correction, to identify significantly enriched GO terms. 

3 Results 

3.1 Study Design 

 
Fig. 1. Study Design 

According to our study design (Fig. 1), we download methylation data for six types of cancer 
from the TCGA and BioStudies database. After standardized processing, we construct co-
methylation networks for each type of cancer based on Pearson correlation coefficients. These 
networks are then input into the Ohmnet model for feature learning, followed by dimensionality 
reduction of the learned features. By analyzing the methylation sites in the enriched regions 
identified through dimensionality reduction, we identify the corresponding genes and further 
conduct gene enrichment analysis. 



 

 

We collected methylation data for six types of cancer and constructed co-methylation networks 
for each. Using the OhmNet model, we learned the features and visualized the results. Based on 
methylation sites enriched in specific regions, we identified the corresponding genes and 
conducted further pathway enrichment analysis.  

3.2 BRCA, OV, and UCEC 

To evaluate whether OhmNet can identify shared CpG sites across different cancers, we first 
selected a few cancers known to exhibit similarities at the gene expression level. Specifically, 
we focused on breast invasive carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), 
and uterine corpus endometrial carcinoma (UCEC). These cancers share commonalities due to 
the involvement of several key genes, such as FGFR1OP2, BCL9L, and ACTB, which are 
known to play a role in their progression [6, 7, 8]. Our aim was to test whether our approach 
could accurately identify these genes. If successful, this would demonstrate the robustness of 
our method. 

 
Fig. 2. Results of Breast Invasive Carcinoma (BRCA), Ovarian Serous cystadenocarcinoma (OV), and 
Uterine Corpus Endometrial Carcinoma (UCEC). a. The t-SNE visualization of OhmNet embedding results 
reveals distinct separation among the cancer clusters. b. The UMAP visualization illustrates well-separated 
cancer clusters from the OhmNet embedding results. c. The PCA visualization with the most densely 
overlapping region, is indicated by the red box. d. Results from the GO Enrichment analysis for genes 
within the overlapping region. The y-axis is the description of the corresponding pathways, while the x-
axis shows the Gene Ratio, which represents the proportion of genes associated with a specific pathway 
relative to the total number of genes in the overlapping region. The size of the circles corresponds to the 
number of genes linked to each pathway, with larger circles indicating a higher gene count in the overlap. 
Additionally, the circle color reflects the p-adjust value; a smaller p-adjust signifies the greater significance 
of the results. 



 

 

We began by obtaining methylation site data from the TCGA website, then constructed 
methylation networks (Methods) compatible with the OhmNet input format. As a result, OhmNet 
generated an output where each methylation site was represented in a 128-dimensional 
embedded matrix. To visualize the results, we applied three different dimensionality reduction 
techniques: t-SNE, UMAP, and PCA. Our goal was to visualize the embeddings while 
preserving both global and local structures in the data. Notably, the three cancers clustered 
distinctly in both t-SNE (Fig. 2a) and UMAP (Fig. 2b), highlighting the ability of OhmNet to 
effectively separate them. However, in the PCA plot (Fig. 2c), the clusters showed noticeable 
overlap. We believe this occurs because PCA emphasizes global variance, which helps retain 
broad patterns within the data. Unlike UMAP and t-SNE, which prioritize local structure and 
tend to separate clusters more distinctly, PCA maintains distance relationships across the entire 
dataset, which can result in overlapping patterns. 

After confirming the embedding capabilities of OhmNet, we proceeded with downstream 
analysis. We began by selecting the most overlapped regions in the PCA plot (Fig. 2c). Our 
reasoning was that CpG sites (nodes) located near each other likely share similar 128-
dimensional embeddings from OhmNet, which also suggests they have similar neighborhood 
structures or are closely connected in the constructed methylation site networks. We 
hypothesized that genes in this region are significant across all three cancers and may play 
crucial roles. Indeed, within this region, we successfully identified key genes contributing to 
Breast Cancer, Ovarian Cancer, and Endometrial Cancer: FGFR1OP2, BCL9L, and ACTB. 

We also performed GO enrichment analysis to identify the pathways associated with these genes. 
As shown in the results (Fig. 2d), the most prominent pathway is cell-cell adhesion via plasma 
membrane adhesion molecules, which involves a relatively large number of genes and has a 
high gene ratio. The small p-adjust value further highlights its significance. The second-ranked 
pathway is homophilic cell adhesion via plasma membrane adhesion molecules. These findings 
are reasonable because these pathways are crucial in maintaining tissue structures, and 
disruption of these interactions facilitates cancer development [9, 10]. These results demonstrate 
that OhmNet can produce significant and meaningful outcomes, confirming that our study 
design effectively constructs a suitable input network for OhmNet to achieve these results. 

3.3 STAD, BRCA, LUSC, and LIHC 

After demonstrating OhmNet ’s ability to identify CpG sites (or genes) associated with related 
cancers, we extended our approach to four cancers that lack obvious relationships. Our goal was 
to determine whether any shared CpG sites (or genes) exist across these cancers. If such genes 
are identified, their CpG sites could serve as potential therapeutic targets. Additionally, our 
study suggests that using OhmNet to uncover shared CpG sites may become a valuable way to 
discover key insights, potentially playing a broader role in future cancer research and treatment 
strategies. We obtained data on four cancer methylation sites from the TCGA website and 
constructed networks to serve as inputs for OhmNet. After conducting the analysis, we generated 
visualization plots by reducing dimensionality. The t-SNE plot (Fig. 3a) notably reveals that the 
Liver Cancer cluster is divided into two distinct parts, while the UMAP plot (Fig. 3b) 
demonstrates clear cluster separation. This phenomenon may be attributed to several factors. 
First, different liver cancer subtypes could exhibit distinct DNA methylation patterns. Second, 
t-SNE might amplify subtle differences, whereas UMAP provides a more global perspective. 
Lastly, the formation of two clusters could also be an artifact of how t-SNE manages the 



 

 

complex structure of methylation data. In our PCA analysis, we repeated the previous pipeline 
to identify the most overlapping regions. However, we observed that the Stomach Cancer cluster 
did not overlap with any other cancer types (Fig. 3c). This finding suggests that the methylation 
site patterns in Stomach Cancer may differ significantly from those of other cancers. Given that 
over 50,000 methylation sites associated with these four cancers are available on the TCGA 
website, we repeated the process several times, randomly selecting 1,000 methylation sites for 
each iteration. Remarkably, all three types of visualization plots produced consistent results 
across these trials. 

 
Fig. 3. Results of Stomach adenocarcinoma (STAD), Breast invasive carcinoma (BRCA), Lung squamous 
cell carcinoma (LUSC), and Liver hepatocellular carcinoma (LIHC). a. The t-SNE visualization of the 
OhmNet embedding results shows that the cancer clusters are roughly separated, though the Liver Cancer 
cluster appears to be truncated. b. The UMAP visualization showing that the cancer clusters are distinctly 
separated, highlighting clear delineations among the different cancer types. c. The PCA visualization 
identifies the most densely overlapping region, marked by the red box. Notably, the Stomach Cancer 
cluster does not overlap with any other clusters, indicating a unique expression profile. 

From the GO analysis (Fig. 4), we focused on pathways that appeared in at least half of the total 
results. These include kidney development, pattern specification process, axonogenesis, central 
nervous system neuron differentiation, cell fate commitment, embryonic organ development, 
gland development, axon development, and renal system development. It’s important to note 
that these pathways were generated solely from genes associated with BRCA, LUSC, and LIHC, 
as no overlapping regions were found for STAD. We anticipate that further exploration will 
uncover the roles these pathways may play in advancing cancer treatment. 



 

 

 

 

 
Fig. 4. GO Enrichment results of Stomach adenocarcinoma (STAD), Breast invasive carcinoma (BRCA), 
Lung squamous cell carcinoma (LUSC), and Liver hepatocellular carcinoma (LIHC). From the overall 
results, we selected nine key outcomes, each of which highlighted several important pathways. For each 
outcome, we randomly selected 1,000 CpG sites from the TCGA dataset. 

4 Discussion 

We generated networks of correlated CpG islands in tumors from online databases and applied 
the Ohmnet algorithm to these co-methylation networks for better feature learning. The GO 
enrichment result showed significant correlations of the common methylated CpG islands with 
gene function related to axon development and axonogenesis. This result suggested the 
involvement of neurogenesis in the tumor type we sampled (Breast invasive carcinoma, Lung 
squamous cell carcinoma, and Liver hepatocellular carcinoma), indicating the presence of 
nerve-cancer crosstalk. This phenomenon provides an important aspect in cancer research since 
there is a correlation between high intratumoral nerve density and high recurrence and poor 
prognosis in many types of solid tumors [11]. Our findings about functional enrichment in 
axonogenesis also indicate the important role of nerve-cancer crosstalk, which is often neglected 
in the study of tumor microenvironments. It was found that their interaction is a reciprocal 
process. Cancer cells promote innervation by secreting extracellular vesicles containing 
neurogenic molecules and axon guidance factors such as ephrin B1, while nerves can stimulate 
tumor growth by releasing certain neurotransmitters. The cancer-promoting microenvironment 
can be cultivated together by sympathetic and parasympathetic innervation [11]. Studies in 
mammary gland development have confirmed the role of axon guidance molecules in gland 
morphogenesis and epithelial homeostasis [12, 13]. Therefore, it is reasonable to assume that 
they also play a role in breast cancer. Studies confirmed that axon guidance molecules act as 



 

 

tumor suppressors in the mammary tissue by inhibiting proliferation and metastasis [14]. Axon 
guidance molecules also play important roles in liver fibrosis, hepatocellular carcinoma, and 
multiple types of lung cancers [15, 16]. Our findings may re-emphasize the role of nerves and 
axon guidance molecules in cancer development from the methylation point of view, potentially 
contributing to the prosperous field of cancer neuroscience [17]. 

We used the Ohmnet algorithm [3] to automatically learn features of the co-methylation 
networks. Ohmnet is designed to optimize feature learning in multi-layer networks by utilizing 
the hierarchy information of layers based on the assumption that nodes in the nearby layers in 
the hierarchy share similar features. The embedding on a single layer is based on the Node2Vec 
algorithm [18], where it first uses random walk to embed nodes into low-dimension vector 
spaces, then defines an objective function to make node embedding that can predict the features 
of its neighborhood nodes. However, there are some shortcomings of this algorithm. Node2Vec 
belongs to shallow embedding approaches, which simply directly optimize an embedding vector 
for each node, lacking parameter sharing between different nodes [19]. Moreover, the logic 
behind the random walk method is to obtain an encoder network that represents the distances of 
input nodes. This might result in an over-emphasis on proximity information while 
compromising structural information [20]. Due to these limitations, the shallow embedding 
approaches are replaced by graph neural networks (GNNs)-based methods. For example, Deep 
Graph Infomax (DGI) replies on graph convolutional network architecture and trains encoder 
for maximizing mutual information between local and high-level graphs. It can better recognize 
the overall graph structure while preserving local information [20]. In the future, we could test 
the dataset on other graph representation learning methods and design more detailed 
downstream tasks to fully exploit the power of these algorithms. Due to the limitations of our 
computational resources and time, only a small percentage of available data were analyzed. The 
methylation data we used came from Infinium HumanMethylation450K, which is now replaced 
by the MethylationEPIC v2.0 with a significant increase of CpG islands covered [21, 22]. We 
could also sample more cancer types and possibly combine existing space and time information 
about the key transitions during cancer initiation and progression [23] to seek potential 
biomarkers or underlying mechanisms. Our work shows the potential of advanced computer 
science in analyzing biological data. The input can extend to networks other than DNA 
methylation, exploiting the power of state-of-the-art machine-learning technology in modern 
data-driven research. 

5 Conclusion 

Our study demonstrates the application of the OhmNet model in identifying co-methylation 
networks across different cancer types. By analyzing co-methylated gene clusters, we identified 
key regulatory nodes and pathways implicated in cancer progression, including those involved 
in cell adhesion and neurogenesis. Our findings support the emerging role of nerve-cancer 
crosstalk and axon guidance molecules in cancer biology. The results indicate that network-
based approaches such as OhmNet hold promise for identifying shared epigenetic features and 
potential therapeutic targets across cancer types. Practically, these co-methylation patterns could 
possibly serve as epigenetic biomarkers for early diagnosis and prognosis, while cancer-specific 
patterns may improve personalized therapies targeting tumor-specific methylation changes. 



 

 

Future work will aim to extend this analysis to additional data and explore advanced graph 
learning algorithms to further develop the cancer-specific methylation network. 
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