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Abstract. With the development of modern higher education, university campuses serve 
multiple functions for both faculty and students, including teaching, research, and daily 
life. These campuses commonly face issues such as high population density, frequent 
mobility, and complex composition. Accurate prediction of campus traffic environments 
is fundamental for scientific and efficient management. Predictive data can support various 
aspects of campus operations, including energy conservation, resource allocation, event 
scheduling, hazard prevention, and emergency response, making it of significant 
importance. This paper leverages the advantages of wireless network seamless roaming 
technology to obtain the number of people in different areas from wireless controllers. 
Based on this, we propose a crowd flow prediction model using ARIMA-CNN-LSTM. The 
model has been tested, and its accuracy meets expectations and surpasses traditional 
algorithms. 
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1 Introduction 

Universities serve as cradles for nurturing high-quality talents and are crucial bases for 
knowledge innovation and scientific research. Campus management is a vital component in 
ensuring the normal operation of universities and achieving their educational objectives. The 
university campus, which hosts tens of thousands of faculties and students for learning, research, 
work, and daily life, typically has a high population density. Accurate monitoring of personnel 
movement within the campus is essential for enhancing the level of campus management. 

Predicting pedestrian flow in campus public areas can help students plan and arrange their time 
in advance, avoiding peak hours when visiting libraries, dining halls, and other areas, thereby 
ensuring the effective utilization of public resources. By forecasting the number of diners, it 
aids staff in making reasonable scheduling and arrangements, reducing the potential risks 
associated with large gatherings and providing staggered services. By considering pedestrian 
trajectories, it is possible to better predict the air conditioning load of building clusters, 
effectively reducing waste in building air conditioning energy consumption. In summary, 
predicting the flow of people on campus holds significant importance for enhancing campus 
safety management, optimizing resource allocation, achieving energy conservation and 
emission reduction, and improving emergency response capabilities. 
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In recent years, with the continuous increase in investment in the construction of information 
infrastructure in universities, campuses have generally achieved full coverage of wireless 
network signals. Wireless networks, with their flexibility and portability, provide users with the 
ability to access the internet anytime and anywhere. How can wireless network technology be 
utilized to assist in predicting campus crowd flow? A significant amount of research has been 
conducted in the field of crowd flow prediction, resulting in the development of various 
prediction models and methods. 

In this paper, we propose a regional crowd flow prediction model that integrates WiFi 
technology. This model predicts regional crowd flow based on the number of users connected 
to the wireless network in a given area, offering a new solution for predicting campus personnel 
flow. The structure is organized as follows: Section 2 introduces the research work and literature 
review in the relevant field. Section 3 presents the correlation between the deployment structure 
of campus wireless networks and regional crowd flow. Section 4 introduces algorithm principles 
and establishes a crowd flow combination prediction model. Section 5 presents and evaluates 
the experimental results. Finally, Section 6 concludes the paper and points out further work. 

2 Related work 

A variety of techniques-based approach for crowd flow prediction has been proposed. Z. Chen 
et al. [1] presented a passive human activity recognition approach using WiFi CSI data 
processed by an Attention-Based BLSTM network, enabling activity detection without the need 
for wearable sensors. P. Fuxjaeger et al. [2] discussed a method for privacy-preserving Wi-Fi 
monitoring to analyze road traffic without compromising the privacy of individual devices, 
leveraging the high number of probe requests emitted by vehicles for meaningful travel time 
information. M.Traunmueller et al. [3] presented a model that uses large-scale WiFi probe 
request data to simulate urban mobility trajectories in dense urban environments, highlighting 
the potential of WiFi data for understanding city mobility patterns and the privacy issues 
associated with the growing availability of public WiFi networks. L. W. Chen et al. [4] 
developed a WiFi-based monitoring system to analyze campus crowd behavior by examining 
MAC addresses, RSSI, and Wireless APs, employing time series analysis for predictions and 
offering insights into crowd dynamics. C. H. Liu et al. [5] presented an Attentive Convolutional 
LSTM model for citywide crowd flow modeling, which integrates spatial and temporal features 
to predict crowd density and flows across different locations in a metropolitan area. M. V. 
Ramesh et al. [6] introduced a novel wireless sensor network architecture that leverages 
smartphones as sensor nodes to predict and mitigate crowd disasters, particularly stampedes, by 
analyzing data from embedded sensors like accelerometers, GPS, and light sensors. O. Yamada 
et al. [7] presented a crowd flow prediction method that utilizes time series Point of Interest 
(PoI) stay counts, aiming to support behavior planning for crowd avoidance, and demonstrates 
its effectiveness in reducing prediction errors compared to methods based solely on headcount. 
K. Yasufuku and A. Takahashi [8] have developed a real-time crowd flow prediction and
visualization platform that integrates agent-based crowd simulation with advanced crowd
management systems, designed for crowd management in large events and specific facilities.
Xing, J. et al. [9] propose a prediction method based on Graph Neural Networks (GNN), referred
to as STGs (Spatial-Temporal Graphs), for crowd flow prediction within urban areas. This
approach involves jointly constructing spatial and temporal graphs from grid maps, and then



applying Graph Neural Networks to directly capture the relationships between regions. D. He 
et al. [10] proposed a spatiotemporal hybrid neural network model for crowd flow prediction in 
critical urban areas, termed NDV-LSTM. This model integrates the Node2Vec graph embedding 
algorithm with the Long Short-Term Memory (LSTM) network to predict crowd flow in key 
urban regions. H. Go et al. [11] proposed a deep learning model based on global-local structures 
for crowd flow prediction. This model simultaneously utilizes both overall (global) and location-
type-specific (local) crowd flow data to enhance the prediction accuracy for each sub-group. 
The research results indicate that the proposed model improves prediction accuracy across 
different datasets compared to related work that only uses target category data for prediction. 
Shiyu Zhang et al. [12] proposed a framework called CrowdTelescope, which is based on Wi-
Fi positioning data for multi-granularity spatiotemporal crowd flow prediction in smart 
campuses. They designed a robust method to extract human mobility trajectories from noisy 
Wi-Fi connection records and employed spatiotemporal graph neural networks to model crowd 
flow under different granularity levels of location hierarchies. Additionally, they developed a 
prototype system that visualizes historical and predicted crowd flows within the campus through 
an interactive map. The study results demonstrate that CrowdTelescope can effectively extract 
information-rich human mobility trajectories from noisy Wi-Fi connection records and 
accurately predict crowd flows at various granularity levels across the campus. C. W. Hu et al. 
[13] proposed a dynamic graph convolutional network model named Res-DGCN for predicting
human mobility dynamics in urban areas. The model captures multi-order spatial relationships
through a spatial attention module, learns temporal trends through a conditional convolution
module, and employs a Huber loss function to reduce sensitivity to outliers. On two public
datasets, Res-DGCN achieved significant improvements in prediction accuracy compared to
baseline models. M. Luca et al. [14] have provided a classification of the applications of deep
learning in predicting and generating human mobility tasks, including next location prediction,
crowd flow prediction, trajectory generation, and flow generation. The challenges associated
with each task are discussed, as well as how deep learning overcomes the limitations of
traditional models, offering the most relevant solutions. B. F. Yao et al. [15] introduce a machine
learning-based approach for constructing a pedestrian tracking system in smart cities. The article
employs the YOLOv3 algorithm for pedestrian detection, combined with the Mean Shift
algorithm and the Kalman filter for tracking, to count the number of pedestrians entering and
leaving specific areas. Experimental results demonstrate that the system can effectively detect
and track pedestrians, which is of significant importance for pedestrian flow statistics in public
areas of smart cities. Q. S. Teng et al. [16] proposed a novel deep learning model named STA-
CFPNet for predicting pedestrian flow in indoor areas. The model consists of four branches,
each handling temporal proximity, periodicity, trend, and external factors, respectively. By
fusing the outputs of these branches, the model aims to uncover temporal dependencies within
the data. Additionally, the study introduced a spatial-temporal attention-based building block to
enhance the model's convergence speed and prediction performance.

Current research has extensively focused on crowd flow prediction in the fields of smart cities 
and smart transportation, with various high-precision prediction models proposed. However, 
studies specifically targeting crowd flow prediction within university campuses are relatively 
scarce. The deployment of wireless networks in university campuses provides a foundational 
environment for predicting crowd movements based on wireless coverage areas. Predictive 
research using wireless network data can offer insights for smart campus management, thereby 
holding significant research value. 



3 Campus Wireless Network 

3.1 Partition Coverage Wireless Network 

The Wireless Campus Network is a system that provides wireless internet access services within 
the campus, allowing faculty and students to connect to the internet from anywhere on campus 
using wireless devices such as laptops, smartphones, and tablets. Below are some fundamental 
principles and components of the structure of a wireless campus network:  

Wireless Access Points (AP). Wireless Access Points are the foundation of the wireless 
network. They are responsible for transmitting wireless signals, enabling wireless devices to 
connect to the network. Each access point has a coverage area, commonly referred to as a 
"hotspot," within which devices can connect to the network. 

Wireless Access Controllers (AC). In large-scale networks, wireless controllers are used to 
centrally manage multiple wireless access points, providing unified configuration, monitoring, 
and management. 

Core Switches. Core switches serve as the central hub of the network, handling large volumes 
of data transmission to ensure high-speed and stable network performance. 

Authentication Systems. Campus wireless networks typically require authentication to ensure 
that only authorized users can access the network. This may include username and password, 
digital certificates, multi-factor authentication, and other methods. 

As shown in Figure 1, in large campuses, the campus wireless network can be divided into 
different wireless zones based on actual needs and geographical layout, such as residential areas, 
libraries, and teaching areas. Each zone deploys an independent wireless controller, which is 
configured according to its specific requirements and environmental characteristics. 

Fig. 1. Diagram of wireless network structure 

3.2 User Terminal Roaming Principle 

To further enhance the online experience for faculty and students, the concept of seamless 
authentication for internet access has been proposed and improved upon, building on existing 



methods such as AAA client authentication, Portal authentication, and 802.1x authentication. 
This approach is widely adopted by universities as a common method for internet authentication. 
Seamless authentication for internet access is a technology that allows users to authenticate 
almost imperceptibly, primarily by recording the MAC address of the user's terminal as a 
subsequent authentication identifier, thereby enabling rapid authentication for campus networks. 
This method means that once a user's wireless device successfully logs into the campus network 
with seamless authentication enabled for the first time, the system automatically records the 
device's MAC address information. Subsequently, when the wireless device attempts to access 
the campus network again or moves across different areas, no further login operations are 
required. 

As illustrated in Figure 2, in a campus environment equipped with coverage-unaware 
authentication wireless networks, user terminal devices can automatically associate with access 
points to maintain continuous network access. This technology not only enhances user 
experience but also provides the foundational conditions for collecting personnel mobility data. 
Given that people commonly carry smartphones with them, analyzing the data from wireless 
controllers across different areas allows for a certain degree of crowd flow prediction. 

Fig. 2. Maintaining wireless network connectivity for mobile users 

4 Crowd Flow Prediction Model 

4.1 ARIMA and CNN-LSTM 

The ARMA model, or Autoregressive Moving Average model, is a key method for analyzing 
time series. It is a "hybrid" model, based on both the autoregressive (AR) model and the moving 
average (MA) model. The formula can be expressed as: 

𝑌! = 𝑐 + 𝜙"𝑌!#" + 𝜙$𝑌!#$ +⋯+𝜙%𝑌%#" + 𝜃"𝜀!#" + 𝜃$𝜀!#$ +⋯+ 𝜃&𝜀!#& + 𝜀! (1) 

Differentiation is a preprocessing technique utilized to render non-stationary time series 
stationary. Taking the first difference in a time series involves comparing each observation with 
the one preceding it and calculating the difference between them. For instance, given a time 
series Yt, the first difference of the series can be defined as the difference between Yt and Yt-1. 

∆𝑌! = 𝑌! − 𝑌!#" (2) 
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The ARIMA model is suitable for non-stationary time series. After differencing to achieve 
stationarity, it utilizes autoregressive and moving average terms to capture the dynamic 
characteristics and random fluctuations of the series. This model is widely applied in predictive 
analysis within the fields of economics and finance. 

The CNN-LSTM model is a deep learning architecture that synergizes the strengths of 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) for 
processing data with both spatial and temporal characteristics. The CNN component is primarily 
employed to extract spatial features from the data, while the LSTM component is utilized to 
handle time series data, capturing temporal dependencies. This combined model has 
demonstrated exceptional performance across various domains, including video analysis, time 
series forecasting, and natural language processing. 

Fig. 3. The model for crowd flow prediction 

4.2 The Combining Model for Crowd Flow Prediction 

To predict future campus crowed flow, we establish the model based on ARIMA-CNN-LSTM. 
The prediction process of the model is illustrated in Figure 3. 

1. Data Collection: User information is periodically collected from each wireless controller
through the SNMP protocol or network management platform.

2. Data Normalization: Information from wireless controllers of different brands and models
may require standardized preprocessing.

3. Preprocessing with ARIMA: Apply the ARIMA model to preprocess the raw crowd flow
time-series data. This step aims to remove non-stationarity from the time series, converting it
into a stationary sequence.

4. Residual Extraction: Extract the residual values between the raw data and the ARIMA
prediction results to obtain the temporal dependencies and trends in the residuals.

5. Feature Extraction and Prediction with CNN-LSTM: Based on the residual data over n
time units, the CNN-LSTM model performs feature extraction and prediction, yielding the
corrected residual data.

6. Correcting results: The ARIMA prediction results with corrected residual data to form the
final time-series prediction results.
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7. Generate prediction results: Combine the prediction results of each wireless controller to
form a complete regional population flow prediction result.

5 Experiment and Evaluation 

5.1 Dataset and Environment 

The dataset is compiled from historical data of a real campus network. The data pertains to the 
wireless network operation of an independent campus over a one-month period. As shown in 
Table I, the campus wireless network is divided into five zones, each with a distinct grouping 
of wireless access points (APs) for coverage. The collection period includes weekdays, 
weekends, and holidays, making the data representative of typical scenarios. 

Table 1. Wireless network coverage area division 

area id ac id description 
a ac1 public teaching buildings 
b ac2 laboratories and office buildings 
c ac3 block 1 student apartment complex 
d ac4 block 2 student apartment complex 
e ac5 campus roads and outdoor public areas 

5.2 Model Evaluation 

To reflect the degree of approximation between predicted values and actual values, this paper 
employs the Coefficient of Determination (R²), and Mean Absolute Percentage Error (MAPE) 
to evaluate whether the prediction model can improve prediction accuracy. The formulas for R², 
and MAPE are as follows: 

R$ = 1 − ∑ ()!#)"*)#
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where: n is the number of samples, Yi is the measured crowd flow; Y43  is the predicted crowd 
flow, Y is the mean of the actual crowd flow. Smaller values of MAPE, or R2 closer to 1, indicate 
better model prediction performance. 

5.3 Experimental Test Results 

The proposed temporal prediction model was tested using a real dataset. The original data, the 
results of ARIMA model processing, and the residuals obtained from the ARIMA model are 
shown in Figure 4-8. The residuals fluctuate around 0, indicating that the model effectively 
captures the dynamic characteristics of the data.  



Fig. 4. ARIMA prediction and residuals(a) 

Fig. 5. ARIMA prediction and residuals(b) 

Fig. 6. ARIMA prediction and residuals(c) 



Fig. 7. ARIMA prediction and residuals(d) 

Fig. 8. ARIMA prediction and residuals(e) 

Figure 9 presents the combined prediction results. Compared to other models, we observe that 
the ARIMA-CNN-LSTM model exhibits the highest R2 value. Table II details the experimental 
results. 

Fig. 9. Combined model prediction results 



Table 2. Comparison of time model performance 

model 
a b c d e 
R2 EMAP R2 EMAP R2 EMAP R2 EMAP R2 EMAP 

CNN 0.982 8.59% 0.995 1.73% 0.985 1.66% 0.981 1.73% 0.893 2.86% 
LSTM 0.986 4.73% 0.985 2.51% 0.976 1.96% 0.959 2.13% 0.860 4.15% 
CNN-
LSTM 0.994 4.11% 0.990 2.54% 0.971 2.47% 0.978 2.18% 0.934 2.47% 

ARIMA-
CNN-
LSTM 

0.996 2.29% 0.999 0.75% 0.994 1.04% 0.994 0.96% 0.997 6.6% 

5.4 Discussion 

Through real-data validation, the crowd flow model based on ARIMA-CNN-LSTM achieves 
highly accurate predictions. This model is applicable to campus network zoning scenarios and 
demonstrates high prediction accuracy across different wireless controller coverage areas, with 
R2 values exceeding 0.994 for crowd predictions in five regions. Comparative experiments with 
other single models also show that this combined algorithm performs superiorly. 

6 Conclusions 

The proposed combined model for predicting crowd flow in campus areas based on wireless 
network data, after being tested with real datasets, has achieved the expected results and 
outperformed general deep learning models in terms of performance metrics. 

The model fully integrates the structural characteristics of campus wireless networks, leveraging 
the convenience advantages generated by the partitioned coverage of wireless networks. It 
collects changes in the number of users directly from the wireless access controllers, thereby 
generating crowd flow datasets. This approach does not require the deployment of dedicated 
sensors, nor does it necessitate the active participation of teachers and students. It does not 
interfere with the daily teaching activities of the school, as all work is completed in the system's 
background. This provides a new solution for predicting crowd flow in campus environments. 

The findings from this research are significant and pave the way for further advancements. 
Future studies will build on this initial work, aiming to refine and improve the accuracy of crowd 
flow prediction models. The researchers will draw on wireless positioning technology, a method 
that has the potential to provide even more precise and detailed data, thereby enhancing the 
predictive models' capabilities. Moreover, we will collect more campus IoT data, such as 
campus cards, access control, lighting, and sound, to establish a more comprehensive campus 
crowd prediction model. By optimizing the model with multi-dimensional feature values, we 
aim to achieve more accurate crowd flow prediction and precise positioning. In the realm of 
predictive models, we will endeavor to construct a composite model that is more suitable for 
predicting the behavior of campus populations. By leveraging the strengths of deep learning, we 
aim to enhance the accuracy of predictions and improve the efficiency of the algorithms. 
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