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Abstract. As astronomical observation technology continues to progress, obtaining high-
quality star maps provides us with valuable opportunities to explore the universe. However, 
The acquired star maps are often affected by various random noises, including speckle 
noise, Poisson noise, Impulse noise, Thermal noise, Reynolds noise, and Gaussian noise, 
etc. These noises degrade the image quality and limit the efficiency of scientific research. 
Traditional denoising methods are often limited in their effectiveness when faced with such 
complex noise and lack the ability to model the temporal features of dynamic star maps, 
making it difficult to handle the sparsity and complex background of dynamic star maps. 
Therefore, this paper introduces DSR-Net, a deep reinforcement learning-based dynamic 
star map denoising algorithm. The algorithm combines Convolutional Gated Recurrent 
Units (ConvGRU) and Region-based Reward Convolution (Rrc) modules, enabling it to 
capture the dynamic changes of star maps, effectively remove noise, and preserve 
important details in the star maps. Experimental results show that DSR-Net outperforms 
traditional denoising methods on multiple real dynamic star map datasets, providing an 
effective solution for improving the quality of star maps. 
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1 Introduction 

High-quality star maps provide us with valuable opportunities to explore the universe. Since 
humans first observed the sky using early astronomical telescopes, advancements in telescope 
technology, such as the Hubble and James Webb Space Telescopes, have revealed many cosmic 
mysteries. However, the challenge in astronomy is not only the development of advanced 
telescopes but also the optimization of image processing workflows to enhance image quality 
and reduce noise interference. Common enhancement methods, such as extended exposure times 
and stack imaging, often introduce more noise and complexity, limiting research efficiency. 
Acquired star maps are often affected by various types of random noise, including Gaussian 
noise, Poisson noise, and speckle noise. The random distribution of these noises increases the 
difficulty of denoising, and single denoising methods are often not effective for all types of 
noise, thus affecting the clarity and quality of star maps. Therefore, dynamic star map denoising 
becomes a key technology for improving star map quality, as it can suppress noise interference 
while preserving details, facilitating scientific exploration [1]. 
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Deep learning has made remarkable progress in image classification, segmentation, 
enhancement, and generation, driven by the advancement of machine learning techniques. 

In the field of image enhancement, Transformers capture global dependencies using self-
attention mechanisms, which helps with denoising, while convolutional neural networks (CNN) 
identify noise by extracting local features through multiple convolution layers [2]. However, the 
sparsity, complex backgrounds, and weak signals of star map images present challenges for 
traditional deep learning methods (such as CNNs and Transformers) in star map enhancement 
tasks. To address these issues, deep reinforcement learning (DRL) offers an adaptive approach, 
enhancing star map quality by learning optimal strategies and adjusting processing methods in 
real-time [3]. In addition, existing methods generally lack the ability to model the temporal 
features of dynamic star maps, making it difficult to effectively address the complexity of star 
maps in dynamic environments [1]. Based on this, a DRL method is proposed to reduce 
observation time and lower noise in astronomical images, which is of great significance for 
upcoming large-scale astronomical surveys. 

This paper, based on a fully convolutional A3C network structure, introduces Convolutional 
Gated Recurrent Units (ConvGRU) [4] and a Region-based Reward Convolution module, and 
proposes a new dynamic star map denoising algorithm, DSR-Net. This algorithm effectively 
captures the dynamic changes of star maps in time series, enabling the agent to better understand 
local region features. The key contributions of this paper are outlined as follows: 

• A region-based reward convolution module for dynamic star map denoising is proposed, 
targeting pixel-level denoising. This allows the agent to focus on the value and strategy of 
neighboring pixels, thereby improving the understanding of local region features. 

• The Convolutional Gated Recurrent Unit is incorporated into the network to enhance the 
agent's ability to perceive dynamic changes in star maps over time, improving the denoising 
effect. 

• Experiments were conducted on multiple real dynamic star map datasets. The experimental 
results show that the proposed model exceeds existing traditional denoising methods, 
yielding superior denoising results. 

2 Literature Review 

This chapter reviews the development of deep reinforcement learning and the current research 
status of image denoising. 

2.1 Deep Reinforcement Learning 

A key milestone in deep reinforcement learning is the DQN algorithm introduced by DeepMind. 
By using neural networks to approximate the Q-function, DQN integrates deep learning with 
reinforcement learning, achieving significant progress in decision-making within high-
dimensional state spaces and exceeding human-level performance in Atari game tasks. The 
success of DQN has led to the development of numerous deep reinforcement learning (DRL) 
algorithms, which have gradually been applied to image processing tasks. In image denoising 
tasks, Yu et al. [5] proposed the RL-Restore method, which allows agents to choose the best 
restoration toolchain from a lightweight CNN toolkit, effectively improving image quality. 
Burak et al. [6] developed a conditional reinforcement learning agent that selects different 



 

 

resolutions based on the image content to optimize detection results, thus saving the need for 
high-resolution images. Cao et al. [7] introduced the Attention-FH framework, which enhances 
local regions to progressively improve the resolution of facial images. However, star map data 
is scarce and highly susceptible to noise, lighting, and other factors. The star map denoising task 
requires higher precision in both detail preservation and noise suppression. Compared to 
conventional image processing tasks, star map processing requires specially designed and 
optimized reinforcement learning algorithms to address its unique denoising needs and features. 

2.2 Image Denoising 

Image denoising focuses on eliminating noise from images to enhance their quality and make 
them clearer for further processing and analysis. Denoising methods are divided into non-
learning methods and learning-based methods. Among non-learning methods, histogram 
equalization [8] enhances contrast by uniformly distributing intensity but may introduce noise; 
Gaussian filtering [9] denoises by weighted averaging, but may blur details; total variation 
denoising [10] smooths the image while preserving edges but sometimes produces artifacts. 
Lately, research on image denoising has focused on learning-based methods, particularly the 
application of convolutional neural networks (CNNs) in denoising and deblurring [11]. 
Reinforcement learning (RL) has also developed in this area. Guo et al. [12] proposed a pixel-
level cross-modal denoising RL method, where each pixel is treated as an agent that learns an 
optimal strategy. Zhang et al. [13] modeled low-light enhancement as a Markov decision process 
for low-light images, achieving flexible weak light enhancement. In star map denoising tasks, 
Xie et al. [14] combined maximum likelihood estimation (MLE) and machine learning 
algorithms to improve the denoising effect of star maps. 

3 Methods 

In this chapter, the focus is primarily on presenting the comprehensive framework of DSR-Net. 

3.1 Overall Architecture 

In the star map denoising task, the noise distribution typically exhibits high locality and non-
uniformity, with different regions potentially being affected by various types of noise (e.g., 
Gaussian noise, background noise, etc.). Due to this characteristic, image-level denoising 
decisions often struggle to balance detail preservation and noise suppression. Therefore, this 
paper proposes a network architecture specifically for star map denoising—DSR-Net, based on 
the fully convolutional A3C framework [15]. Through asynchronous parallel computation of 
the fully convolutional A3C network, the training is accelerated, and by combining the Actor-
Critic structure with pixel-level denoising decision-making ability [16], DSR-Net can more 
flexibly handle local noise features in the star map. In this framework, the entire star map 
denoising task is formulated as a Markov Decision Process (MDP). For the current time step t, 
let the star map being processed consist of N images (i=1,2,...,N), where each pixel i is the 
current state si(t) of the agent i. The reward r(t) is determined by assessing the difference 
between the original image and the image after processing, while the action ai(t) involves 
selecting the denoising filter operation for the image, such as Gaussian blur, bilateral filter, or 
median filter. The gradient update of the policy network and value network in the A3C 
architecture is the core and key part [17]. Let the parameters of the two networks be θp and θv. 



 

 

The input to both networks is the current state si(t), and the value network outcomes the value 
V(si(t)) of the current state, which represents the cumulative future reward that can be obtained 
starting from state si(t). This is used to evaluate the quality of the current star map noise 
processing state. The gradient update of θv is computed as follows:  
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The policy network represents the probability of executing each denoising action given the 
current star map state. Through policy gradient, the network learns how to select denoising 
operations in order to maximize long-term rewards. The policy π(ai(t)| si(t)) used to generate 
actions is updated through the gradient of θp, and the gradient update of θp is calculated as 
follows: 
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The goal of DSR-Net is to learn the optimal policy π = (π₁, ..., πₙ), which maximizes the expected 
total reward for pixel i: 
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Considering that star maps typically contain various celestial bodies and complex backgrounds, 
processing individual pixels may not fully account for the relationships between these elements, 
potentially limiting the training effectiveness of the network agent and affecting overall quality. 
Additionally, the temporal nature of star maps makes capturing dynamic changes particularly 
important. Therefore, the introduction of Convolutional Gated Recurrent Units (ConvGRU) 
effectively captures the dynamic changes of star maps in time series, and the proposed Region-
based Reward Convolution (Rrc) enables the agent to better understand the features of local 
regions. Figure 1 shows the overall framework of DSR-Net. 



 

 

 
Fig. 1. The overall framework of DSR-Net 

3.2 Convolutional Gated Recurrent Units 

The introduction of ConvGRU allows the model to more flexibly address the challenges posed 
by temporal sensitivity and environmental changes when processing star map sequences [18]. 
Since the features of celestial bodies and noise distribution in star maps may change over time 
and under different observational conditions, the use of ConvGRU enables dynamic state 
adjustment through its gating mechanism, allowing the network to retain critical information 
while effectively filtering out noise. The update gate ensures that historical information is not 
entirely lost; when star map features remain consistent, the historical information helps enhance 
the denoising effect. 
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The gating mechanism zi(t) controls the combination ratio between the previous hidden state 
hi(t−1) and the current input state si(t), determining how much information from the previous 
hidden state hi(t−1) should be retained and how much of the current input si(t) should be 
integrated when updating the hidden state. The reset gate helps prevent the accumulation of 
historical noise information, allowing the model to focus more on the important information at 
the current time step. 
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The reset gate ri(t) determines which parts of the previous hidden state hi(t−1) should be ignored, 
allowing the network to selectively "forget" part of the past memory when generating the current 
hidden state. The candidate hidden state is generated based on the current input and important 
historical information, enabling the model to selectively retain or forget historical information 
as needed. 
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The final hidden state is computed based on both the current input and historical information, 
and is used for subsequent decision-making. 
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By applying ConvGRU at each time step, the agent can consider the contextual information 
from the previous frame while processing the current image, allowing for more effective 
decision-making in reward feedback and ultimately improving the overall performance of star 
map denoising. 

3.3 Region-based Reward Convolution  

Combined with the fully convolutional A3C framework, the network achieves a large receptive 
field. With the help of the dilated convolution idea in fully convolutional networks, The A3C 
policy network and value network in addition to focusing on the i-th pixel si(t), also consider 
the value and policy generated by neighboring pixels for the i-th pixel. Simply put, the action 
ai(t) can influence the pixels in the local region centered on pixel i. Therefore, the expected total 
reward for agent i at time t can be redefined as: 
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w can be viewed as the weight of the convolution kernel, which represents how much the 
influence of neighboring pixel values V should be considered in the following time step. w is 
learned as a parameter alongside the policy network and value network. Since each pixel in the 
star map has a two-dimensional coordinate, the second component in equation (10) is a two-
dimensional convolution. Therefore, using matrix notation, the R(t) for n steps can be defined 
as: 
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Where R(t), V(s(t)), and r(t) are matrices, with elements Ri(t), V(si(t)), and ri(t) correspondingly. 
w * r represents n-fold convolution filtering of the reward r. The gradient updates for the policy 
network and value network can be expressed as follows: 
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Where π(a(t)|s(t)) and s(t) are matrices, with elements si(t) and π(ai(t)|si(t)) respectively. 1 is a 
vector with all elements equal to 1, and ⊙ denotes element-wise multiplication. The gradient 
update for w can also be represented in matrix form as: 
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Like common policy gradient algorithms, the first component in equation (14) aims to increase 
the expected total reward. The second component ensures that during the convolution process, 
Ri does not deviate from the predicted V(si(t)). 

4 Experiments and Results 

4.1 Dataset 

In this experiment, star maps captured by the PST3S2H4 star sensor were used. These star maps 
were obtained through high-precision turntables, covering the northern hemisphere's star maps 
and their orientations, and providing data captured at different angular velocities of the star 
sensor. Due to factors such as seasons and weather, the acquired star maps have high star 
magnitudes and contain rich and complex noise, making them suitable for star map denoising 
tasks. In the experiment, star maps with dynamic angular velocities of 1.0°/s, 2.0°/s, and 3.0°/s 
were selected, with all star maps having a size of 1292×1040 and an update rate of 10Hz. For 
each condition, 1000 star maps were chosen, with 800 used for training and 200 for testing. 

4.2 Implementation Details 

The experiment was conducted on a Tesla T4 GPU with the torch 1.13.1+cu117 platform. The 
images were standardized to a 256x256 input size to fit the features of the star maps. The batch 
size was set to 64, and the training images were processed using various data augmentation 
techniques, including horizontal flipping, translation, and rotation. The full convolutional A3C 
model was trained using the ADAM optimizer with a polynomial learning rate scheduling 
strategy. The learning rate started at 1.0 × 10−3 and was gradually adjusted based on the training 
progress. The max_episode was set to 30,000, with a tmax of 5 for each episode. The full 
convolutional A3C weights were initialized using pretrained weights that are publicly available, 
and the filter size of w was set to 33 × 33 to accommodate the local features and noise patterns 
of the star maps. 

4.3 Results and Discussion 

Under the same conditions, GATFP [19], Open Operation [20], and DSR-Net were used for star 
map denoising, and the denoising accuracy was evaluated through Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity Index (SSIM). 



 

 

Comparative experiment 

Table 1. Arithmetic Mean of Evaluation Metrics for Comparative Experiments under Three Different 
Dynamic Conditions 

Method 
Angular velocity 

1.0 °/s 
Angular velocity 

2.0 °/s 
Angular velocity 

3.0 °/s 
PSNR SSIM PSNR SSIM PSNR SSIM 

GATFP[19] 36.645 0.8785 36.566 0.8762 36.550 0.8737 
Open 

Operation[20] 41.742 0.9539 41.653 0.9513 39.286 0.9288 

DSR-Net 46.237 0.9803 46.139 0.9799 46.101 0.9786 
 
Table 1 presents the experimental results of different models on dynamic star map datasets with 
varying motion conditions. In terms of both PSNR and SSIM, DSR-Net outperforms the other 
two methods across all tested datasets, with the best performance observed on the dataset with 
a dynamic angular velocity of 1.0 °/s, achieving a PSNR value of 46.237 and an SSIM value of 
0.9803. Compared to Open Operation [20], DSR-Net improves the PSNR and SSIM scores by 
4.495 and 0.0264, respectively. This indicates that DSR-Net, based on reinforcement learning, 
demonstrates stronger adaptability and achieves better denoising results under varying dynamic 
conditions in the star map denoising task. 

The advantage of DSR-Net lies primarily in its dynamic reinforcement learning strategy, which 
allows the model to learn noise characteristics under different dynamic environments and 
gradually optimize the denoising process. In contrast to traditional methods, DSR-Net not only 
emphasizes the local features of each pixel but also dynamically modifies its denoising strategy 
to more effectively align with the noise patterns and energy distribution of star points in the star 
maps. Especially under high noise complexity conditions, DSR-Net, through flexible strategy 
selection and efficient training, can effectively suppress noise interference and retain more star 
point details, ultimately achieving superior denoising performance. 

                                
(a)                    (b)                    (c)                   (d) 

Fig. 2. Local star points of the star map under 1°/s dynamic after denoising by different methods: (a) Real 
star map local star points; (b) Local star points of the star map after denoising with GATFP [19]; (c) Local 
star points of the star map after denoising with Open Operation [20]; (d) Local star points of the star map 
after denoising with DSR-Net. 

Figure 2 shows the local star point results of star maps after denoising using different methods 
under a 1°/s dynamic condition. As seen from the figure, DSR-Net is able to more accurately 
restore the energy distribution characteristics of the star points, particularly excelling in the 
edges and details of the stars, which significantly improves the denoised image quality. 
Compared to GATFP [19] and Open Operation [20], DSR-Net not only effectively suppresses 



 

 

noise interference during denoising but also preserves more star point details, resulting in clearer 
and more realistic local features of the star map. Overall, DSR-Net shows considerably superior 
denoising performance compared to the other two methods, proving its superior capability in 
complex dynamic conditions. 

Ablation Experiment 

Table 2. Arithmetic mean of evaluation metrics under three different dynamic conditions for the ablation 
experiment. 

Net Angular velocity 
1.0 °/s 

Angular velocity 
2.0 °/s 

Angular velocity 
3.0 °/s 

A3C +ConvGRU +Rrc PSNR SSIM PSNR SSIM PSNR SSIM 
√   44.387 0.9738 44.381 0.9738 44.317 0.9733 
√ √  44.551 0.9744 44.442 0.9739 44.397 0.738 
√ √ √ 46.237 0.9803 46.139 0.9799 46.101 0.9786 

 
Table 2 presents the ablation experiment results of the proposed method on different dynamic 
star map datasets. As shown in the table, the reinforcement learning model combining the 
ConvGRU and Rrc modules achieves the best performance in both SSIM and PSNR metrics, 
delivering the most effective denoising results. Specifically, the ConvGRU module, with its 
gating mechanism, effectively captures the spatiotemporal dynamics in the star maps, 
particularly maintaining superior denoising performance under varying observational conditions 
and the temporal nature of the star maps. The Rrc module, on the other hand, helps the model 
focus more on the noise characteristics in local regions through Region-based Reward 
Convolution, further enhancing the model's adaptability to complex noise environments. The 
experimental results show that integrating the ConvGRU and Rrc modules greatly enhances the 
model's performance in dynamic star map processing, playing a crucial role in capturing the 
spatiotemporal features of the star maps and handling complex noise. This design enables the 
model to more accurately process the noise in dynamic star maps, ultimately improving the 
denoising effect. 

5 Conclusion 

The proposed DSR-Net method is based on a reinforcement learning framework and has been 
innovatively designed for the star map denoising task. By combining ConvGRU and the Region-
based Reward Convolution (Rrc) module, DSR-Net effectively handles the dynamic changes 
and complex noise distributions in star maps. The introduction of ConvGRU enhances the 
model's ability to process temporal features, while the Rrc module improves the learning of local 
features, significantly improving denoising performance in complex noise environments. DSR-
Net has been evaluated on three real star map datasets with different dynamics, and the results 
show that DSR-Net exceeds existing methods in denoising performance, demonstrating its 
effectiveness and superiority in the star map denoising task. 
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