
 

 

Clustering Time Series Data Considering Both Trend 
Filtering and Subject Level Closeness 

Zhiren Wang 

{zhirenwang@uchicago.edu} 

Collegiate Division-Mathematics, The University of Chicago, IL, USA 

Abstract. This paper presents a novel clustering methodology that integrates both 
longitudinal trends and multi-dimensional proximity of lung cancer rates across 50 U.S. 
states and Washington D.C. from 1969 to 2019. By synthesizing temporal dynamics and 
local similarities, the proposed hybrid algorithm refines traditional clustering techniques 
to offer a comprehensive understanding of state-level lung cancer trends. The methodology 
combines K-means clustering with a medoid-based optimization approach, capturing the 
evolving patterns in lung cancer rates while mitigating the impact of outliers. Results reveal 
distinct clusters that reflect shared historical trajectories in health outcomes, outperforming 
traditional methods such as K-means, Radial Basis Function (RBF) networks, and Support 
Vector Machines (SVM) in sensitivity to temporal variations. The findings provide 
insights into regional health behaviors and interventions, highlighting the significance of 
integrating time-series analysis with clustering frameworks in public health research. 

Keywords: Clustering Methodology, Time Series Analysis, Medoid-Based Optimization, 
Lung Cancer. 

1 Introduction 

Cluster analysis is a powerful tool widely used across various fields, including quantitative 
marketing, biology, and epidemiology, to uncover patterns in complex datasets. This paper 
applies cluster analysis to explore lung cancer rate trends across all 50 U.S. states and 
Washington D.C. over a 51-year period from 1969 to 2019. By examining both general and 
regional trends, we aim to identify commonalities and variations in lung cancer incidence. While 
traditional time series analyses provide insight into temporal trends, they often fail to account 
for geographic, socioeconomic, and political differences that may influence cancer rates across 
states. Conversely, static cross-sectional analyses offer little insight into how trends evolve over 
time. This paper addresses these limitations by introducing a novel clustering methodology that 
combines both time series trends and cross-state similarities, offering a more holistic 
understanding of lung cancer dynamics in the U.S. from 1969 to 2019. 

The first section focuses on identifying overarching temporal patterns that characterize lung 
cancer rate changes across the U.S. This analysis investigates whether the states exhibit a 
consistent trend, with a shared peak period between 1990 and 2000, and examines potential 
nationwide factors such as public health policies and medical advancements that may have 
contributed to this pattern. The second part of this section delves into regional differences, 
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classifying states based on the year they reached peak lung cancer rates and exploring the 
socioeconomic and political factors influencing these variations. 

The next section introduces various clustering methods, such as K-means, Radial Basis Function 
(RBF) networks, and support vector machines (SVM), to categorize the states into distinct 
groups. This section applies dimensionality reduction techniques, such as Principal Component 
Analysis (PCA), to better visualize and interpret the clustering results. The clustering process 
aims to uncover similarities between states that reflect the complex interplay of lung cancer 
trends over time. Next, we apply autoregressive models to evaluate the temporal dependence of 
lung cancer rates within each state, shedding light on how historical data influences future trends. 

Finally, by combining time series analysis with clustering techniques, we propose a novel 
framework that simultaneously considers the longitudinal trends of lung cancer rates and the 
multi-dimensional proximity of states. This integrated approach provides a more comprehensive 
understanding of state-level clustering and reveals key regional differences, with implications 
for broader research areas involving time- and space-driven data. 

2 Related works 

Clustering time series data is a crucial technique for uncovering patterns, especially in fields 
dealing with large datasets like finance, biology, and medicine. The challenge lies in addressing 
both the underlying trends in time series and the closeness between subjects. Various methods 
have been proposed to capture these dimensions, each contributing unique approaches to 
handling high-dimensional, noisy, or incomplete data. 

Wenig et al. [1] proposed the JET algorithm, which combines coarse-grained pre-clustering with 
efficient hierarchical clustering. This method addresses challenges in variable-length time series, 
such as those encountered in jet engine testing. JET demonstrates superior accuracy and 
computational efficiency compared to existing techniques. In a complementary approach, 
Fokianos and Promponas [2] explored clustering using spectral density functions, applying 
frequency domain representations like the periodogram to define similarity measures, 
particularly for biological datasets such as gene expression data. 

Recent advancements in deep learning have further influenced time series clustering. Alqahtani 
et al. [3] reviewed deep time-series clustering (DTSC) methods, demonstrating that techniques 
like modified Deep Convolutional Autoencoders can capture spatial and temporal dependencies 
more effectively than traditional models, especially for complex movement data. Additionally, 
Zakaria et al. introduced unsupervised shapelets for clustering, focusing on local patterns rather 
than relying on distance-based methods [4]. Similarly, Paparrizos and Gravano developed the 
k-Shape and k-MultiShapes algorithms, using a shape-based distance (SBD) measure to enhance 
clustering accuracy without complex parameter tuning [5]. The robustness of k-Shape was 
further validated by Paparrizos and Gravano, who demonstrated its effectiveness across diverse 
datasets [6]. 

Holder et al. [7] conducted an extensive evaluation of elastic distance measures, including 
Dynamic Time Warping (DTW) and Move-Split-Merge (MSM). Their findings revealed that 
MSM and Time Warp Edit (TWE) distances, combined with k-medoids clustering, outperform 
traditional DTW-based approaches in terms of accuracy and interpretability. SOMTimeS, 



 

 

introduced by Javed et al. [8], is a self-organizing map-based algorithm that incorporates 
pruning strategies to reduce unnecessary DTW computations, achieving faster runtimes without 
sacrificing accuracy. SOMTimeS demonstrated its utility in both benchmark datasets and 
healthcare applications, showcasing its scalability and effectiveness. Similarly, Ma et al. [9] 
introduced Deep Temporal Clustering Representation (DTCR), a seq2seq-based model that 
integrates temporal reconstruction and K-means objectives to improve cluster structures. They 
further examined the role of pre-trained models in clustering tasks, showcasing the advantages 
of Transformer-based architectures and transfer learning for clustering tasks involving large-
scale datasets [10]. 

Anomaly detection is another critical area, as highlighted by Izakian and Pedrycz [11-12], who 
employed fuzzy C-means clustering to identify structural changes in time series data by 
combining original and autocorrelation representations. They further refined this work using 
Dynamic Time Warping distance for shape-based clustering, which handles time misalignments 
paired with fuzzy clustering techniques [13]. Meanwhile, Khaleghi et al. extended the clustering 
framework to handle both offline and online settings [14]. They proposed asymptotically 
consistent algorithms that cluster time series based on their generating distributions. A broader 
review by Aghabozorgi et al. emphasized the growing significance of unsupervised learning in 
time-series clustering amid the rise of big data, underscoring the need for scalable, domain-
independent methods [15]. These recent advances reflect a transition from traditional distance-
based techniques to advanced approaches utilizing shape analysis, feature extraction, deep 
learning, and fuzzy logic, enhancing accuracy and interpretability across various applications. 

3 Lung cancer rate trends 

This section analyzes the trends in lung cancer incidence across all 50 U.S. states and 
Washington D.C. over a 51-year period, spanning from 1969 to 2019. The analysis is guided by 
two primary objectives. 

The first objective is to assess whether a generalizable temporal pattern exists that characterizes 
the overall trend in lung cancer rates across all states. Specifically, this entails examining 
whether the 51-year evolution of lung cancer rates exhibits consistent features across the entire 
dataset, despite the diversity of each state.  

The second objective is to explore whether meaningful regional variations exist in the lung 
cancer rate trends. This aspect seeks to uncover whether certain states deviate from the general 
trend and whether distinct temporal patterns can be divided into groups. Identifying regional 
differences could reveal important insights about the role of localized factors and might help 
tailor future public health interventions to address specific needs in different parts of the country. 

3.1 General trend analysis 

To address the first objective, we construct a time-series plot that represent the annual lung 
cancer rate for all 50 U.S. states and Washington D.C. from 1969 to 2019. 



 

 

 
Fig. 1. Lung Cancer Rates in Various States. 

In nearly every state, the time-series data exhibits a characteristic inverse bell-shaped curve, 
with lung cancer rates rising to a peak before subsequently declining. This peak consistently 
occurs within a relatively narrow timeframe of 1990 to 2000, suggesting the presence of 
common underlying drivers influencing lung cancer rates across the country. 

Several plausible explanations warrant further investigation to explain this synchronized pattern. 
One potential factor could be changes in public health policies during this period, particularly 
those related to smoking cessation efforts, which intensified during the 1980s and 1990s. This 
era saw the implementation of stricter tobacco regulations, increased taxation on cigarettes, and 
widespread anti-smoking campaigns. Additionally, shifts in smoking behavior itself, such as a 
reduction in smoking prevalence following the dissemination of information on the dangers of 
tobacco, could account for the observed decline in rates after the peak. 

Furthermore, advances in medical treatments, particularly in the early detection and 
management of lung cancer, may have played a role in the downward trend observed after the 
peak. Innovations in diagnostic tools, such as the increased use of imaging technologies, may 
have facilitated earlier detection, contributing to improved survival rates and a reduction in 
incidence over time. Finally, socioeconomic factors, including changing patterns in healthcare 
access and education, could have influenced both the initial rise in lung cancer rates and the 
subsequent decline. 

While the time-series analysis provided clear evidence of a generalizable trend, the specific 
mechanisms driving the rise and fall of lung cancer rates during this period remain to be fully 
understood. 

3.2 Individual trend analysis 

To address the second objective—understanding regional variations in lung cancer trends—I 
conduct a more granular analysis by grouping states according to the year in which their lung 
cancer rates reached the peak. The peak year is a critical point in the temporal trajectory of lung 
cancer incidence, reflecting the culmination of various contributing factors before the onset of 
a decline. By categorizing states based on their peak year, I aim to uncover temporal and regional 
disparities in lung cancer dynamics that have been masked by the broader nationwide trend. 

The states are divided into three categories based on the year of their peak rates: (1) states that 
reached their peak before 1992, (2) between 1993 and 1995, and (3) after 1996. This 
stratification is chosen to capture potential shifts in lung cancer trends over time while 



 

 

maintaining meaningful group sizes for comparison. The resulting distribution is as follows: 12 
states reached their peak before 1992, 25 states peaked during 1993 to 1995, and 14 states 
peaked after 1996. 

 
Fig. 2. Lung Cancer Rates for Group 1 (Peak before 1993). 

 
Fig. 3. Lung Cancer Rates for Group 2 (Peak between 1993 and 1995). 

 
Fig. 4. Lung Cancer Rates for Group 4 (Peak after 1995). 

The concentration of peak years within the 1993-1995 window, encompassing nearly half of the 
states, raises questions about the timing and nature of the factors influencing lung cancer 
incidence. The fact that 25 states shared this brief peak window suggests the presence of a strong 
nationwide influence, such as the introduction and enforcement of stricter tobacco control 
policies, which gained momentum in the early 1990s. This period saw the passage of laws 



 

 

mandating smoke-free environments, increased cigarette taxes, and a surge in anti-smoking 
media campaigns. 

In contrast, the states peaking before 1992 and after 1996 present more varied trajectories. To 
further explore the distinct lung cancer trends observed across the different groups, we select 
two representative states from each group for a more detailed, state-specific analysis. The 
selection of states from each group was made with the intention of capturing both geographic 
diversity and variability in socioeconomic, political, and geographical contexts. Here are the 
time-series plots and analysis for the representative states: 

California lung cancer trend 

 
Fig. 5. Lung Cancer Rates in California (1969-2019). 

California exhibits a relatively smooth lung cancer rate change, characterized by a steady and 
consistent increase from 1969 to 1989, followed by a marked and sustained decline. This pattern 
reflects the state’s early and aggressive anti-smoking policies.  

New York lung cancer trend 

 
Fig. 6. Lung Cancer Rates in New York (1969-2019). 

The trend in New York mirrors that of many northeastern states, showing a gradual increase in 
lung cancer rates from 1969 through 1991, followed by a pronounced decline. This decline 
reflects the effectiveness of public health policies, including higher taxes on cigarettes, 



 

 

restrictions on tobacco advertising, and the establishment of smoke-free environments in public 
places. 

Alabama lung cancer trend 

 
Fig. 7. Lung Cancer Rates in Alabama (1969-2019). 

The lung cancer rate in Alabama shows a clear upward trend from 1969 through the mid-1980s, 
reflecting the growing prevalence of smoking and limited public health interventions during that 
period. Rather than an immediate decline, the trend is characterized by a fluctuating plateau in 
1990s to 2000s. This plateau suggests a period of stagnation in either public health efforts or in 
behavioral changes related to smoking.  

Illinois lung cancer trend 

 
Fig. 8. Lung Cancer Rates in Illinois (1969-2019). 

The lung cancer rate in Illinois shows a steady increase to a peak in 1994, reflecting the growing 
prevalence of smoking and limited public health interventions during this time. Following this 
peak, the rates plateaued in the late 1990s and early 2000s, suggesting stagnation in public health 
efforts or behavioral changes among smokers. 



 

 

Kentucky lung cancer trend 

 
Fig. 9. Lung Cancer Rates in Kentucky (1969-2019). 

Kentucky’s lung cancer trend reflects the state’s longstanding challenges with high smoking 
rates and limited public health interventions. Unlike states that saw rapid declines post-peak, 
Kentucky's rates show slow decline through the early 2000s, indicating the persistence of high 
smoking rates and slower adoption of anti-smoking measures. The subsequent decline, while 
evident, is uneven and far less pronounced than in states with stronger public health 
infrastructure. 

Mississippi lung cancer trend 

 
Fig. 10. Lung Cancer Rates in Mississippi (1969-2019). 

Mississippi’s lung cancer trend is characterized by a steady increase until 2000, at which point 
the rate begins to decline, though slower and more irregular compared to other states. The data 
suggests that while lung cancer rates in Mississippi peaked later than in many other states, the 
decline that followed was not as pronounced. This gradual and inconsistent decline reflects 
deeper public health challenges in the region, including economic disparities and limited access 
to healthcare. 



 

 

3.3 Interpretation 

By dividing states into 3 groups based on the peak year of lung cancer rates, we can investigate 
common characteristics of states in each group and formulate hypotheses about why their peaks 
occurred when they did: 

Group 1: Peak Before 1992: States in this group, such as California, New York, and Florida, 
experienced their peak lung cancer rates before 1993. These are often states with large 
populations and early public health interventions, such as stringent anti-smoking campaigns and 
clean air regulations. Many of these states are in the Northeast and West, regions known for 
early adoption of anti-smoking legislation and higher public awareness of the risks associated 
with smoking. This early peak aligns with their proactive public health policies, industrial 
regulation, and higher socioeconomic status. 

Group 2: Peak Between 1993 and 1995: The majority of states fall into this category, indicating 
a broader national trend during this period. Many states in this group are part of the Midwest 
and the South, where the tobacco industry historically played a significant economic role. The 
timing of the peak suggests these states began to see the effects of anti-smoking campaigns and 
policy changes slightly after the first group, likely due to later implementation or slower 
adoption of public health measures. 

Group 3: Peak After 1996: States like Kentucky, Missouri, and Mississippi, which experienced 
their peak lung cancer rates after 1995, tend to be more rural, with less urbanization and possibly 
delayed implementation of smoking restrictions. Many of these states are located in regions 
where smoking was culturally more prevalent, and public health campaigns may have faced 
more resistance or slower uptake. Furthermore, these states might have had less access to 
advanced medical technologies and screening programs, which could delay the identification of 
lung cancer trends and peaks. 

4 Cluster analyses 

In this section, we aim to employ various clustering methodologies to categorize all 50 U.S. 
states and Washington D.C. into distinct clusters based on their characteristics. Each state is 
represented as a 51-dimensional data point within a multi-dimensional space, where the 
dimensions correspond to years 1969 to 2019. By using different clustering methods, we assess 
the similarities between states and identify which method most effectively captures the inherent 
structure of the data. 

The clustering methods we will apply include K-means clustering, Generalized Additive Models 
(GAM), Radial Basis Function (RBF) networks, and support vector machines with hyperplane 
classification. Following the clustering analysis, we will apply Principal Component Analysis 
(PCA) to reduce the dimensionality of our data from 51 dimensions to two principal components. 
It transforms the original variables into a new set of uncorrelated principal components, which 
capture the maximum variance present in the data. This reduction facilitates a clearer 
visualization and interpretation of the clustering results. 



 

 

4.1 Three clustering methods 

The subsequent graphs will illustrate the individual clustering outcomes obtained from the three 
distinct methods, providing insights into the similarities and differences between states. 
Through comparative analysis, we determine which clustering approach yields the most 
coherent and interpretable groupings of the states. 

Radial Basis Function (RBF) 

 
Fig. 11. Clusters of States with GMM and RBF Network. 

RBF clustering employs a radial basis function to determine the proximity of data points to 
centroids in multi-dimensional space, mathematically expressed as: 

𝐾(𝑥ᵢ, 𝑐ⱼ) 	= 	𝑒𝑥𝑝(−𝛾	||𝑥ᵢ	 − 	𝑐ⱼ||²) 

where xᵢ is a data point, cⱼ is a centroid, and γ controls the kernel width. This method groups 
nearby data points, resulting in compact clusters that capture local structures effectively. 
However, RBF clustering may overlook broader trends and relationships over time, as it 
prioritizes proximity and local compactness, which can fragment larger, meaningful patterns. 

K-Means 
K-Means is an unsupervised clustering technique that partitions data into K clusters by 
minimizing the variance within each cluster. It uses Euclidean distance to assign points to the 
nearest centroid. K-Means is sensitive to initial centroid placement and can converge to local 
minima, leading to clusters that may not reflect the true structure of the data. 



 

 

Support Vector Machine (SVM) 

 
Fig. 12. Clusters of States with SVM Hyperplane Classification. 

SVM is primarily a supervised learning algorithm used for classification and regression tasks. 
However, it can also be adapted for clustering purposes by using the concept of support vectors 
to identify the most important data points that define the boundaries between different clusters. 
This can lead to a focus on extreme values and outliers, resulting in clusters that may be overly 
sensitive to specific states or lung cancer rates. 

4.2 E. Analysis and comparison 

RBF Clustering 
The RBF clusters show both local and broader regional groupings: Cluster 1 is consistent with 
lower lung cancer rates, emphasizing regional similarities; cluster 2 captures high-population 
states with generally higher rates, similar to the SVM result, showing significant healthcare 
influences; cluster 3 again highlights the Southern U.S., emphasizing long-term health trends 
and shared risk factors; cluster 4 shows some overlap with K-Means, indicating common 
regional health dynamics; cluster 5 demonstrates RBF's capacity to group based on healthcare 
and socioeconomic access, capturing states with shared characteristics affecting lung cancer 
trends; cluster 6 mirrors the K-Means grouping for the less populated states. 

RBF clustering's focus on proximity allows it to emphasize local health patterns effectively. 
However, it may struggle to integrate broader trends across the states, leading to fragmentation 
of states that share significant historical health patterns. 

K-Means Clustering 
The K-Means clusters yield distinct geographic and demographic groupings: Cluster 1 features 
states with lower lung cancer rates, likely reflecting shared demographic factors and healthcare 
practices; cluster 2 groups East Coast states with generally high healthcare accessibility and 



 

 

similar lung cancer statistics; cluster 3 captures a broader array of states, potentially revealing 
shared health risks related to socioeconomic factors prevalent in the South; cluster 4 retains a 
similar grouping to the SVM method, indicating that proximity impacts cluster assignment; 
cluster 5 consolidates states with generally high populations and diverse socioeconomic 
contexts, emphasizing factors like healthcare access and prevention efforts; cluster 6 clusters 
states often seen as having similar environmental conditions and lung cancer risk profiles. 

K-Means efficiently captures spatial and demographic similarities but may simplify 
relationships by not considering how temporal trends influence clustering. As a result, states 
with differing trajectories over time could end up in the same cluster, potentially masking 
underlying health patterns. 

Hyperplane SVM Clustering 
The SVM clusters show a mix of states with shared characteristics: Cluster 1 contains states 
with relatively high lung cancer rates, including populous states like California and New York, 
which often exhibit significant variations in healthcare access and environmental factors 
affecting lung health; cluster 2 groups states with lower population densities and similar 
healthcare profiles, indicating a focus on less populated areas that may share specific regional 
health trends; cluster 3 captures states in the Southern U.S., highlighting a region with 
historically high lung cancer rates linked to factors such as smoking prevalence and 
socioeconomic conditions; cluster 4 is singular, representing Utah, possibly indicating unique 
state policies or demographics affecting lung cancer rates; cluster 5 shows a diverse group of 
states, indicating shared socioeconomic factors influencing lung cancer risk; cluster 6 clusters 
states from the Southeast and Midwest, linking them through shared risk factors like 
socioeconomic status and healthcare access. 

The SVM method’s focus on boundaries allows it to identify significant groupings based on 
extreme values and regional variations. However, it may overlook nuanced, continuous trends 
between neighboring states, particularly those sharing similar health outcomes over time. 

5 Autoregression analysis 

For each state's lung cancer rate data from 1969 to 2019, we apply an autoregressive model of 
order 1 (AR(1)) to capture the temporal dependence of lung cancer rates on their immediate past 
values. The data is first pre-processed by removing any missing values to ensure accuracy in the 
subsequent analysis. After cleaning, an AR(1) model is fitted to the data, where the lung cancer 
rate at time t is modeled as a function of the rate at time t-1, along with an error term. The 
general form of the AR(1) model can be expressed as: 

𝑌𝑡 = 𝛼 + 𝛽𝑌𝑡 − 1+ 𝜖𝑡 

The autoregressive model is fitted for each state, and several key parameters are recorded: the 
intercept α, the slopeβ, and two model evaluation criteria: Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC). AIC and BIC provide a trade-off between model fit 
and complexity, with lower values indicating better models. The following table presents the 
results of the autoregressive (AR(1)) analysis for each U.S. state: 



 

 

Table 1. Autoregression Results. 

State Intercept Slope AIC BIC 
Alabama 3.5212 0.9394 210.5280 216.2641 
Alaska 10.1519 0.8095 330.7516 336.4877 
Arizona 0.0070 0.9961 227.8955 233.6316 
Arkansas 3.9427 0.9370 247.0776 252.8136 
California -2.2721 1.0451 159.4804 165.2164 
Colorado 1.4350 0.9599 212.4235 218.1596 
Connecticut -0.2934 1.0033 210.6976 216.4336 
Delaware 5.5170 0.9012 301.0493 306.7854 
Washington DC 2.1660 0.9537 295.0836 300.8197 
Florida -1.7387 1.0302 183.2487 188.9848 
Georgia 1.5287 0.9715 212.9110 218.6471 
Hawaii 7.4512 0.7926 255.0782 260.8089 
Idaho 4.7927 0.8774 250.0369 255.7730 
Illinois 0.6472 0.9869 178.6853 184.4198 
Indiana 3.6869 0.9371 214.2314 219.9675 
Iowa 3.7214 0.9216 221.6777 227.3538 
Kansas 4.7383 0.9034 226.7045 232.5113 
Kentucky 4.7027 0.9339 242.095 247.8265 
Louisiana 1.5299 0.9738 230.2132 235.9462 
Maine 5.5939 0.8989 266.549 272.2851 
Maryland -1.3835 1.0122 223.2260 228.9620 
Massachusetts 0.3416 0.9917 195.2212 200.9573 
Michigan 1.7989 0.9661 180.3249 186.0609 
Minnesota 1.9431 0.9539 176.1174 181.8534 
Mississippi 3.9319 0.9370 216.2350 221.9711 
Missouri 2.9491 0.9488 213.3013 219.0373 
Montana 4.9697 0.8860 284.3537 290.0898 
Nebraska 4.5650 0.8974 240.4758 246.2119 
Nevada 1.4231 0.9700 283.7662 289.5022 
New Hampshire 5.7451 0.8849 227.6677 283.4038 
New Jersey -1.9023 1.0347 183.0718 188.8079 
New Mexico 4.6773 0.8679 246.6184 252.3544 
New York -1.9085 1.0378 163.5096 169.2457 
North Carolina 2.8295 0.9483 205.5377 211.2737 
North Dakota 6.6914 0.8309 237.1184 278.8545 
Ohio 2.3630 0.9583 192.9451 198.6812 
Oklahoma 4.8366 0.9188 226.7553 231.5094 



 

 

Oregon 1.4059 0.9711 237.9064 243.6425 
Pennsylvania 1.3088 0.9738 179.5990 185.3351 
Rhode Island 3.2105 0.9366 250.8772 256.6133 
South Carolina 2.8713 0.9472 217.5529 223.2889 
South Dakota 6.3076 0.8555 264.6215 270.3576 
Tennessee 3.5232 0.9436 219.2108 224.9468 
Texas -0.7839 1.0132 197.6945 203.4305 
Utah 5.6360 0.7503 225.2002 230.9362 
Vermont 9.5055 0.8020 301.1435 306.8796 
Virginia 0.2377 0.9943 201.2063 206.9424 
Washington -0.0855 0.9993 212.8687 218.6048 
West Virginia 3.8374 0.9394 243.4652 249.2013 
Wisconsin 3.0304 0.9327 194.1780 199.9141 
Wyoming 7.6282 0.8168 291.1577 296.8938 

 

From the results, we observe that the average slope across all states is 0.9404. This mean slope 
value provides insight into the general strength of the autoregressive effect across the entire 
dataset, representing the average degree to which the lung cancer rates of one year are influenced 
by those of the previous year for all U.S. states. Specifically, a slope of 0.9404 implies that, on 
average, approximately 94.04% of the lung cancer rate from the prior year is carried forward 
into the next year. This points to a high level of temporal autocorrelation, meaning that the 
progression of lung cancer rates is highly consistent over time, with current rates being heavily 
dependent on historical values. 

The fact that the mean slope is slightly below 1 indicates that while the autoregressive effect is 
strong, it is not perfect. The gap between the slope and 1 reflects some degree of variability or 
noise in the data, suggesting that factors outside the scope of the autoregressive model might 
influence the yearly changes in lung cancer rates. This could be due to external time-dependent 
effects not captured by the AR model. 

To gain a deeper understanding of the data, this mean slope can be compared with the slopes of 
individual states. States with slopes that deviate significantly from the mean may stand out as 
having unique temporal behaviors. For example, a state with a slope significantly greater than 
0.9404 would exhibit an even stronger autoregressive effect, where current lung cancer rates are 
more rigidly tied to the past, suggesting less variability over time. Conversely, a state with a 
slope much lower than the mean might demonstrate weaker autocorrelation, implying greater 
year-to-year fluctuations in lung cancer rates.  

6 Trend filtering and Subject-Level closeness 

The objective of this section is to develop a comprehensive clustering methodology that 
simultaneously accounts for both the longitudinal trends of lung cancer rates from 1969 to 2019 
and the multi-dimensional proximity of the all 50 U.S. states and Washington D.C.. By 



 

 

synthesizing these two aspects, we create a novel clustering framework that offers a more 
holistic understanding of the data. This method not only facilitates deeper insights into the 
clustering of states but also has the potential for broader application across various research 
domains. 

6.1 Methodological framework 

This section presents a hybrid clustering algorithm designed to capture both temporal trends and 
local similarity within high-dimensional time series data. Our method refines initial cluster 
assignments iteratively, using a combination of K-means clustering and medoid-based 
optimization. The algorithm is applied to U.S. state-level lung cancer data spanning 51 years, 
aiming to discover meaningful clusters that reflect both aligned time trends and local similarity. 

K-means initialization 
K-means minimizes the sum of squared Euclidean distances between each data point and the 
centroid of its cluster. This algorithm assigns each state to the cluster whose centroid is closest 
in terms of Euclidean distance. However, the initial clusters require refinement to align with 
both time-series trends and local similarity. 

Medoid-based Mean Path Calculation 
Instead of using the arithmetic mean to calculate the "mean path" of each cluster, we employ a 
medoid-based approach. A medoid is the element within the cluster that minimizes the total 
distance to all other elements, ensuring robustness against outliers. For a cluster C_k, the medoid 
is defined as: 

𝑥!"#$%# = arg𝑚𝑖𝑛&!'(" 9 ||𝑥% − 𝑥)||2
&#'("

 

This ensures that the representative path of each cluster reflects the most typical behavior 
without being skewed by extreme values. 

Reassignment of States to Clusters 
After computing the medoid path for each cluster, we reassign each time series to the cluster 
with the closest medoid. The new assignment is based on minimizing the Euclidean distance 
between the time series and the medoid path: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑖) = arg𝑚𝑖𝑛*||𝑥% − 𝑥!"#$%#,*||2 

This step ensures that each state aligns with the cluster most similar to its temporal pattern. 

Iterative Refinement and Convergence 
The algorithm iterates between medoid calculation and state reassignment until convergence. 
At iteration t, the cluster assignments C^((t)) are compared with those from the previous 
iteration 𝐶(-./). The process stops when the assignments stabilize: 

𝐶(-) = 𝐶(-11). 



 

 

This iterative approach guarantees monotonic convergence, meaning the sum of distances 
within clusters cannot increase. While convergence to a global minimum is not guaranteed, the 
medoid-based approach minimizes sensitivity to outliers and ensures stable clustering results. 

Mathematical interpretation 
The medoid calculation can be interpreted as a LASSO regression with only the intercept, where 
the goal is to minimize the total error across clusters by choosing representative paths. Each 
iteration reduces within-cluster variability, improving alignment between clusters and 
underlying temporal trends. 

6.2 Results and visualization 

The final clusters are visualized by plotting the mean time series paths for each cluster over the 
51 years. Additionally, Principal Component Analysis (PCA) is applied to reduce the 
dimensionality of the dataset and project the data into two components for visualization. 

 
Fig. 13. Mean Time Series Paths for Clusters. 

 
Fig. 14. Clusters of States with PCA. 

The clustering achieved by the proposed method reveals a greater sensitivity to temporal 
dynamics and nuanced regional behavior in the lung cancer trends. Specifically: 



 

 

Cluster 1 (e.g., Idaho, Minnesota, North Dakota) contains Midwestern states that generally 
exhibit slow-changing, stable health behaviors, reflecting modest but consistent improvements 
in lung cancer rates. 

Cluster 2 (e.g., Alaska, Delaware, Washington DC) captures regions with divergent social 
structures (such as urban vs. rural contexts) but which share a unique temporal trajectory in 
disease rates, likely driven by transient population patterns and unique healthcare interventions. 

Cluster 3 (e.g., Alabama, Mississippi, West Virginia) comprises Southern states with 
historically higher smoking rates and delayed peaks in lung cancer mortality, which aligns with 
socioeconomic challenges that impacted the decline of tobacco use in these regions. 

Cluster 5 (e.g., Florida, Georgia, Illinois, New York) includes a mix of urbanized, economically 
developed states, which display early peaks in cancer rates followed by more rapid declines, in 
line with early public health interventions. 

Cluster 6 (e.g., Colorado, Hawaii, Utah) groups states with outlier behaviors—regions 
characterized by relatively low smoking prevalence and unique geographic or policy factors that 
reduced lung cancer rates earlier than in other states. 

By capturing both regional similarities and temporal trends, the proposed method allows for 
clusters that reflect not only spatial proximity but also shared historical trajectories in health 
outcomes, which traditional methods struggle to capture. 

6.3 Comparison with traditional methods 

This section provides a comparison of the proposed clustering method with traditional 
approaches, including K-Means clustering, Radial Basis Function (RBF) Networks, and Support 
Vector Machines (SVM).  

The method developed in this paper focuses on clustering time-series data by integrating both 
temporal trends and local similarity. Instead of relying solely on the mean or centroid, it aims 
to identify a representative time-series path that minimizes the aggregated Euclidean distance 
to all series within the same cluster. 

While K-Means is computationally efficient and works well for spherical clusters in Euclidean 
space, it assumes that the mean is a suitable representative of the cluster. However, this 
assumption can be limiting for time-series data, where temporal dependencies and trends must 
be considered. In contrast, the proposed method u is more robust to outliers and better suited for 
capturing complex temporal patterns. 

The clustering process of RBF involves finding prototypes that minimize the radial distances 
from data points. These methods are particularly useful for nonlinear mappings, but the 
underlying assumption is that all data points are embedded within a fixed feature space defined 
by the RBF kernel. This limits the method’s ability to adapt to dynamic patterns over time. In 
comparison, the proposed clustering method explicitly incorporates temporal trends into the 
clustering process. 

SVM-based clustering seeks to find maximum-margin hyperplanes that separate clusters, which 
may not be optimal for capturing time-series trends. Unlike SVMs, which focus on finding 
hyperplanes to separate data points, the proposed method aligns the clustering process with 



 

 

temporal dynamics by treating each time series as a multidimensional path and iteratively 
refining clusters based on both trend and local similarity.  

The key conceptual distinction between the proposed approach and the traditional methods lies 
in the treatment of time series as evolving paths rather than static points in a feature space. The 
proposed method emphasizes the temporal coherence within clusters, which allows it to identify 
clusters with shared dynamic trends over time. Moreover, the iterative medoid-based approach 
ensures robustness to outliers, as the medoid path minimizes aggregated distances instead of 
relying on mean values.  

Comparison with RBF Networks 
The RBF-based clusters show that this method is able to capture non-linear relationships, but it 
still assumes the data points exist in a fixed feature space defined by the RBF kernel. As a result, 
RBF fails to capture longitudinal variations that occur within clusters over time. For example, 
RBF places both California and Maryland in the same cluster (Cluster 2) even though these 
states may have experienced different peak years for lung cancer rates. 

The proposed method identifies distinct temporal trajectories—for instance, California's trend 
aligns more closely with other early-intervention states like New York and Connecticut, while 
Maryland follows a different trajectory grouped with urban areas like Washington DC.  

Comparison with K-Means Clustering 
The K-Means results show clear spatial groupings, suggesting that K-Means primarily clusters 
states based on static regional proximity. However, K-Means is limited by its reliance on 
centroids as averages, which overlooks temporal dynamics. For instance, K-Means places 
California and New York in the same cluster (Cluster 4), but these states have different historical 
trajectories in tobacco regulation. The proposed method, however, reflects these nuanced 
differences by placing New York and California in separate clusters. This illustrates the 
advantage of using medoid-based clustering for time-series data, where each series is 
represented by its most representative path rather than a mean trajectory. 

Comparison with SVM-Based Clustering 
The SVM-based results show that this method prioritizes maximizing the margin between 
clusters but lacks sensitivity to evolving trends within each cluster. SVM clusters are often 
defined by sharp boundaries, which are suitable for separating distinct classes but may overlook 
gradual transitions or shared historical patterns. For instance, SVM places Iowa, Kansas, and 
New York in the same cluster, despite significant differences in their cancer rate trajectories 
over time. 

The proposed method’s iterative approach, in contrast, ensures that clusters evolve based on the 
progression of trends, not just separability by margins. For example, states with late peaks (e.g., 
Kentucky and Alabama) are grouped separately from states with early declines (e.g., California 
and New York), ensuring greater alignment between clusters and time-based health patterns. 



 

 

7 Conclusion 

The proposed clustering framework marks a significant advancement in the analysis of 
longitudinal data by addressing the limitations of traditional clustering methods. By 
incorporating both temporal trends and local similarities, this methodology allows for a more 
nuanced understanding of lung cancer rates across U.S. states, revealing clusters that align with 
shared historical trajectories and regional behaviors. The iterative refinement process, centered 
on medoid calculations, enhances robustness against outliers and emphasizes the dynamic 
nature of health outcomes. The results underscore the importance of considering temporal 
dynamics in clustering analyses, particularly in fields such as public health, where interventions 
and health policies must adapt to changing trends. Future research may extend this framework 
to explore other health outcomes or geographical contexts, fostering a deeper understanding of 
how health trends evolve over time and contribute to regional disparities. This approach not 
only enriches the literature on clustering methodologies but also serves as a foundation for more 
effective public health strategies that consider the complexity of longitudinal data. 
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