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Abstract. We propose a formulation for solving sequential combinatorial optimization 
problems (COP) by deep reinforcement learning (DRL) method. Some types of decision 
problems can be reduced to sequence combination optimization problems(SCOP) , such as 
knapsack problems, flow-shop problems, etc. Besides some single sequence combinatorial 
optimization problems, multi-sequence combinatorial optimization problems have more 
complex constraints and are difficult to solve quickly in finite time. In this paper we extend 
a DRL model based on multiple pointer networks and policy gradient approach to solve 
multiple-sequence COP. We take flow-shop problem as example to verify the efficiency 
of improved model. As the result shows, the DRL method can calculate better results 
within 1 minute than some heuristic algorithms that should optimize with 0.5 hour or 1 
hour time consumption. Due to its randomness heuristic optimization method can also 
produce better solutions, but the difference between DRL and the best heuristic results is 
within 5%. Therefore, compared to heuristic optimization methods, DRL has competitive 
optimization capabilities and significantly higher computational efficiency. 

Keywords: combinatorial optimization problem, multiple-sequence COP, deep 
reinforcement learning. 

1 Introduction 

In some application scenarios, decision problems are combinatorial optimization problems 
(COP), and many combinatorial optimization problems are NP-hard, making it difficult to 
provide effective solutions within a limited time. According to the different solving objectives, 
combinatorial optimization problems can be categorized into several types, such as those aiming 
to find optimal sets, sequences, or graphs from all feasible solutions [1]. In this paper, we will 
focus on the COP of output sequence solutions, which we refer to as sequential combinatorial 
optimization problem (SCOP). SCOP is a common type of decision-making COP appearing in 
production, supplying and service.  

In the past, traditional operational research (OR) methods and heuristic optimization methods 
were the primary solutions for COP. Mixed-integer linear programming (MILP) based on 
branch & bound and cutting plane is a common exact optimization method for small and middle 
scale COP. Heuristic optimization methods, characterized by the ability to find sufficiently good 
feasible solutions at an acceptable computational cost, can generally be divided into single-
solution based algorithms and population-based algorithms [2]. However, well-designed 
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heuristic algorithms require a significant amount of expertise and trial work, and manually 
designed heuristic algorithms cannot guarantee consistent performance across different problem 
sets. Actually, traditional methods for solving COP face significant challenges in terms of speed, 
accuracy, and generalization ability [3]. With the advancement of deep reinforcement learning 
(DRL) technology, it has demonstrated remarkable learning and decision-making capabilities in 
fields such as Go and robotics. Consequently, DRL is also being studied to solve COP due to 
the advantage that decision strategy is trained by data in a general framework rather than made 
by hand and it is also easy for parallel computing.  

2 Related work 

As a traditional operations research planning method MILP has long been used to solve certain 
COP. To solve large-scale COP, which are NP-hard, advanced MILP algorithms have also been 
studied and used. In modern MILP solvers [4][5], a branch-and-bound tree search algorithm is 
employed, in which a linear programming (LP) relaxation of a MILP is solved at each node. 
Wang and Li [6] propose a hierarchical sequence model to learn cut selection policies via 
reinforcement learning, thereby enhancing the efficiency of solving MILP. Huang [7] use large 
neighborhood search (LNS) which is a heuristic method in MILP instead of branch-and-bound 
to obtain a better performance on several benchmarks. 

In recent past heuristic approaches have also achieved some new results in hybrid applications 
and in combination with machine learning. Muthuraman and Venkatesan [8] studied on hybrid 
heuristic methods for different COP, and conclude the advantages and disadvantages of these 
approaches by analyzing the current state-of-the-art and its effectiveness in solving COP. To 
improve the performance of classic heuristic guided by hand-crafted rules, Wu [9] use a deep 
reinforcement learning framework to learn the improvement heuristics and guide the iterative 
selection for routing problems. In Zhao’s study [10], a Cooperative Multi-Stage Hyper-Heuristic 
(CMS-HH) algorithm is proposed to address certain COP. In the CMS-HH, a genetic algorithm 
is introduced to perturb the initial solution to increase the diversity of the solution. In the search 
phase, an online learning mechanism based on the multi-armed bandits and relay hybridization 
technology are proposed to improve the quality of the solution. Compared with other hyper-
heuristic methods, it achieves superior results on some COP instances. 

As the AI technology development, some DRL model has been studied to solve the COP with 
simple form. Bengio's paper [11] surveys the recent attempts from the machine learning and 
operations research communities at leveraging machine learning to solve COP. They think 
machine learning is a natural candidate to make well decisions in a more principled and 
optimized way. Vinyals [12] proposes a neural network model with attention mechanism named 
pointer networks (Ptr-Net) to solve combinatorial optimization problems. Bello [13] and Nazari 
[14] further follow the idea to solve standard traveling salesman (TSP) and VRP with Ptr-Net 
as augmentation. Zhao [15] combines a DRL model, composing of an actor, an adaptive critic 
and a routing simulator, with a local search method to further improve slow running time and 
poor solution quality for VRP. 

In practical scenarios, some COP which decision consists of multiple sequences, such as job-
shop problems (JSP) and staff rostering problems (SRP) are not solved well by previous DRL 
model due to constraint relationship between sequences. In this paper, we study DRL to solve 



 

some multiple sequential combinatorial optimization problems (MSCOP). By this research, we 
expect to provide a general intelligent approach for COP with same form and different scales in 
most industry scenarios, which is no need to manually filter out a suitable strategy and to 
consume much computation resources. 

3 DRL for MSCOP 

Firstly, we summarize the form of MSCOP and then give the basic model to be applied. 

3.1 Problem definition 

SCOP exists in variety of practical scenarios of manufacturing, supply chain management and 
enterprise management. SCOP is defined as that the final decision solution consists of multiple 
sub-decision variables, which are generated sequentially in chronological order or according to 
other sequences. Some practical problems can be categorized as the SCOP listed in Table-1. 

Table1. Sequential combinatorial optimization problems 

Problems By Step1 Step2 ... Step N Final 
Solutions 

KP 
Knapsack Package Item 1 Item 3 ... Item N 1-3-2...-n 

FSP / JSP 
Flow-shop/Job-
shop Scheduling 

Machine Job 2 Job 1 ... Job N 2-1-3...-n 

SRP 
Staff rostering Staff Shift 3 Shift 1 ... Shift N 3-1-2...-n 

TAP 
Task assignment Employee Task 1 Task 2 ... Task N 1-2-3...-n 

VRP 
Vehicle routing Traveler Node 3 Node 2 ... Node N 3-2-1...-n 

 

In order to solve the problem gradually from easy to difficult, we divide SCOP into two types, 
single sequence combinatorial optimization problem (SSCOP) and multi-sequence 
combinatorial optimization problems (MSCOP). MSCOP is more difficult than SSCOP due to 
the constraint relationship between sequences and computation complexity caused by problem 
scale. 

Then we take FSP as a complex MSCOP target, which is a common problem in manufacturing. 
FSP starts with a set of n jobs 𝐽! (i= 1,…, n) and a set of m machines 𝑀" (j=1,…, m). Each job 
𝐽!consists of an ordered set of m operations 𝑂!"  (j=1,…, m), and each operation requires to 
process on a different machine. In FSP, every job must be processed on all machines in the same 
order; however, the processing time on the same machine of different jobs may not be the same. 
The processing time of the operation 𝑂!" is given by	𝑇!". In this problem, the processing of jobs 
must satisfy the sequence requirement without conflict, which means the constraint conditions 
existing between sequences. The objective is to find a feasible time allocation of all operations 



 

on the given machines to minimize the total processing time span. Specifically, in the following 
single machine case, the objective is to minimize the total waiting time of unprocessed jobs. 

3.2 DRL road-map for MSCOP 

Instead of solving by making heuristic strategy for each scenario, we focus on studying DRL 
approaches for common SCOP in a general framework. There are typically two DRL approaches 
for solving the decision process. The first one is evaluation-by-step learning using DQN, PPO 
and other DRL approaches. These models evaluate the reward of every action that arranges item 
into output sequence by steps, while the reward is hard to be evaluated before the sequence is 
constructed. The other one is two-stage learning based on seq2seq and DRL model. In stage-1 
a complete feasible solution is constructed by seq2seq model (e.g. Ptr-Net), and in stage-2 the 
reward of solution is evaluated and used to improve the weights of policy network (the seq2seq 
network). So, the two-stage learning method is similar to the local searching approach. The 
second approach is obviously convenient to calculate the reward when a complete feasible 
solution is constructed. So, we prefer to employ the second approach to solve MSCOP. 

4 Method description 

4.1 Pointer-Networks 

Based on the previous research [8], pointer-networks (Ptr-Net) has been verified to solve the 
SSCOP. Given sequential input data, the Ptr-Net is capable of picking out the item from the 
input set step by step and generating a new output sequence. The improved Ptr-Net remains the 
efficiency and decreases computational complications by omitting RNN type encoder due to the 
no meaningful order of input data. An embedding encoder network reads through the input 
sequence and stores the knowledge in a fixed-size vector representation (or a sequence of 
vectors); then, a decoder converts the encoded information back to an output sequence after the 
attention layer processing. Attention mechanism in Ptr-Net is a differentiable structure for 
selecting different parts of the input according to the output sequence. The input sequence 
includes two parts, static data 𝑠# and dynamic data 𝑑#, which respectively describe the input 
task’s immutable property and mutable status. In Ptr-Net, when dynamic data is updated, the 
embedding vectors should be updated. The self-status mask operation is applied to cut off the 
impossible optional items after the attention possibilities computation. Figuar 1 shows the Ptr-
Net structure.  

 
Fig. 1. Pointer-Networks structure.  



 

4.2 Multiple Point Networks 

Single Ptr-Net can only store a sequential generation policy for the problem with input and 
output in form of single sequence. If the problem has multiple input and output sequences, 
sequences with inherent differences should be generated by different calculation model with 
separated policy. To address the MSCOP, we extend single Ptr-Net as a multiple Ptr-Nets 
structure to generate sequences synchronously as Figure 2 showing. Several sequential data are 
input into different Ptr-Net, and the sequential indices are generated at the same pace. In this 
process, the change of dynamic data should be transmitted from top level to bottom level. It is 
necessary to adjust the optional range of nodes for output sequence based on hard constraints in 
the dynamic change transmitting process. The dynamic change transmitting mechanism can 
address the constraint conflicts between sequences. For example, in FSP, the previous process 
must be completed before proceeding with the next process. Otherwise, a waiting time is chosen 
instead of next job process. 

 
Fig. 2. Sequences generation by multiple Ptr-Nets.  

4.3 Actor-Critic Model with Multiple Pointer Networks 

To upgrade the sequential generation policy in multiple Ptr-Nets, policy gradient approach as a 
well-known reinforcement learning method is adopted. The basic two-stage DRL model 
framework is as follows Figure 3. 

 
Fig. 3. DRL model framework 



 

In the first stage, the actor policy network employs multiple Ptr-Nets to generate searching 
action according to the policy determined by weights parameters. This policy network is very 
suitable for sequential decision problem solution because of its advantage to generate node 
sequence by steps. How many Ptr-Nets are used as actor policy network is adaptive determined 
according to the problem type. The model suits for either single sequence problem or multiple 
sequences problem, but it does not mean the model needs no training for different problem. 

In the second stage of policy learning, Actor-Critic(A2C) structure is used to simulate the 
neighbor searching process. The actor network that predicts a probability distribution over the 
next action at any given decision step, and a critic network that estimates the reward for any 
problem instance from a given state. By minimizing the error between reward of action and a 
value calculated by critic network, the policy network and critic network become more and more 
suitable to generate the optimal solution for the problem. 

4.4  Training 

When generating the feasible sequential solution using Ptr-Net with initial network parameters 
𝜃, we begin to train the network model using gradient descent. Policy gradient methods improve 
the policy iteratively using an estimation of the gradient which represents the expected reward 
change with respect to the policy parameters. We compute the corresponding rewards by default 
actor network. The value of critic is used as a baseline and it can be obtained in three ways: the 
moving average exponential of rewards, a solution reward from greedy strategy and a solution 
reward from full-connecting network. Then we update the policy gradient 𝑑𝜃	to update the actor 
network. And we also update the critic network 𝑑𝜙	 in the direction of reducing the difference 
between the expected rewards with the observed ones. 

Algorithm 1: Actor-Critic Training for Multiple sequences  

Input: number of epochs E, steps per eporch S, batch size B. 

Output: Agent model 𝜃. 

Initialize actor Ptr-Net with parameter 𝜃 and critic network with parameter ϕ; 

for epoch = 1 → E do 

 Reset gradients d𝜃←0, dϕ←0; generating batches {𝐵1, 𝐵2, ..., 𝐵s }; 

 for step = 1 → S do 

   Obtain random instance batch 𝑋! = {(𝑠! , 𝑑!), 𝑖 = 1,2…𝐵}; 

   for itemNum = 1 until all items processed do 

     for SeqNum sn = 1 until all sequences processed do 

       Chose item_index y by 𝑝$(𝑦|𝑋) via 𝑃𝑡𝑟𝑁𝑒𝑡%&(𝜃); 

       Update dynamic data set of this sequence; 

       Update dynamic data set of next sequence; 

   Compute reward R as the last sequence performance; 



 

   Compute critic reward C via critic network with ϕ; 

   Compute advantage function A=R-C 

   d𝜃 = '
(
∑  )
!*' 𝐴! ∗ ∇$log	 𝑝$(𝑌 ∣ 𝑋)  

   dϕ = '
(
∑  )
!*' 𝐴!

+ 

   Update 𝜃, ϕ using 𝐴𝑑𝑎𝑚(𝜃, d𝜃), 𝐴𝑑𝑎𝑚(ϕ, dϕ); 

  Verification on test data and persist model 𝜃. 

End 

Fig. 4. Actor-Critic training process.  

4.5  Verification 

As a typical multiple sequence decision problem, FSP is solved to verify the performance of 
DRL approach. We trained and compared with the heuristic algorithm. We used the standard 
flow-shop dataset in OR-Library [16] as a test example, and compared it with four algorithms: 
simulated annealing (SA)[17], taboo search(TS)[18], genetic algorithm(GA)[19], and genetic 
algorithm with taboo search(GATS)[20]. The computer we used to run these algorithms is with 
Intel(R) Core (TM) i7-9700 CPU, 16.0 GB RAM and Nvida 2080Ti GPU (12GB). The multiple 
Ptr-Nets DRL approach is implemented with Pytorch framework. 

We train DRL models for different scale FSP separately. In the training dataset, we generate 
dataset consisting corresponding number of jobs and machines which needs a processing time 
random in [0.1, 0.9], and a placeholder of waiting period with a value of 0.1. The target is to 
minimize the completion time of all jobs. In this research we process 100 batches of 128 
instances in each epoch. And we train for 10 epochs to find the optimal model. In the training 
period, it will take about 3.5 hours for 20×5 data set and over 10 hours for 20×10 data set. 

The effect of scheduling results of test data fs_reC11 by different approaches is compared as 
Figure 4 shows. The job index and processing time are marked on the job period. Different jobs 
are represented by different colors, but jobs are represented by the same color in different 
method result graphs. The figure clearly shows the order in which different jobs are executed 
on different machines, as well as the total time it takes for all jobs to be completed. The shorter 
the total time required to complete all jobs, the better. 

 
(a) SA 



 

 
(b) TS 

 
(c) GA 

 
(d) GATS 

 
(e) DRL  

Fig. 5. Test results comparison by different approaches for FSP data (fs_reC11)  



 

In this FSP case, the jobs are scheduled in the order that satisfying the intended goals. In the 
former machines, jobs with short processing time are listed at first to save other jobs’ waiting 
time or to make the machine behind work as soon as possible. We can see the scheduled result 
of DRL has earlier starting in all of 10 machines than other methods. If the job whose processing 
time in former machine longer than that in latter machine is listed at first, the worse situation 
occurs and waiting periods appears in the job queue. In Figure 5, DRL result still exists more 
waiting periods due to the training is not enough.  

Table 2 shows the comparison result between DRL and several heuristic algorithms, and DRL 
has stronger potential in solving SCOP. We have separately listed the results of four heuristic 
methods under two different iteration running periods (0.5hour and 1hour). We also calculated 
the running time and results of DRL inferring calculation (resA) on the same datasets after 
training. We can see the DRL result resA is better than some of results of heurisitic method 
calculated in both short period and long period, but it is also a little worse compared with GA 
random optimization results. To evaluate the difference in results, we also calculated a boundary 
value of 5% improvement in DRL result as resB. From Table 2, we can see that the boundary 
value resB is better than the majority of heuristic optimization results. Meanwhile, the time 
consumption of DRL has greatly improved compared to heuristic algorithms, reaching within 1 
minute. Therefore, we can conclude that the DRL method can calculate better results within 1 
minute than some heuristic algorithms that should optimize with 0.5 hour or 1 hour time 
consumption. Due to its randomness heuristic optimization method can also produce better 
solutions, but the difference between DRL and the best heuristic results is only within 5%. 

Table 2. Comparison with heuristic methods (less is better). 

Dataset 
SA TS GA GATS DRL DRL 

Use 
Time 0.5h 1h 0.5h 1h 0.5h 1h 0.5h 1h resA resB 

fs_reC3 
(20x5) 1187 1167 1144 1135 1105 1126 1138 1111 1135 1078  6.15s 

fs_reC5 
(20x5) 1278 1273 1262 1251 1257 1264 1243 1253 1310 1245  10.51s 

fs_reC7 
(20x10) 1768 1780 1640 1646 1609 1647 1697 1646 1717 1631  52.89s 

fs_reC9 
(20x10) 1695 1659 1652 1651 1553 1638 1614 1666 1707 1622  58.66s 

fs_reC11 
(20x10) 1635 1603 1555 1537 1517 1496 1506 1502 1572 1493  50.02s 

5 Conclusions 

In this paper, we presented a DRL model consisting of multiple Ptr-Nets and A2C learning 
framework to solve MSCOP. The model can solve both SSCOP (e.g. KP) and MSCOP (e.g. 
FSP). Through our test, the DRL model has success to optimize multiple sequences FSP. 
Compared to the traditional heuristic methods, DRL method has better generalization and 
scalability to solve different MSCOP by adjusting the constraint relationship between sequences. 

At present, the small basic DRL optimization model of multiple sequences decision problem 
has been developed and verified in single GPU platform. Some works to improve the efficiency 



 

and feasibility of model should be further researched and updated in future. As the scale of the 
problem increases, the computation resource consumption should be optimized. And 
distribution training is another way to solve the large-scale multiple sequences problem. In some 
sequential problems in practical, the optimization target is scored several criteria, and the 
constraints between sequences may be more complex. We should verify the model performance 
and difficulties when addressing these complicated problems.  
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