
 

 

Triplet Attention Enhanced DeepLab V3+ for Semantic 
Segmentation: Improving Feature Extraction and Fine-

Grained Understanding 

Zhuoran Li1,*,†, Xun Shu2, Yancong Deng3 

{zhuorali2-c@my.cityu.edu.hk1, 32021210121@cueb.edu.cn2, yancongdeng@gmail.com3} 

City University of Hong Kong, Hong Kong, China1 
Capital University of Economics and Business, Beijing, China2 

University of California San Diego, CA, United States3 
*corresponding author 

†The author is the first author. 

Abstract. Semantic segmentation is a critical task in computer vision that requires 
assigning class labels to individual pixels for a deeper understanding of visual scenes. This 
paper explores methods to enhance the DeepLab V3+ model by integrating attention 
mechanisms, specifically Triplet Attention and CBAM, into the backbone, ASPP module, 
and decoder. We conducted extensive experiments using the Cityscapes dataset to assess 
the impact of these attention mechanisms. Our results demonstrate that Triplet Attention, 
particularly when applied to the backbone, significantly improves segmentation 
performance with minimal computational overhead, outperforming CBAM in most 
configurations. This study highlights the effectiveness of attention mechanisms in 
improving the precision and semantic understanding of segmentation models. Future work 
will explore additional attention mechanisms and expand their application to broader 
vision-related tasks. 

Keywords: Semantic Segmentation, Triplet Attention Mechanism, DeeplabV3+, 
Improved Feature Extraction. 

1 Introduction 

Semantic segmentation is a fundamental task in computer vision, where the goal is to assign a 
class label to each pixel in an image. A well-designed and trained model can effectively 
determine the location and extent of pre-defined object classes, allowing for a more 
comprehensive understanding of visual context and scene structure. Specifically, semantic 
segmentation aims to achieve dense classification by assigning pixel-wise semantic labels, 
contributing to a deeper understanding of visual content. 

As a high-level vision task, semantic segmentation plays a critical role in scene understanding, 
which is a core challenge in computer vision. This is essential for a wide range of real-world 
applications, including autonomous driving, human-computer interaction, computational 
photography, image search engines, and augmented reality (AR) [1-3].  

In recent years, deep learning-based segmentation models have shown remarkable 
advancements, with the DeepLab family standing out as one of the most effective and 
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representative approaches [4,5]. The DeepLab models incorporate techniques such as 
conditional random fields, atrous convolutions, and pyramid pooling to efficiently capture 
multi-dimensional information, enabling precise pixel-level semantic segmentation.  

On the other hand, Attention mechanisms, initially popularized in sequence-to-sequence tasks 
such as natural language processing, have gained traction in computer vision due to their ability 
to capture long-range dependencies. Introduced by Vaswani et al. [6], attention mechanisms 
mimic the human cognitive process of focusing on relevant parts of visual and linguistic inputs, 
thereby improving model performance and generalization [7]. To further enhance segmentation 
performance, this paper proposes an improved DeepLab v3+ model that integrates the Triplet 
Attention mechanism proposed by Misra et al. [8]. Triplet Attention is introduced to boost 
segmentation accuracy with minimal computational overhead. This paper will detail the design, 
implementation, and experimental evaluation of this enhanced approach. 

2 Related Work 

2.1 DeepLab Model Family 

Semantic segmentation is a critical task in computer vision, aiming to understand and classify 
pixel-level semantic information. The DeepLab family of models is one of the most prominent 
architectures for this task. The series began with DeepLab-V1, introduced by Chen et al. [9], 
which pioneered the use of atrous convolution to expand the receptive field, allowing the model 
to capture multi-scale image information. DeepLab-V2 enhanced this design by incorporating 
the atrous spatial pyramid pooling (ASPP) module to efficiently integrate multi-scale features, 
while also adopting a deeper residual network backbone to replace the earlier VGG architecture 
for improved feature extraction [10]. 

DeepLab-v3 further advanced the model by introducing multi-grid techniques for processing 
higher-resolution images. It also refined the ASPP module by utilizing different dilation rates 
and adding batch normalization and activation layers to better fuse low-level and high-level 
features [11]. 

DeepLab-v3+ represents a major breakthrough in recent years. It employs an encoder-decoder 
architecture, building upon the ideas of previous designs [12]. In the encoder, the ASPP structure 
is used to extract visual features after being compressed by four bottleneck modules in the 
ResNet backbone. These multi-scale features are concatenated and passed to the decoder after 
a 1×1 convolution for compression. Meanwhile, low-level features extracted from the DCNN 
backbone, compressed by two bottleneck modules, are processed through a 1×1 convolutional 
layer and concatenated with the upsampled ASPP features to produce the final feature map. A 
final 1×1 convolution is applied to adjust the number of channels, followed by upsampling to 
restore the original image size for pixel-wise prediction. 

2.2 Attention mechanisms 

Attention mechanisms have become a crucial design element in sequence-to-sequence tasks and 
have been successfully applied to computer vision due to their ability to focus on important parts 
of the input while disregarding irrelevant background information. Attention mechanisms 



 

 

exploit dependencies across different dimensions of the input, such as channel attention in 
Squeeze-and-Excitation Networks and spatial attention [13,14]. 

 
Fig. 1. structure of Triplet attention modules 

As shown in Figure 1, this paper focuses on the Triplet Attention mechanism, a lightweight yet 
effective method that uses a three-branch structure to capture cross-dimensional interactions. 
Triplet Attention can be easily integrated into traditional backbone networks with negligible 
computational overhead. The structure consists of three branches, each responsible for capturing 
interactions across different dimensions of the input tensor. In the first branch, focusing on 
channel and width (C and W), attention weights are calculated using z-pooling, followed by a 
7×7 convolution and Sigmoid activation. Similarly, the other two branches capture 
dependencies for channel and height (C and H), and height and width (H and W). The resulting 
attention weights are multiplied by the original input and passed through average pooling to 
produce the final attention mechanism output. 

We also explore the Convolutional Block Attention Module (CBAM), another attention 
mechanism known for its flexibility in fitting into any CNN architecture with minimal overhead, 
as proposed by Woo et al. [15,16]. CBAM considers both channel and spatial information, 
applying max pooling and average pooling along each dimension. The pooled outputs are passed 
through convolutional layers and a Sigmoid activation function, producing attention weights 
that are multiplied with the original input to generate the final output. 



 

 

3 Methodology 

3.1 Dataset 

Popular semantic segmentation datasets and benchmarks include PASCAL VOC, Cityscapes, 
and ADE20K, which provide labeled images to train and evaluate segmentation models. In this 
paper, we selected the Cityscapes dataset [17], which includes 5,000 finely annotated images, 
due to its appropriate data size and high annotation quality. 

Cityscapes is a large-scale benchmark dataset designed for visual semantic understanding in 
urban street scenes. It provides comprehensive semantic, instance-level, and dense pixel-wise 
annotations for 30 distinct object classes, which can be grouped into 8 high-level categories: flat 
surfaces, humans, vehicles, constructions, objects, nature, sky, and void. The dataset comprises 
approximately 5,000 finely annotated images and an additional 20,000 coarsely annotated 
samples for various purposes. These images were captured in 50 cities over several months, at 
different times of the day, and in favorable weather conditions to ensure diversity. The images 
were extracted from videos, with frames manually selected to include a rich variety of objects, 
diverse scene layouts, and complex background compositions. This comprehensive dataset is an 
invaluable resource for computer vision research, particularly in tasks such as semantic and 
instance segmentation, object detection, and urban scene understanding. The diversity and 
density of annotations make Cityscapes a prominent benchmark for evaluating the performance 
and generalization of state-of-the-art computer vision models. 

For our research, we used the 5,000 finely annotated images from the Cityscapes dataset and 
resized them to a resolution of 256×256 to balance computational cost with data quality. 

3.2 Model design 

Triplet Attention, as discussed earlier, is designed to optimize vision models by helping them 
focus on crucial parts of the input. Its flexible design allows it to be easily integrated into existing 
models, typically by inserting it after convolutional layers. 

Oue optimized model is based on the original DeepLab V3+ architecture, which consists of 
three main components: the backbone, the ASPP module, and the decoder, as shown in Figure 
3. The backbone uses the classic ResNet-50 architecture to process input image data. As seen in 
Figure 2, ResNet-50 comprises four convolutional layers, each made up of a series of bottleneck 
modules. To enhance the backbone, we introduced Triplet Attention after each bottleneck 
module, following the approach proposed in the original Triplet Attention paper. Alternatively, 
we experimented with adding attention mechanisms after each backbone layer, inspired by the 
research of Li et al. [18], which explored improvements in applying DeepLab V3+ to 
agricultural image segmentation. 



 

 

 
Fig. 2. structure of Layer-wise attention improved ResNet-50 backbone 

 

 
Fig. 3. structure of Layer-wise attention improved DeepLab-v3+ model 

For the remaining part of the DeepLab V3+ model, the ASPP module consists of atrous 
convolution pyramids and a 1×1 convolution for feature mixing. The decoder is responsible for 
combining low-level and high-level information, followed by a 3×3 convolution for reshaping 
the feature channels. We explored adding attention mechanisms after relevant convolutional 
layers in both the ASPP and decoder modules to assess potential performance gains. 



 

 

To evaluate the effectiveness of Triplet Attention, we also implemented and tested other 
attention mechanisms, such as CBAM. We applied CBAM at the same locations mentioned 
above to compare its performance against Triplet Attention. 

4 Experiment & Result 

4.1 Experiment design 

In this section, we present the implementation and performance comparison of the various 
models discussed in previous sections. The main objective of this study is to evaluate the 
effectiveness of integrating the Triplet Attention mechanism into the DeepLab-V3+ semantic 
segmentation model. Specifically, we experimented by inserting Triplet Attention modules at 
different positions within the original model and evaluated the performance improvements. To 
further validate the robustness of our approach, we also implemented a comparative study by 
replacing the Triplet Attention modules with CBAM (Convolutional Block Attention Module) 
and assessing the resulting performance metrics. 

The table below outlines the naming conventions and design details of each model configuration 
used in the experiment, providing clarity regarding the variations tested: 

Table 1. illustration of model adaptation name and their architecture 

Model name Model architecture explanation 
Original DeepLab v3+ The original implementation of deeplab v3+ model 
ASPP Applying triplet modules after each ASPP blocks of model 
CBAM Applying CBAM modules after each ResNet layers of model 
Layerwise Applying triplet modules after each ResNet layers of model 

Blockwise Applying triplet modules after each ResNet bottleneck 
blocks 

ASPP+Layer Applying triplet modules after each ASPP blocks of model 

4.2 Experiment result 

The performance of the models was evaluated using three primary metrics: training and 
validation loss, mean Intersection over Union (mIoU) and pixel-wise accuracy. mIoU is a widely 
accepted metric for semantic segmentation tasks, measuring the overlap between predicted and 
ground-truth segments, while pixel-wise accuracy provides an aggregate measure of correctly 
classified pixels across the entire dataset. 



 

 

 
Fig. 4. training and validation losses in training process 

Figure 4 illustrates the training and validation loss curves across different models. The losses 
for all models follow a smooth downward trajectory, indicating stable training across the board. 
However, the block-wise model exhibits significantly higher losses compared to the other 
models. This is likely due to inappropriate optimization or an excessive number of attention 
modules being added, which may have introduced complexity that hindered convergence. These 
results suggest that further hyperparameter tuning or architectural adjustments are required for 
the block-wise model. 

Figures 5 and 6 provide insights into the maximum mIoU and pixel-wise accuracy achieved by 
each model. As shown, the layer-wise model consistently outperforms other models in terms of 
both mIoU and pixel-wise accuracy. To delve deeper into the results, we performed a thorough 
analysis of each model's performance. 

The original DeepLab-V3+ model serves as the baseline for this study. It achieved a maximum 
mIoU of 50.17% and a pixel-wise accuracy of 0.8366. These values establish a benchmark 
against which the performance improvements brought by attention mechanisms can be assessed. 



 

 

 
Fig. 5. result mIoU of all models tested 

 
Fig. 6. result pixel-wise accuracy of all models tested 

In the layer-wise improvement experiment, we inserted Triplet Attention modules after each 
ResNet layer in the backbone architecture. The model achieved a significant boost, reaching a 
maximum mIoU of 53.58% and a pixel-wise accuracy of 0.8716. This represents a notable 
improvement over the baseline, with only a slight increase in parameter count (from 39,761,331 
to 39,761,628 parameters). The effectiveness of Triplet Attention in capturing cross-
dimensional dependencies is evident from this considerable lift in performance, which is 
particularly beneficial in scenarios requiring fine-grained segmentation. 

The block-wise improvement involved adding Triplet Attention modules after each bottleneck 
module in the ResNet-50 backbone. This approach, however, led to suboptimal results, with a 
maximum mIoU of 45.49% and a pixel-wise accuracy of 0.8391, both of which are lower than 



 

 

even the baseline model. One possible explanation for this underperformance is the over-
complication of the model. The insertion of too many attention modules may have increased the 
model's complexity, leading to difficulties in optimization and slower convergence during 
training. This finding underscores the importance of carefully balancing architectural 
enhancements with training efficiency. 

To further enhance feature extraction capabilities, we experimented with ASPP improvements 
by adding attention modules within each ASPP layer of the encoder. This variant achieved a 
maximum mIoU of 53.77% and a pixel-wise accuracy of 0.8431. While this shows a moderate 
improvement compared to the layer-wise enhancement, the increase is relatively modest, 
suggesting that ASPP enhancement alone may not be as impactful as expected. 

 
Fig. 7. example of segmentation results of different model comparison 

We also explored the combination of Layer-wise and ASPP improvements, applying both 
techniques simultaneously. The resulting model achieved a maximum mIoU of 53.49% and a 
pixel-wise accuracy of 0.8531. This indicates that simply combining the two approaches does 
not necessarily result in a significant cumulative improvement. It seems that both methods 
contribute to similar improvements in different parts of the model, and their combination does 
not yield a synergistic effect. 

Finally, we evaluated the performance of CBAM modules by replacing Triplet Attention 
modules in the Layer-wise improved model. The model achieved a maximum mIoU of 52.95% 
and a pixel-wise accuracy of 0.8438. While CBAM shows a moderate uplift in performance 
compared to the baseline, it falls short of the performance achieved by Triplet Attention. This 
reinforces the strength of Triplet Attention in capturing complex spatial relationships in the 
segmentation task. 



 

 

In Figure 7, we provide qualitative visual comparisons of the segmentation results produced by 
different models. These samples were drawn from the evaluation set and provide a visual 
demonstration of the differences between the model outputs. For clarity, abbreviations such as 
"lASPP" represent the combined Layer-wise plus ASPP improvement discussed above. 
Although the visual differences between models are subtle, the evaluation metrics and 
segmentation masks consistently indicate the superiority of the Layer-wise Triplet Attention 
model in producing more accurate and refined segmentations. 

5 Conclusion  

Semantic segmentation is a foundational task in the field of computer vision, crucial for 
understanding and analyzing the structure of visual scenes at a pixel level. In this paper, we 
explored multiple strategies to enhance the performance of the DeepLab V3+ model through 
the integration of attention mechanisms. Specifically, we introduced and evaluated two 
prominent attention mechanisms: Triplet Attention and CBAM, integrating them into the 
model's backbone, ASPP module, and decoder. 

Our experimental results demonstrate that attention mechanisms significantly improve the 
segmentation performance of the DeepLab V3+ model with only a marginal increase in 
computational resource requirements. Among the various strategies explored, the integration of 
Triplet Attention in the model's backbone exhibited the most pronounced improvements, 
highlighting its effectiveness in capturing cross-dimensional dependencies and enhancing 
feature extraction. 

In summary, attention mechanisms have proven to be highly effective in augmenting the 
semantic understanding and fine-grained detail prediction of segmentation models like DeepLab 
V3+. This suggests promising avenues for further advancements in the field. Future work will 
involve exploring additional attention mechanisms and applying these methods to other 
computer vision tasks, with the aim of continuing to push the boundaries of image understanding. 
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