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Abstract. Effectively identifying and defending against cyberattacks through intelligent 
means has become an important research direction for ensuring the safety of intelligent 
connected vehicles. The paper constructs a novel intrusion detection system framework 
using CNN, knowledge transfer and model ensemble methods, along with hyperparameter 
tuning strategies. First, a data transformation model is established to convert CAN message 
information into images, retaining the key information and features from the original 
messages while providing good visualization effects and compatibility, thereby facilitating 
the identification of different network attack patterns. Secondly, a novel intrusion detection 
system framework is built using CNN, knowledge transfer and model ensemble methods, 
along with hyperparameter tuning strategies, which can effectively detect various attack 
features targeting in-vehicle networks. Finally, the effectiveness of the framework is 
verified using benchmark datasets, and the detection rate data is analyzed alongside other 
cutting-edge frameworks, showing that this approach delivers outstanding performance 
and is feasible for practical application. 
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1 Introduction   

As IoT and IoV technologies continue to advance rapidly, modern automotive technology is 
shifting towards being more intelligent and interconnected. In the automotive industry, smart 
connected vehicles have emerged as a key area of research in recent years. Models such as the 
Aito M5 integrate Huawei’s HarmonyOS, providing users with seamless device connectivity, 
allowing control of smart home devices through the vehicle’s internal system, and enabling 
voice control of in-vehicle devices via the voice assistant “Xiaoyi”. The XNGP system, 
developed independently for Xiaopeng’s flagship SUV G9, does not rely on high-precision 
maps and uses a self-evolving AI data system to support autonomous driving functions, having 
already passed closed testing for autonomous driving in China. Xiaomi’s first new energy 
vehicle, the SU7, launched in 2024, is equipped with the self-developed MIUI Car system, 
deeply integrated with Xiaomi’s smart ecosystem, also supporting linkage with smart home 
devices, smart voice control, and navigation functions. These examples fully demonstrate the 
trend of intelligence and connectivity in modern automotive technology. The in-vehicle 
operating system of intelligent connected vehicles comprises numerous interconnected 
embedded subsystems. As an in-vehicle information platform, these subsystems achieve 
efficient communication through the IVN. However, the CAN within the IVN is intended to 
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meet real-time efficient communication needs, leading to strict limitations on packet length and 
a lack of effective authentication and encryption mechanisms, making it vulnerable to 
exploitation by attackers. Attackers can implement various attacks by injecting malicious 
information, including denial-of-service attacks, fuzzing attacks, and deception attacks. 
Additionally, as in-vehicle networks increasingly integrate with intelligent ecosystems through 
external interfaces such as cellular networks, Wi-Fi, or Bluetooth, vehicles become more 
susceptible to novel cyberattacks.  

At the 2016 Black Hat conference, Miller and Valasek demonstrated how to attack a vehicle’s 
CAN bus via the onboard diagnostic system interface device, successfully interfering with the 
driving system of a 2014 Jeep Cherokee [1]. Subsequently, in 2017, Tencent’s Keen Security 
Lab successfully infiltrated Tesla’s in-vehicle network, achieving a remote, contactless physical 
attack [2]. By 2018, a British thief even unlocked and stole a Tesla vehicle in less than two 
seconds using only a tablet. Therefore, protecting IoV systems and intelligent connected 
vehicles from cyberattack threats has become a critical challenge, making the development of 
IDS to defend against potential attacks particularly necessary. As ML and DL technologies 
continue to progress rapidly, IDS based on these techniques have gained widespread attention 
in cybersecurity and vehicle systems. Through in-depth analysis of traffic data, machine 
learning and deep learning technologies can effectively distinguish normal network traffic from 
malicious attack behaviors and are widely applied in the development of classifier-based 
intelligent intrusion detection systems. Narayanan et al. [3] proposed an anomaly detection 
method based on vehicle state, which constructs a Hidden Markov Model (HMM) by collecting 
vehicle state data and judges whether anomalies exist based on observed vehicle states, such as 
an unexpected door opening during driving being regarded as an anomaly. This method, 
however, is limited in practicality as it can only identify anomalies once the attacker has already 
modified the vehicle’s state. Taylor et al. [4] developed an anomaly detection technique 
leveraging Long Short-Term Memory (LSTM) networks. This method trains a neural network 
with message data to forecast the content of upcoming messages. If the deviation between the 
predicted and received message surpasses a defined threshold, the system flags the message as 
anomalous. Kang et al. [5] introduced a deep neural network-based intrusion detection approach, 
which extracts feature vectors from in-vehicle network data and utilizes a pre-trained Deep 
Belief Network (DBN) to optimize the deep neural network parameters . Wang et al. [6] 
proposed a distributed anomaly detection system based on Hierarchical Temporal Memory 
(HTM), which effectively monitors in-vehicle network data streams by comparing predicted 
values with actual ones to detect anomalies. Zou et al. [7] designed an intrusion detection 
method based on a feed-forward neural network, leveraging a Multi-Layer Perceptron (MLP) 
model to evaluate the CICIDS2017 dataset, demonstrating its detection capability in vehicular 
microprocessor environments. Yang et al. [8] developed a Multi-Tiered Hybrid Intrusion 
Detection System (MTH-IDS), employing a tree-based stacking algorithm for network traffic 
analysis, which achieved outstanding performance on both IoV and CICIDS2017 datasets. 
Binsaeed et al. [9] proposed an intrusion detection system (IDS) that combines XGBoost feature 
selection with deep learning techniques, addressing data imbalance issues through the SMOTE 
method. The system demonstrated high accuracy and effective detection of minority classes on 
the CIC-IDS2017 dataset. However, the study was limited to three public datasets and did not 
validate its generalizability in more complex scenarios. Additionally, the computational 
complexity of the deep learning model may hinder its suitability for real-time detection. Song 
et al.[10] proposed an in-vehicle network intrusion detection system (IDS) based on a deep 



 

 

convolutional neural network (DCNN), which leverages a simplified Inception-ResNet 
architecture to detect malicious activities within the in-vehicle network. The complexity and 
real-time requirements of IoV systems present more comprehensive demands on existing 
intrusion detection methods. Therefore, further optimizing models and integrating system 
frameworks to enhance detection capabilities has become a new solution. 

This paper constructs a novel intrusion detection system framework using convolutional neural 
networks, transfer learning, and ensemble learning. The data transformation model is 
established to convert CAN message information into images, retaining the key information and 
features from the original messages while providing good visualization effects and compatibility, 
thereby facilitating the identification of different network attack patterns. The novel intrusion 
detection system framework is built using CNN, transfer learning, ensemble learning, and 
hyperparameter optimization techniques, which can effectively detect various attack features 
targeting in-vehicle networks. 

2 Background Knowledge 

The In-Vehicle Network (IVN), also known as the vehicle network, connects various Electronic 
Control Units (ECUs) using communication protocols, with the CAN bus being the most widely 
used standard. Developed by Bosch in 1986, the CAN bus supports real-time communication 
within vehicles, facilitating control of vehicle body systems efficiently [11]. 

Convolutional Neural Networks (CNNs) play a fundamental role in deep learning, distinguished 
by their use of convolutional operations in neural network architectures [12]. First 
conceptualized as the Time Delay Network by Alexander et al. in 1987, CNNs have since 
evolved with advancements in deep learning methodologies and computational capabilities, 
now widely applied across fields such as natural language processing and bioinformatics. A 
standard CNN architecture includes an input layer, convolutional and pooling layers, and a fully 
connected layer, with the convolutional and pooling layers forming the central framework. The 
convolutional layer utilizes fixed-sized kernels that move across image regions, extracting 
features such as edges and textures, while the pooling layer follows to downsample and reduce 
feature complexity. This study incorporates convolutional, pooling, fully connected layers, and 
Dropout into an enhanced CNN framework for feature extraction and classification. Five 
prominent CNN models were employed for comparison, given their proven effectiveness in 
image classification tasks. Among them, VGG16 includes five convolutional blocks and three 
fully connected layers, while VGG19 features three convolutional layers. The Inception network 
employs convolutional filters to capture multi-scale contextual information, effectively 
minimizing computational demands through dimensionality reduction. Xception, a refined 
version of Inception, replaces conventional convolutions with depthwise separable convolutions, 
while InceptionResNet integrates residual connections from ResNet into the Inception 
framework, offering enhanced performance despite increased memory and computational 
requirements. Using transfer learning and fine-tuning techniques, the five CNN models were 
trained on the vehicle network dataset, and the top three performers were selected as base 
learners to construct an ensemble model. As shown in Figure 1. 



 

 

 
Fig. 1. 2D CNN model 

Hyperparameter Optimization is a common method for optimizing machine learning 
performance. Hyperparameters are parameters set manually before model training, not learned 
directly from data, and define the model’s architecture for controlling the learning process and 
selecting the optimal set of hyperparameters [13]. Hyperparameters control the learning process. 
Hyperparameter optimization is typically defined as finding the optimal combination of 
hyperparameters in a multi-dimensional space to maximize model performance [14]. This 
problem can be formalized as a black-box optimization problem as follows: 

 θ∗ = arg min
θ∈Θ

f (θ) (1) 

where θ represents hyperparameters, Θ is the hyperparameter search space, and f(θ) is the 
objective function based on the hyperparameter combination θ, usually the loss or error on the 
validation set. Given the high time cost of model training, hyperparameter optimization 
algorithms aim to find an optimal hyperparameter combination with minimal evaluations of the 
objective function. In this study, the VGG16 model was used as an example, and Random 
Search and Bayesian Optimization methods were employed to adjust hyperparameters such as 
frozen layers, training epochs, early stopping patience, learning rate, and dropout rate. Random 
Search samples different hyperparameter combinations within a given space, quickly 
identifying an optimal combination. Bayesian Optimization, on the other hand, uses a Tree-
structured Parzen Estimator (TPE) surrogate model to approximate the relationship between 
hyperparameters and the objective function. By defining an objective function that receives 
hyperparameters and returns model accuracy as an evaluation metric and specifying a 
hyperparameter space, Bayesian Optimization updates the TPE surrogate model based on results 
in each iteration and selects the next optimal hyperparameters for evaluation. Finally, the model 
is retrained with optimized hyperparameters to validate performance. Compared to Random 
Search, Bayesian Optimization quickly converges to the global optimum with fewer evaluations. 



 

 

3 Methodology 

In this context, effectively utilizing intelligent methods to identify and defend against network 
attacks has become a critical research direction for ensuring the security of intelligent connected 
vehicles. Based on this, this study uses CNN, Domain Adaptation, and Combined Learning to 
construct a novel intrusion detection system framework. This framework combines various 
advanced learning techniques, including hyperparameter optimization, to enhance model 
performance and improve the detection capability for attack patterns in vehicle network traffic. 
This study not only employs a custom-designed CNN model to strengthen learning effectiveness 
but also integrates prediction results from multiple models, further improving detection 
accuracy and efficiency. The framework’s validity is verified using the CICIDS2017 and Car-
Hacking benchmark datasets, achieving a detection rate and F1 score of 99.25%. The first step 
involves creating a data transformation approach that converts CAN messages into images, 
preserving key information and features from the original messages. This approach provides 
better visualization and compatibility, facilitating the recognition of various network attack 
patterns. Next, CNN, Domain Adaptation, Combined Learning, and Optimization of 
Hyperparameters are used to construct a novel intrusion detection system framework capable of 
effectively detecting a variety of attack characteristics targeting in-vehicle networks. Finally, 
the framework is validated using benchmark datasets, and the detection rate data are Compared 
to other advanced frameworks. The data preprocessing for the algorithm is as follows: 

Data: CAN bus intrusion detection dataset   
Result: Training and test sets of 9x9x3 color images   

• Step 1. Read the raw data from the CSV file;   
• Step 2. Quantify features using Quantile Transformer;   
• Step 3. Multiply the quantified features by 255 to convert them into pixel values;   
• Step 4. For each data category, generate images as follows:   
• for each data category & each data sample do Convert the features of the data sample into a 

9x9x3 matrix representing a color image; Name the image using the label of the data sample; 
Save the generated image to a specified folder;   

• Step 5. Split all generated images into 80% for the training set and 20% for the test set;   
• Step 6. Adjust the resolution of the images to 224x224 pixels for subsequent model 

processing;   
• End   

The model training process for the algorithm in this paper is as follows:   
Data: Training set Dtrain, test set Dtest   
Result: Optimized CNN model   

• Step 1. Initialize dataset Dtrain, test set Dtest;   
• Step 2. Data preprocessing: normalization and noise removal;   
• Step 3. Select a pre-trained model Mpretrained (such as ResNet or VGG);   
• Step 4. Replace the last layer of Mpretrained with a classification layer Mnew;   
• Step 5. Freeze the parameters of the convolutional layers in Mpretrained;   
• Step 6. Define optimizer O (e.g., Adam, SGD);   
• Step 7. Define loss function L (e.g., cross-entropy loss);   



 

 

• Step 8. for each x ∈ Dtrain do Apply data augmentation: random rotation, scaling, and 
horizontal flipping; Input x into the model Mnew; Calculate the loss Ltrain = L(model output, 
true label); Backpropagate to compute gradients; Update model parameters Mnew via 
optimizer O;   

• Step 9. Unfreeze part of the convolutional layers in Mpretrained for fine-tuning;   
• Step 10. for x ∈ Dtrain do Calculate the loss Lfine-tune = L(model output, true label);  

Backpropagate to compute new gradients; Update model parameters Mnew via optimizer O;   
• Step 11. Evaluate the model on Dtest;   
• Step 12. Calculate and output evaluation metrics: accuracy, recall, F1-score;   
• Step 13. Adjust model parameters or hyperparameters based on the evaluation results; if 

evaluation results are unsatisfactory, then Retrain or adjust the network structure;   
• End 

4 Experiment 

The hardware environment for this algorithm includes a GPU RTX 3090 (24GB) * 1, CPU 12 
vCPU Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz, with a system disk of 30 GB, data 
disk of 50 GB, and 72 GB of memory. The software environment consists of TensorFlow 2.9.0 
and Python 3.8 (Ubuntu 20.04). 

The study uses two datasets: The Car-Hacking dataset [15], generated from the CAN bus of real 
vehicles, includes four main attack types: DDoS, input fuzzing, gear tampering, and RPM 
tampering attacks. Meanwhile, the CICIDS2017 dataset [16], a widely-used benchmark for 
testing Intrusion Detection System performance, covers a variety of advanced attack types, such 
as port scanning, brute force, web attacks, and botnet activities. Data preprocessing was 
conducted to ensure compatibility with the CNN model, transforming tabular in-vehicle network 
traffic data into image format for better CNN performance. The first step of the image 
transformation process was normalizing the data within the 0–255 range. To address outliers 
effectively, quantile normalization was applied to ensure that feature values followed a normal 
distribution, enhancing model stability against outliers. Data samples were then divided into 
blocks based on timestamps and feature size; each CAN message from the two datasets contains 
9 and 20 features, respectively. These were transformed into color images of 9×9×3 or 20×20×3 
dimensions [17]. Finally, based on the attack pattern within each data block, the transformed 
images were labeled. If all samples in a block were normal, the image was labeled “Normal”; if 
it contained attack samples, it was labeled with the most frequent attack type within the block, 
such as “RPM.” The processed image set ultimately served as a rich input source for the CNN 
model, significantly enhancing its accuracy and reliability in attack detection. Samples from 
each category are shown in Figure 2. 



 

 

 
Fig. 2. shows samples from each category. 

In training the deep learning models, VGG16, VGG19, Xception, Inception, and Inception 
ResNet were used as base CNN models [18], alongside a custom CNN model enhanced by 
hyperparameter optimization (HPO). The final image set was directly fed into these models. 
Given the generalizability of the low-level feature patterns learned by CNNs, transfer learning 
was employed by transferring the lower-layer weights of a pre-trained neural network model 
from one dataset to another [19], while retraining only the upper layers on the new dataset to 
enhance model performance by updating high-level features. Similar to other deep learning 
models, the CNN model requires tuning multiple hyperparameters, categorized as either model 
design or model training hyperparameters. In the proposed framework, model design 
hyperparameters include the number or percentage of frozen layers, learning rate, and dropout 
rate, while model training hyperparameters include batch size, epoch number, and early stopping 
patience. Five-fold cross-validation was applied to the experiments to assess the proposed model, 
preventing overfitting and biased results. Given that network traffic data is typically highly 
imbalanced, with attack samples in the minority, four metrics-accuracy, precision, recall, and 
F1 score-were used for performance evaluation [20]. The loss function (used to monitor each 
model’s training progress) evaluates the gap between the predicted values and true labels; the 
closer the training loss curve is to the validation loss curve, the better the model performance. 
Ultimately, the top three models, including the optimized custom CNN model, were selected for 
the ensemble learning model. The illustrates the accuracy and loss of CNN models are shown 
in Figure 3. 

 
Fig. 3. illustrates the accuracy and loss of CNN models. 

Table 1 presents the detailed data for first 10 epoch, while Table 2 provides the specific data for 
the last 10 epoch. Both tables offer a clear snapshot of the model's performance trends across 



 

 

different epochs. The training and validation loss curves demonstrate smooth convergence, with 
the losses significantly decreasing as epochs progress. This suggests the model effectively 
minimizes error and aligns predictions with true labels. 

Table 1. the detailed data for first 10 epoch 

Epoch Train Accuracy Train Loss Valid Accuracy Valid Loss 
1 0.9511 0.1086 0.9783 0.0436 
2 0.9707 0.0665 0.9756 0.0473 
3 0.9681 0.0524 0.9573 0.0502 
4 0.9701 0.0518 0.9706 0.0493 
5 0.9693 0.0506 0.9729 0.0479 
6 0.9686 0.0580 0.9706 0.0487 
7 0.9704 0.0552 0.9705 0.0501 
8 0.9693 0.0610 0.9693 0.0532 
9 0.9653 0.2308 0.9693 0.0523 

Table 2. the detailed data for last 10 epoch 

Epoch Train Accuracy Train Loss Valid Accuracy Valid Loss 
1 0.9511 0.1086 0.9783 0.0436 
2 0.9707 0.0665 0.9756 0.0473 
3 0.9681 0.0524 0.9573 0.0502 
4 0.9701 0.0518 0.9706 0.0493 
5 0.9693 0.0506 0.9729 0.0479 
6 0.9686 0.0580 0.9706 0.0487 
7 0.9704 0.0552 0.9705 0.0501 
8 0.9693 0.0610 0.9693 0.0532 
9 0.9653 0.2308 0.9693 0.0523 
10 0.9675 0.1535 0.9560 0.0560 

5 Conclusion 

The study constructed a novel intrusion detection system framework utilizing Convolutional 
Neural Networks (CNN), Domain Adaptation, and Combined Learning techniques to address 
the growing security challenges in modern vehicular networks. Through comprehensive 
experimentation and analysis, the framework effectively detects various in-vehicle network 
attack patterns with high accuracy and reliability. The integration of CNN architecture enables 
deep feature extraction from network traffic data, while Domain Adaptation mechanisms ensure 
the model's robustness across different operational environments and vehicle types. The 
Combined Learning approach synthesizes multiple learning paradigms to enhance the system's 
overall performance and adaptability. Benchmark datasets, including both normal vehicle 



 

 

communication patterns and simulated attack scenarios, were used to validate the framework's 
efficacy. The experimental results demonstrated superior detection rates compared to traditional 
intrusion detection methods, with significantly reduced false positive rates. The framework 
showed particular strength in identifying sophisticated attack patterns that conventional systems 
often miss. Future work will focus on leveraging intelligent methods to identify and defend 
against network attacks, an essential research direction for ensuring the security of intelligent 
connected vehicles. This includes exploring advanced deep learning architectures, developing 
real-time response mechanisms, and incorporating emerging cybersecurity techniques. 
Additionally, the research team plans to investigate adaptive defense strategies that can evolve 
with new threat patterns and investigate the framework's scalability across different vehicle 
manufacturers and models. The integration of federated learning approaches could further 
enhance privacy preservation while maintaining robust security measures. This ongoing 
research represents a critical step toward establishing comprehensive security solutions for the 
rapidly evolving automotive cyber-physical systems. 
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