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Abstract. With the rise of large language models (LLMs) such as ChatGPT in the field of 

code generation, these models have demonstrated impressive abilities in understanding 

code semantics and implementing complex functionalities, especially showing potential in 

web development scenarios. Developing web applications is a critical task widely used in 

interactive software systems across various fields. However, current automated web code 

generation still has limitations, often failing to cover complete front-end and back-end 

functionalities or achieve complex interactive logic. Based on this, this paper takes 

ChatGPT-4o as an example, constructing a comprehensive student management system to 

systematically analyze and evaluate its performance and applicability in generating front-

end and back-end code. First, the paper outlines the system’s requirements analysis and 

module design. Then, it thoroughly documents the entire process of generating front-end 

and back-end code based on ChatGPT-4o. Through this process, the paper examines 

ChatGPT-4o’s performance in terms of code generation efficiency, functionality accuracy, 

and the level of human intervention required, analyzing its strengths and limitations with 

experimental data. The experimental results indicate that large models like ChatGPT 

significantly simplify code generation and accelerate the development process, yet still 

require human optimization when handling complex logic and interaction design. This 

study provides a valuable reference for web code generation based on large models and 

outlines future directions for improvement. 
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1 Introduction 

In recent years, the rapid advancement of artificial intelligence technology has driven profound 

changes in the field of software development. Generative AI, exemplified by large language 

models (LLMs) like ChatGPT, has garnered significant attention from developers due to its 

remarkable performance in natural language understanding and text generation. These models 

not only comprehend complex natural language instructions but are also capable of generating 

high-quality code, facilitating the automation of the entire process from requirements to code 

implementation. This capability offers the potential to enhance development efficiency and 

reduce costs, particularly in the multi-layered, multi-module landscape of web application 

development, where automated code generation can significantly streamline the development 

workflow and accelerate software delivery. As a core form of modern interactive systems, web 

applications are widely used across various industries, including e-commerce, education, 
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healthcare, and social media. Web application development typically involves designing the 

front-end user interface, implementing back-end business logic, and managing and maintaining 

the database, incorporating a variety of technologies such as HTML, CSS, JavaScript, and Java, 

along with stringent requirements for logical processing and data security. However, traditional 

web development processes place high demands on developers’ programming skills and 

experience. Leveraging artificial intelligence to automatically generate code that aligns with 

business requirements and has a well-structured architecture has become a key focus in the 

industry. 

Although some research has attempted to use models for code generation—such as GitHub 

Copilot, which demonstrates relatively mature capabilities in generating code snippets—these 

technologies are mostly limited to generating single modules or snippets, lacking 

comprehensive support for an entire web application architecture, and are unable to achieve 

complete front-end and back-end development integration. Advanced large language models 

like ChatGPT, however, exhibit new potential in this area, with multi-layered generation 

capabilities that make it possible to automatically generate code in complex web development 

scenarios. Nonetheless, there has been limited work to date on using large models to develop 

complex, practical web applications, making it challenging to assess the current capabilities of 

large models in generating practical software. Against this background, this paper selects 

ChatGPT-4o as the subject of study and uses a student management system as an example to 

systematically evaluate the performance of large language models in web code generation. We 

begin by analyzing the requirements of the student management system, then design modular 

generation prompts based on this analysis, and subsequently assess the effectiveness of the 

generated front-end and back-end code through experimentation. Through this project, we 

explore ChatGPT-4o’s performance in generating front-end and back-end code, implementing 

interaction logic, and optimizing code, as well as conducting a quantitative analysis of the 

usability, functional accuracy, and degree of human intervention required for the generated code. 

Compared with existing tools, ChatGPT not only accomplishes basic code generation but also 

adjusts code logic based on prompts, covering all layers from front-end UI to back-end logic. It 

performs well in terms of development efficiency and usability, achieving a high level of 

automation and accuracy. At the same time, we found that general-purpose large models like 

ChatGPT-4o are still insufficient in handling complex interaction logic and optimizing user 

experience, requiring significant human intervention to ensure smooth user interactions and 

responsive system performance. 

Through systematic experimentation, this paper aims to provide empirical support for the 

application of large language models in the field of web development, shedding light on the 

model’s applicability in practical development and its potential contributions across different 

scenarios. We believe that as model architectures and prompt engineering techniques continue 

to advance, the impact of large language models in software development will continue to grow, 

with the potential to become an essential assistive tool for developers and drive the evolution of 

intelligent development processes. 



 

 

2 Literature Review 

2.1 LLM-based Code Generation 

In recent years, the rapid development of large language models (LLMs) has made LLM-based 

code generation a key research focus in software development. This technology not only 

demonstrates powerful capabilities in code comprehension and generation but also provides new 

possibilities for improving developer productivity [1,2]. LLM technologies are currently applied 

across diverse coding tasks, such as generating test cases for compiler testing [1], automating 

industrial control logic [3,4], and enhancing code generation with requirements clarification 

frameworks [5]. These studies have proven the potential of LLMs to significantly improve both 

the efficiency and quality of code generation. However, challenges remain in ensuring 

functional correctness, handling logic complexity, and addressing security concerns [6,7]. For 

example, the ClarifyGPT framework reduces the impact of ambiguous requirements by 

generating clarifying questions, significantly improving the functional accuracy of generated 

code [5]. Similarly, studies evaluating vulnerabilities in generated code, such as SQL injection 

or cross-site scripting, have highlighted the importance of incorporating security-focused 

prompt patterns [8,9]. Additionally, interactive multi-round refinement—where users iteratively 

adjust the initial output—has shown promise in improving the accuracy and reliability of LLM-

generated code [7,10]. Despite the strong performance of LLMs in basic tasks like algorithmic 

code generation and single-module implementations, they require further improvement for 

multi-module system development and complex interactive logic handling [11,12]. Furthermore, 

studies have found that insufficient testing datasets can misrepresent evaluation outcomes, 

leading to overestimated LLM capabilities [6]. In industrial control applications, a lack of 

integration with proprietary function blocks often necessitates significant manual optimization 

of generated code [4]. To enhance overall performance, future research focuses on improving 

code security, generation efficiency, and evaluation frameworks. For instance, integrating 

retrieval-augmented methods to strengthen contextual understanding can significantly improve 

the accuracy and usability of generated code [4,13]. Additionally, developing user-oriented low-

code platforms and multi-round interactive optimization techniques may further enhance the 

adaptability of LLMs in real-world development environments [14]. 

2.2 LLM-based Web Development 

Web development is a central area of modern software engineering, encompassing multiple 

layers from front-end interface design to back-end logic implementation. In recent years, LLM-

based automated web code generation has emerged as a promising research area, especially for 

lowering development barriers and improving efficiency [8,13,14]. Current studies focus on 

generating functional module code (e.g., back-end logic, database interaction) and detecting 

potential security vulnerabilities [8,9]. For example, the Kodless platform generates back-end 

functionality code from natural language descriptions using modular architecture principles, 

providing standardized application designs [13]. Additionally, advancements in prompt 

engineering have significantly enhanced the applicability and accuracy of LLM-generated code 

[14]. Research has also demonstrated that LLMs can generate complete web applications with 

front-end and back-end interactions [14], though challenges remain in optimizing user 

experience and handling complex interactive logic [9,13]. In the education sector, LLM-

generated code is being explored as a teaching tool for students and instructors, aiding in 



 

 

programming assignments and assessments [11,15]. While LLMs perform well in basic web 

development tasks, they struggle with multi-layered user interactions and complex business 

requirements. For example, studies highlight that LLM-generated web application code often 

contains security vulnerabilities, particularly in areas such as file uploads and database 

interactions [8,9]. Additionally, front-end code frequently requires manual refinement to meet 

dynamic interaction and navigation logic requirements [13,14]. To further enhance the value of 

LLMs in web development, future efforts should focus on several areas. First, developing more 

intelligent prompt templates to address complex development scenarios [5,14]. Second, 

leveraging multi-round interaction and contextual enhancement techniques to improve the 

security and functionality of generated code [9,14]. Finally, conducting user studies to evaluate 

the effectiveness of LLM-based development tools in low-code/no-code platforms, making web 

development more accessible to non-technical users [13,14]. 

3 Approach 

3.1 Workflow 

 

Fig. 1. Overall Workflow for Practical Website Generation Based on ChatGPT 

As shown in Fig.1, the entire development process is divided into three main parts: back-end 

development, front-end development, and manual adjustments. The project is completed 

through integration, debugging, and optimization. First, during the requirements analysis phase, 

the project’s goal is clearly defined as creating a student management system that includes 

features such as student management, login, and registration. This functionality is to be 

implemented with code generated by ChatGPT-4. Next, in the back-end code generation phase, 

ChatGPT generates an entity class to describe student information, a three-layer architecture 

code for the back-end (Controller, Service, and Mapper), and the code for handling user login 



 

 

and registration requests. Each step requires verification of the generated code to ensure its 

correctness and functionality, ultimately forming a complete back-end system. The next stage 

is front-end code generation, which involves creating the user interface, including the student 

management page, add student page, delete functionality, login page, and registration page. 

Similarly, each front-end page is validated post-generation to ensure proper functionality and, 

finally, is integrated into a complete user interface. Although ChatGPT-4 generates most of the 

code, some page navigation and user interaction logic require manual adjustments to enhance 

user experience and system interactivity. After back-end and front-end code integration, 

debugging and optimization are performed to ensure logical consistency and smooth user 

interaction throughout the system. Through this process, ChatGPT-4 demonstrates its potential 

in code generation, significantly reducing repetitive work and improving development 

efficiency. To the best of our knowledge, we are the first to conduct the complete testing for 

website generation by LLM.  

3.2 Prompt Templates 

A prompt template is one of the key techniques in using GPT models for code generation. An 

effective prompt template not only ensures that the GPT model understands the user’s 

requirements but also guides the model to generate high-quality code that meets expectations. 

The design of prompt templates affects the quality of GPT-generated content. Different prompts 

influence the accuracy, efficiency, and applicability of the generated code. The template design 

must be clear and structured to ensure that the requirements for code functionality, logic, and 

style are effectively communicated to GPT. 

3.2.1. Principles for Template Design 

To create a scientifically sound and general-purpose prompt template, the following design 

principles should be followed: 

• Clear Functional Description: Provide a precise description of the specific functionality of 

the code. For example, “Generate a user registration interface with form validation” is 

preferred over vague descriptions like “Generate a registration interface,” as it ensures all 

necessary functionality is included in the generated code. 

• Technology Stack Specification: Specify the language or technology stack to be used, such 

as “Generate a login page using HTML5, CSS3, and JavaScript.” This helps GPT generate 

code aligned with project requirements. 

• Hierarchical Structuring: Break down prompts into different levels of instructions, from 

high-level system architecture to specific module implementations. For instance, first 

generating the project’s Controller, then the Service layer, and finally the Mapper layer 

guides GPT in generating clear three-layer architecture code. 

• Input-Output Definition: Clearly define the input and output types for functions or 

modules. For example, “Generate a function for handling user login, with input as username 

and password, and output as login result.” This helps GPT generate well-structured functions. 

3.2.2 Template Examples 

1) Refining Prompt Templates:  



 

 

Detailed prompt templates not only help GPT understand requirements but also ensure that the 

generated code is highly applicable in specific scenarios, possesses a clear structure, and is 

maintainable. We break down the prompts into multi-level, detailed instructions. 

2) Functional Description:  

The functional description needs to be as clear as possible, specifying details regarding code 

modules, functional objectives, input, and output.   

General Template: 

Generate code for a [system/module] with the following requirements:   

─ The code implements [specific functionality]. For example: the code implements the user 

registration function. 

─ Use [technology stack/programming language]. For example: use the Java programming 

language.   

─ The input for this function is [detailed description of the input], and the output is [detailed 

description of the output]. For example: input is the username, password, and email address; 

output is whether the operation was successful and any related error messages. 

─ The code must have a clear structure, including [specific functionality], and possess [specific 

features such as scalability, performance optimization, security, etc.]. For example: the code 

structure must be clear and secure (check if the username exists, ensure the password meets 

security standards of at least 8 characters, containing both numbers and letters).   

3) Technology Stack Specification:  

It is necessary to specify the technology stack to help GPT choose an appropriate 

implementation approach.   

General Template: 

Use [specific technology stack] to generate code, with the following requirements:   

─ Front-end: use [HTML5/CSS3/JavaScript/React, etc.].   

─ Back-end: use [Java/Python/Node.js, etc.].   

─ Database: use [MySQL/PostgreSQL/NoSQL].   

─ Request format: use [JSON/XML] format to handle front-end and back-end interactions.   

4) Input and Output Requirements:  

Clearly define the input and output for each function or module to facilitate GPT in generating 

structured code.   

General Template: 

Generate a function with the following requirements:   

─ Input: accepts [detailed description of input type and requirements], for example: username 

and password.   

─ Output: returns [detailed description of output type and requirements], for example: 

operation result and status code.   



 

 

─ The function must [validate, process] the [specific input] and return [detailed description]. 

For example: the function must ensure that the username and password are not empty and 

verify whether the username and password match through a database query. 

3.3 Code Optimization (GPT Self-Optimization + Manual Optimization) 

The generated code is not always perfect, and optimization is a key step in ensuring code quality, 

performance, and maintainability. During the development process, code optimization can be 

divided into two parts: GPT self-optimization and manual optimization. 

3.3.1 GPT Self-Optimization 

The GPT model can not only generate code but also perform self-optimization through recursive 

interactions. After the initial code generation, we can use GPT again to optimize the previously 

generated code, typically by clearly specifying the optimization requirements. 

1) Mechanism of GPT Self-Optimization   

The self-optimization mechanism improves the code by repeatedly calling GPT and generating modified 

versions of the code. This process mainly relies on the following points:   

• Performance Optimization Prompt: After the initial code is generated, we prompt GPT to further 

optimize for performance. For example, “Optimize the generated code to improve execution efficiency 

and reduce unnecessary calculations.”   

• Structural Optimization Prompt: To address redundancies in the initial code, we directly prompt 

GPT to streamline the code. For example, “Simplify redundant code and ensure a more compact 

structure.”   

• Security Optimization: We require the code generated by GPT to handle common security issues. 

For example, in database interaction code, prompt GPT to optimize SQL queries to avoid security 

issues like SQL injection.   

2) Self-Optimization Example   

Initial Code Generation:   

Generate a login function using Java, which includes username and password verification. If the 

verification fails, return “Login failed.”   

GPT might generate the following code:   

public String login(String username, String password) { 

    if(username.equals(“admin”) && password.equals(“1234”)) { 

        return “Login Successes”; 

    } else { 

        return “Login Fails”; 

    } 

} 

Then we prompt GPT for optimization:   

Optimize the login code to add exception handling and input validation, ensuring that username 

and password cannot be empty and avoiding hard-coded password checks. 



 

 

Optimized Code:   

public String login(String username, String password) { 

    if(username == null || username.isEmpty() || password == 

null || password.isEmpty()) { 

        throw new IllegalArgumentException(“The user name or 

password cannot be empty”); 

    }     

// Assume there is code here to validate the user against the 

database 

if(authenticateUser(username, password)) { 

        return “Login Successes”; 

    } else { 

        return “Login Fails”; 

    } 

} 

Through GPT self-optimization, we avoided hard coding and added input validation and 

exception handling, significantly improving the quality and security of the code. 

3.3.2 Manual Optimization 

1) Adjustment of Page Navigation Logic   

Redirect from Login Page to Registration Page: Add a button on the login page that allows 

users to directly navigate to the registration page. This step ensures that users can smoothly 

register a new account if they are unable to log in, without needing to return to the homepage.   

Redirect from Registration Page to Login Page: Add a navigation button on the registration 

page so that users can directly access the login page for verification after completing their 

registration. This design enhances the fluidity of the user experience.   

Redirection After Successful Login: When a user successfully logs in, they are automatically 

redirected to the student management page, enabling them to manage student information 

directly without further manual actions.   

Redirection After Successful Registration: After successful registration, users are 

automatically redirected to the login page, allowing them to immediately log into the system 

with their newly created account.   

2) Debugging and Integration 

Debugging Frontend and Backend: Conduct debugging on both frontend and backend code to 

ensure their interactions meet expectations. Specifically, during new user registration, ensure 

that the new user data is successfully written to the database and can be correctly validated by 

the backend. Optimization After Code Integration: After integrating the frontend and backend 

code, multiple tests were conducted to ensure that page redirections, data interactions, and 

business logic execute smoothly. For example, in the student management page, ensure that 

every operation—such as adding, modifying, or deleting student information—immediately 

reflects in the database and is updated in real-time on the page. 



 

 

4 Evaluation 

4.1 Experimental Details 

Requirement Analysis. This work assesses the intelligent development capabilities of large 

models represented by ChatGPT by constructing a complete student management project. The 

project encompasses modules for student registration, login, and management, which include 

both backend data processing and frontend interaction design. Through this work, we are first 

aimming to comprehensively test and evaluate the performance of the ChatGPT-4o model in 

generating frontend and backend code, as well as its ability to handle complex logic and user 

interaction design. To fairly evaluate the code generation capabilities of the ChatGPT-4 model, 

the requirements analysis considers the following aspects: 

Functionality Completeness: The student management system should include core 

functionalities such as registration, login, and student information management to ensure that 

the system covers typical web application scenarios. 

Applicability: The system requirements are designed to be suitable for business management 

scenarios, emphasizing the practicality of the functionalities and user experience to ensure that 

the generated code has practical application value in real environments. 

Modular Implementation: To facilitate evaluation, the requirements analysis emphasizes 

modular development for both the backend and frontend, such as the three-tier architecture 

(Controller, Service, Mapper) for the backend and the separate development of login, 

registration, and student management pages for the frontend. This modular division simplifies 

and clarifies the assessment of the generation quality for each part. 

Experimental Setup. In the experiment, ChatGPT-4o was used as the large model for code 

generation, with Java (Java 8) chosen as the backend development language, supporting MySQL, 

and using MyBatis Plus for database access, along with HTML, CSS, and JavaScript for 

frontend development. The Spring Boot 2 framework was employed to build the backend 

service to achieve a standardized code structure. All generated and debugged code was executed 

in the same hardware and software configuration environment to ensure the fairness of the 

experiment. 

4.2 Quantitative Metrics  

Usability: Evaluate the ratio of successfully generated functional points to the total functional 

points to measure the ease of use of the system.   

 𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹𝑔/𝐹 (1) 

Where Fg is the number of functional points successfully generated and available by ChatGPT-

4, and F is the total number of functional points required by the project. 

Development Efficiency: Compare the time taken to generate code using ChatGPT-4o with the 

time taken for traditional manual development to assess efficiency improvements. 

Human Involvement: Calculate the proportion of time spent on manual adjustments and 

debugging during the development process relative to the total development time.   



 

 

 𝐻𝐼 = (𝑇ℎ + 𝑇𝑏)/𝑇𝑑 (2) 

Where HI is the human involvement ratio, indicating the proportion of manual adjustments and 

debugging in the development process; Th is the time for manual adjustments; Tb is the time 

for debugging code; and Td is the total time required for the entire development process. 

Functional Correctness: Assess the correctness and reliability of each functional module’s 

behavior through testing.   

 𝐹𝐶 = 𝐹𝑐/𝐹 (3) 

Where FC is the functional correctness, measuring the accuracy and reliability of the functional 

modules; Fc is the number of correct functional points passed in testing; and F is the total 

number of functional points.  

4.3 Results Analysis 

 

Fig. 2. Comparison of Development Time between ChatGPT-4o and Manual Development 

Table 1. Analysis of Usability and Functional Correctness of System Function Points 

Metrics 
Function module name 

SE TTA LBS RBS SM SAP SAPg SEP LP RP CI PNB 

Usability ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ 

Functional 

Correctness 
✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ 

 

Annotation: SE: Student Entity,TTA: Three-Tier Architecture,LBS: Login Backend 

Support,RBS: Registration Backend Support,SM: Student Management,SAP: Student Admin 

Page,SAPg: Student Add Page,SEP: Student,Edit Page,LP: Login Page,RP: Registration 

Page,CI: Code Integration,PNB: Page Navigation Buttons 

In this work, a complete student management system was successfully generated using 

ChatGPT-4o, covering 12 core functional points such as login, registration, and the creation, 

deletion, and modification of student information. In terms of functional generation, Table 1 



 

 

displays the usability and functional correctness of each functional point. Functional modules 

such as “Student Entity (SE),” “Three-Tier Architecture (TTA),” and “Student Management 

(SM)” demonstrated high usability and functional correctness. However, the functional 

correctness of the “Registration Page (RP)” and “Registration Backend Support (RBS)” was 

relatively low, particularly the “Registration Backend Support,” which failed to fully pass 

verification upon initial generation, indicating certain limitations of GPT-4 in generating 

complex interactive logic. 

According to Fig. 2, in terms of development efficiency, ChatGPT-4 significantly reduced 

development time. Compared to traditional manual development, the development time for each 

functional module was greatly decreased. For example, when generating the “Student Entity 

(SE)” and “Three-Tier Architecture (TTA)” modules, ChatGPT-4 took only 0.8 hours and 0.4 

hours, respectively, while manual development required approximately 1.5 hours and 3.0 hours. 

Notably, for the “Three-Tier Architecture” module, GPT-4 reduced the development time by 

73%. However, for the complex “Page Navigation Button (PNB)” module, although the time 

taken for ChatGPT-4 to generate the code was 1 hour, an additional 0.5 hours was needed for 

manual optimization to ensure the logical correctness of page navigation. This further illustrates 

that GPT-4 still requires human intervention for optimal results in complex page interactions. 

Combining the data from Table 1 and Fig. 2, there is a relatively consistent trend in functional 

correctness and usability. For simpler functional points such as “Login Page (LP)” and “Student 

Management Page (SM),” ChatGPT-4 was able to efficiently generate code while ensuring high 

correctness and usability. However, for complex functions like “Registration Backend Support 

(RBS)” and “Registration Page (RP),” although ChatGPT-4 generated code quickly, the 

functional correctness was lower, necessitating more manual optimization and debugging time. 

Overall, ChatGPT-4 demonstrated outstanding performance in the efficiency of code generation, 

especially in significantly saving time in the development of basic functional modules. For 

instance, when generating simple structures like the “Student Entity” and “Three-Tier 

Architecture,” its speed far exceeded that of manual development, showcasing exceptional 

efficiency. However, when facing complex interactive logic and backend business processing, 

such as “Registration Backend Support” and “Page Navigation Button,” the generated code still 

required manual optimization and correction by developers to ensure functional correctness and 

the integrity of the system. This indicates that while ChatGPT-4 can effectively accelerate the 

development process, it still relies on a degree of human intervention in more complex scenarios. 

5 Conclusion  

The general-purpose large model represented by ChatGPT-4o demonstrates strong capabilities 

in code understanding and generation; however, it still falls short in generating complex 

practical software. To assess the capabilities of large models in this regard, this paper selects a 

typical practical web management system and conducts a comprehensive evaluation of 

ChatGPT-4o’s code generation abilities from the perspectives of code quality, structural clarity, 

and maintainability, utilizing a generic prompt engineering approach and manual optimization 

methods. 



 

 

The experiments indicate that ChatGPT-4o exhibits robust code generation capabilities, 

efficiently completing the implementation of basic front-end pages and back-end logic, while 

also providing database interaction support. The code it generates saves developers a significant 

amount of time, particularly in writing foundational code, thus greatly enhancing development 

efficiency. However, as the complexity of system interaction logic and user experience increases, 

the limitations of ChatGPT-4o become more apparent. Certain details, such as page navigation 

logic and user experience optimization, still require human intervention to achieve optimal 

results. 

In the future, with the continuous advancement of large model technology, we anticipate that 

ChatGPT-4o will further improve its performance in areas such as complex interaction logic, 

automatic optimization, and performance enhancement, bringing more possibilities for 

intelligent development.  
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