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Abstract. Current visual SLAM loop closure detection algorithms encounter significant 
challenges in dynamic environments, where moving objects such as pedestrians lead to 
inconsistencies in feature points, compromising map accuracy. This study proposes a novel 
visual SLAM loop closure detection algorithm leveraging semantic segmentation, 
specifically designed for complex indoor dynamic scenarios. The proposed approach 
introduces the Bottleneck with Squeeze and Excitation Block (BnSEBlock) to improve the 
U-Net++ semantic segmentation model by incorporating residual connections, dilated 
convolutions, and an adaptive attention mechanism. Dynamic weights are assigned to 
semantic information based on motion intensity and centroid coordinates, which are 
derived through adaptive HDBSCAN clustering. Loop closure is identified by assessing 
the similarity between keyframes and candidate frames using these weighted parameters. 
Experimental evaluations on publicly available datasets demonstrate that the enhanced U-
Net++ model achieves a Mean Intersection over Union (MIoU) of 76.9% and reduces the 
loss to 0.172. In comparison, the traditional bag-of-words-based approach yields a 
maximum similarity of 0.273 for loop images. The proposed algorithm shows a 61.57% 
improvement in localization accuracy within dynamic indoor environments. 

Keywords: Loop closure detection, dynamic environment, semantic segmentation, motion 
intensity, centroid coordinate, dynamic weight allocation. 

1 Introduction 

Simultaneous Localization and Mapping (SLAM) [1] is a core robotics technology that enables 
robots to self-localize and map unknown environments. Visual SLAM, favored for its rich image 
information and cost-effective cameras, comprises sensor data, front-end, back-end, loop 
closure detection, and mapping (Fig. 1). Loop closure detection is critical for correcting 
cumulative errors, as its absence would lead to inaccuracies akin to those of an odometer [2], 
especially in long-term navigation [3]. Although graph optimization algorithms [4] can reduce 
incorrect loops' impact, they cannot eliminate errors or avoid computational overhead, 
underscoring the importance of loop closure in map optimization. 
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Fig. 1. Classic Visual SLAM Framework. 

Recent research has focused on improving the performance of visual SLAM systems in dynamic 
environments, particularly in optimizing loop closure detection algorithms. Chen [5] proposed 
a Binocular SLAM system using an enhanced semi-global matching algorithm and superpixel 
segmentation to identify moving object boundaries, reducing dynamic object interference. 
However, small disparity differences between multiple moving objects can reduce boundary 
accuracy. Bojko et al. [6] trained networks using pre-generated dynamic object masks to 
differentiate static and dynamic elements, minimizing mismatches caused by dynamic objects, 
but the accuracy of mask generation can introduce errors in localization.  

With advancements in deep learning and hardware, more studies have integrated object 
detection, semantic segmentation, and instance segmentation into visual SLAM to improve 
dynamic environment handling. Bescos et al. [7] introduced DynaSLAM, which uses Mask R-
CNN [8] for semantic segmentation to exclude dynamic objects during loop closure detection. 
However, its high computational cost and time requirements limit real-time applicability. Yu et 
al. [9] developed DS-SLAM, using SegNet [10] for semantic segmentation to focus on static 
features for loop closure, but it also struggles with real-time performance. Zhang et al. [11] used 
instance segmentation and optical flow for object tracking in outdoor environments, but its 
reliance on lighting and weather conditions affects accuracy. Scona et al. [12] proposed 
StaticFusion, which reconstructs the background and isolates dynamic objects for more reliable 
mapping, though its performance is heavily dependent on data quality, particularly in low-light 
or low-quality camera conditions. 

2 Visual Slam System Architecture for Enhanced Loop Closure Detection 

The system framework of this paper is based on the classic open-source system ORB-SLAM2, 
which includes three parallel threads: the tracking thread, the local map thread, and the loop 
closure detection thread. While maintaining the original architecture of the system, a new 
semantic segmentation thread has been added as shown in Fig. 2. The purpose of this new 
semantic segmentation thread is to enhance the loop closure detection thread of the original 
system, enabling it to handle more complex environments. 
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Fig. 2. Enhanced Loop Closure Detection Visual SLAM System Architecture Diagram. 

3 The Semantic Segmentation Thread 

3.1 Network Architecture of BnSEBlock 

Convolutional Module of BnSEBlock. To replace the poorly performing VGGBlock [13] 
convolutional blocks in U-Net++, this paper designs a completely new BnSEBlock 
convolutional network. The convolutional structure of BnSEBlock is shown in Module 1 of Fig. 
3, aiming to significantly enhance the model's feature extraction accuracy with only a small 
increase in parameters. 

The BnSEBlock structure consists of four convolutional layers [14]. The first uses 512 1×1 
kernels to expand the image channels from 3 to 512, enhancing feature representation and 
network expressiveness without significantly increasing parameters. The second layer 
dynamically adjusts the number of 1×1 kernels based on the downsampling level, using fewer 
kernels for shallow layers to capture low-level details and more for deeper layers to extract high-
level semantics. This layer reduces feature map dimensions, lowering computational complexity 
while retaining key features.A 3×3 dilated convolution layer in the middle increases the 
receptive field without additional computational cost, preserving local details and capturing 
broader contextual information for large-scale structures. Finally, a 1×1 convolution layer 
adjusts the output channels to align with residual connections, ensuring efficient feature transfer, 
alleviating gradient vanishing, and enhancing the network's capacity to process complex data. 
Finally, a 1×1 convolution layer adjusts the output channels to align with residual connections, 
ensuring efficient feature transfer, alleviating gradient vanishing, and enhancing the network's 
capacity to process complex data. 
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Fig. 3. BnSEBlock network structure. 

Adaptive Attention Mechanism of BnSEBlock. Module 2 in Fig. 3 represents the adaptive 
attention mechanism of BnSEBlock. The key idea of this mechanism is to incorporate a channel-
level attention module, which primarily includes dynamic Squeeze and Excitation. 

The Squeeze operation reduces the spatial dimensions of the input feature map to 1×1 through 
global average pooling, compressing the features of each channel. This results in a vector Z for 
each channel of the input feature map X, representing the global features of that channel. As 
illustrated in Eq. (1), Zc denotes the global feature of the c-th channel, and Xc (i , j) represents 
the pixel value of the feature map at position (i , j). 

 
(1) 

In Module 2, r is a hyperparameter used to dynamically control the dimensionality reduction 
operation in Excitation. The dimensionality reduction ratio r is predicted using Algorithm 1 
based on the global feature vector Z. 
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Algorithm 1: DynamicRModule 
Initialize: Set dropout probability p; Set channel reduction factor (h); Initialize trainable 
parameters 
Compute: Global average pooling on input feature map x 
While (DynamicRModule not converge) do 
 For (each batch in x) do 
  z = Global_Average_Pooling(x)  

z = Flatten(z) 

 

z = ReLU(Linear_Projection(z, in_features=C, out_features=C//h)) 

  z = Dropout(z, p) 

z = ReLU(Linear_Projection(z, in_features=C//h, out_features=C//h)) 

z = Linear_Projection(z, in_features=C//h, out_features=1) 

 

r = Sigmoid(z) 

 End  For 
End  While 

Return   r 

 

The excitation operation in the BnSEBlock uses two fully connected (FC) layers to generate a 
channel weight vector B, reducing and then restoring channel dimensionality, with a sigmoid 
activation constraining B to [0, 1]. By integrating spatial attention [15], the BnSEBlock 
surpasses SENet in capturing both channel and spatial relationships, adaptively adjusting 
attention weights to better handle input variations and disturbances. The spatial attention weight 
Spatial_Attention, calculated for the input feature vector A, contributes to the final module 
output, as shown in Eq. (2). 

	𝑂𝑢𝑡𝑝𝑢𝑡	=		𝐀⊙ 	𝑩	 ⊙ 	𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	 (2) 

3.2 Improved U-Net++ Model Structure 

The basic encoding section of U-Net++ uses two convolution operations per module, sufficient 
for simple tasks like medical imaging but inadequate for feature-rich datasets, leading to low 
feature utilization and reduced segmentation accuracy. To integrate U-Net++ into ORB-
SLAM2's loop closure detection module and meet its real-time demands, the BnSEBlock 
structure enhances feature extraction with minimal additional parameters. Fig. 4 illustrates the 
updated U-Net++ structure with BnSEBlock replacing the original convolution blocks. 



 

 

 
Fig. 4. Improved U-Net++ model structure. 

4 Dynamic Update of Semantic Information Weights 

4.1 Initialization of Semantic Information Weights 

Based on the improved U-Net++ model, semantic segmentation information is obtained. Initial 
weights are assigned to each piece of semantic information according to its motion level, which 
is defined as follows: 

𝑁𝑢𝑚_𝑐𝑙𝑎𝑠𝑠	 = {𝑝𝑒𝑟𝑠𝑜𝑛, 𝑐𝑎𝑡, 𝑑𝑜𝑔, 𝑠𝑜𝑓𝑎,⋯ } (3) 

𝑊! = {𝑊!",𝑊!#,𝑊!$, ⋯ ,𝑊!#%} (4) 

𝑊! 	 ∈ 	𝐶𝑎𝑛𝑑𝑖𝑓𝑟𝑎𝑚𝑒_𝑐𝑙𝑎𝑠𝑠	 (5) 

The Num_class set consists of the 20 categories from the PASCAL VOC 2012 dataset, 
excluding background and object contour information. The number of weights Wj corresponds 
to the number of elements in the Num_class, representing the weight of each semantic category. 
These weights range from 0 to 10. The initial weights for each semantic category are presented 
in Table 1. Here, j represents the number of candidate frames formed by accumulating 
keyframes, with the keyframe data and their semantic segmentation information comprising the 
Candidate_class candidate frame collection. 

Table 1. Initialization of Semantic Information Weights. 

Semantic Information Weights Semantic Information Weights 
Aeroplane 0 Bicycle 3 

Bird 0 Boat 0 
Bottle 1 Bus 0 
Car 0 Cat 0 

Chair 4 Cow 0 
Table 8 Dog 0 
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Horse 0 Motorbike 3 
Person 0 Plant 4 
Sheep 0 Sofa 9 
Train 0 Monitor 3 

4.2 Centroid coordinates of HDBSCAN clustering for masking semantic information in 
images 

Before performing semantic segmentation on the PASCAL VOC 2012 dataset, the dataset 
underwent preprocessing. Each distinct color in the label images is represented by a tuple of 
three values (R,G,B) as shown in Eq. (6). The order in which each tuple appears is recorded as 
t . These tuples, along with their order of appearance, are stored as key-value pairs in the 
dictionary ω. The dictionary ω contains a total of 22 key-value pair entries. 

B
𝛽& = (𝑅& ,		𝐺& ,		𝐵&)

{	𝛽&:		𝑡	}		 ∈ 𝜔, 𝑡 ∈ [0	,	21] (6) 

 

In the dictionary ω, there are 20 key-value pairs corresponding to specific semantic information, 
one pair for background information, and one for object contour information. The label files are 
transformed into grayscale images according to the following conversion rule: Each RGB tuple 
from the label image is matched against the tuples in the dictionary to find the corresponding 
key-value pair t. This value t is then used to set the grayscale value of the label image, resulting 
in a new grayscale image gray_image. This process scales the grayscale values in the PASCAL 
VOC 2012 dataset's label files to a range of 0 to 21, forming an array α with these 22 grayscale 
values. 

A zero matrix class_matrix is created with the same shape as the label image (H , W), but with 
a third dimension of 22. The shape of the zero matrix is (H, W, 22). The third dimension of 
class_matrix is then iterated over, and the 22 matrices of shape (H , W) are assigned values from 
gray_image. Positions in class_matrix that match the grayscale values stored in the array α are 
set to 1, with all other positions set to 0. Thus, the third dimension of class_matrix essentially 
represents binary mask information for 22 semantic categories. Each binary mask is multiplied 
by 255 and saved as a grayscale image. However, only 21 categories including background are 
actually useful for the model, requiring the exclusion of contour class information, as it may 
interfere with model training. 

After the aforementioned processing of the class_matrix, the resulting multi-channel image 
mask has a shape of (H, W, 21), where the third dimension indicates that there are 21 channels, 
each representing a different semantic category. Each source image corresponds to one multi-
channel image mask. The semantic information δ that appears on the source image is marked as 
a hit in the corresponding channel of the third dimension of its multi-channel image mask. At 
this time, the channel image has two colors: black and white, where the white part of the image 
represents the semantic information δ. Semantic information that does not appear is indicated 
as a miss in the corresponding channel of the mask, where the channel image is entirely black. 

The mask of the multi-channel image contains semantic information in two colors: black and 
white. However, there are still noise points that interfere with the data. The HDBSCAN 



 

 

clustering algorithm is effective in removing noise points from the semantic segmentation map, 
allowing for more accurate calculation of the centroid coordinates of each type of semantic 
information. 

For a given channel of the semantic segmentation map, the set of all points containing semantic 
information c forms the point set Sc, as shown in Eq. (7). To apply the HDBSCAN clustering 
algorithm to the point set Sc, the parameters need to be defined: minPts specifies the minimum 
number of neighbors required to define a core point, and epsilon represents the maximum 
distance threshold. HDBSCAN is then applied to the point set Sc as described in Eq. (8), where 
Clusters includes the clustering labels Lj for each point and noise markers. Noise points are 
labeled as -1. After clustering, noise points are removed from the results, retaining only the 
points labeled as valid clusters, as shown in Eq. (9). 

 (7) 

 (8) 

 (9) 

HDBSCAN partitions these data points into different clusters. Each cluster i has a unique label 
Li.The label Lj of of each point j indicates the cluster to which point j belongs. For each cluster 
i, the centroid coordinates Ci are computed as shown in Eq. (10), where Clusteri represents the 
set of all points belonging to cluster i, Ni is the number of points in cluster i, and ( xi , yi ) are 
the coordinates of point j. 

 
(10) 

Each cluster’s centroid Ci serves as the basis for calculating the weighted average, where the 
weight is the number of points Ni in each cluster. The coordinates of the weighted average 
representative point are computed according to Eq. (11). 

 

(11) 

4.3 Semantic Information Weight Update Strategy 

Based on the dictionary information described above, the Euclidean distance Ln between the 
centroid coordinates of the same semantic categories is calculated as shown in Eq. (12), where 
n represents the number of semantic categories that are the same between the two frames. i 
denotes the order of the channels, and j represents the number of mask images. Hkeyframe and 
Hcandidate respectively represent dictionaries of key-value pairs, where the keys are composed of 
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channel order and centroid coordinates from HDBSCAN clustering, and the values correspond 
to the keyframes and candidate frames. 

 

(12) 

For semantic information present only in the candidate frame, if the initial weight is greater than 
5, it is also determined that there is no loop closure between the two images. For semantic 
information with an initial weight of 5 or less, this category of semantic information, which 
originally does not exist in the keyframe, is virtually created, and the weight for this semantic 
category in both the keyframe and candidate frame is set to the initial weight. 

 
Fig. 5. Distribution of Similarity. 

If the keys are the same, the Euclidean distance Ln between the centroid coordinates of the same 
semantic category in the compared frame and candidate frame is calculated after appropriately 
scaling the images based on their size. For the experiments, the image size of 640×480 is scaled 
down to 64×48. According to Eq. (12), the Euclidean distance Ln between the centroid 
coordinates of the two frames is calculated. If Ln is greater than 1, the weight of the semantic 
information on the keyframe is updated to Mkeyframe. If Ln is less than or equal to 1, the 
weights for the semantic information on both the keyframe and candidate frame are set to zero. 

Select 20 pairs of loop-closing images from each dataset within the fr3 sequence: walking_rpy, 
walking_static, sitting_xyz, walking_halfsphere, and walking_xyz.Calculate the similarity 
between these 100 pairs of loop-closing images using Eq. (13). The experimental results, as 
depicted in Fig. 5, show that 97% of the similarity values between loop-closing images are 
distributed within the range of 0 to 5. Thus, set the threshold σ to 5 and determine if a loop has 
occurred based on whether the ratio calculated from semantic weight information is within this 
threshold.Additionally, to maintain consistency with the similarity assessment method used in 
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the original ORB-SLAM2 system's loop closure detection algorithm, this paper transforms into 
a similarity measure using the Gaussian formula Eq. (14), denoted as Similarity. 

 

(13) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦=	𝑒'
(!
$)! (14) 

5 Experiments and Analysis 

5.1 Performance Testing of the Improved U-Net++ Model  

To validate the effectiveness of the improved U-Net++ model, we compare it with the U-Net++ 
model using the publicly available PASCAL VOC 2012 dataset. This dataset contains a total of 
1,464 training sets and 1,449 validation sets specifically designed for semantic segmentation 
tasks. 

  
(a) (b) 

Fig. 6. MIoU and Loss of Two Models on the PASCAL VOC 2012 Dataset. 

Fig. 6 illustrates the performance comparison between the original U-Net++ model and the 
improved model. In Fig. 6(a), the improved model achieved higher MIoU scores of 71.8% 
(training set) and 76.9% (validation set) compared to the original model's 66.7% and 69.2%, 
respectively. Fig. 6(b) shows that the improved model reduced loss values to 0.341 (training set) 
and 0.319 (validation set), compared to 0.216 and 0.179 for the original model. The 
improvement resulted in a 5.1 percentage point increase in MIoU on the test set, with a loss 
reduction of 0.125. On the validation set, MIoU increased by 7.7 percentage points, and loss 
decreased by 0.140, highlighting the effectiveness of the proposed enhancements. 
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Table 2. Comparison of Six Classic Models on PASCAL VOC 2012. 

Model Name MIoU Time Consumption 
FCN 59.3% 404ms 

SegNet 56.7% 68ms 
DeepLabV3 74.2% 179ms 

DFN 78.3% 1248ms 
U-Net++ 69.2% 52ms 

Ours 76.9% 56ms 
 

Table 2 presents the comparative results of the improved U-Net++ model and four other 
semantic segmentation models (FCN [16], Segnet, DeeplabV3, DFN [17] ) on the PASCAL 
VOC 2012 dataset.The improved U-Net++ model is second only to DFN in terms of MIoU 
metrics, but DFN takes more than three times the processing time per frame compared to the 
algorithm in this paper, which is detrimental to the real-time performance of the ORB-SLAM2 
system.Compared to the U-Net++ model, the processing time per frame for the improved model 
in this paper only increases by about 4ms, but the MIoU accuracy improves to 76.9%.Therefore, 
in situations where computational resources are limited or real-time performance is crucial, the 
model in this paper is more suitable. 

5.2 Performance Testing of the Improved Loop Closure Detection Algorithm 

Comparative experiment with ORB-SLAM2 algorithm. To validate the proposed algorithm, 
its performance is compared with the original ORB-SLAM2 using highly dynamic datasets. Fig. 
7 highlights loop images from the sitting_xyz, walking_xyz, and walking_halfsphere datasets, 
with Table 3 showing their center-of-mass coordinates and Euclidean distances. Table 4 presents 
similarity results from the proposed loop detection algorithm, while Table 5 shows results from 
ORB-SLAM2’s bag-of-words-based method. Keyframes and candidate frames (Images1-6) 
represent loop relationships across the datasets. The proposed algorithm achieves a maximum 
similarity of 0.872, significantly outperforming ORB-SLAM2’s 0.273, demonstrating its 
robustness in dynamic indoor environments. 

   
1 3 5 



 

 

   
2 4 6 

Fig. 7. Loop-closing images. 

Table 3. Centroid coordinates and Euclidean distance of the fr3 sequence loop images. 

fr3 sequence Centroid 
coordinates 

Candidate 
frame Keyframe Euclidean 

distance 

sitting_xyz(Image1,2) 

Person 0 0 0 
Monitor (16.43,41.46) (14.86,39.74) 2.33 

Chair (34.32,17.76) (31.76,14.323) 4.29 
Table (20.48,34.76) (18.78,35.32) 1.79 

walking_xyz(Imag3,4) 

Person 0 0 0 
Monitor (27.74,34.25) (29.82,37.14) 3.56 

Chair (45.52,42.91) (41.54,39.26) 5.40 
Table (31.46,29.38) (29.72,27.31) 2.71 

walking_halfsphere(Imag5,6) 

Person 0 0 0 
Monitor (14.23,39.61) (12.73,41.82) 2.67 

Chair (36.91,20.94) (33.57,17.15) 5.06 
Table (25.32,31.33) (23.56,27.37) 4.34 

Table 4. Similarity between fr3 sequence loop photos (algorithm in this paper). 

fr3 sequence 
Semantic 

information 
weights 

Candidate 
frame Keyframe η Similarity 

sitting_xyz(Image1,2) 

Person 0.00 0 

2.62 0.872 
Monitor 3.00 6.99 

Chair 4.00 17.16 
Table 7.00 12.53 

walking_xyz(Image3,4) 

Person 0.00 0 

3.66 0.766 
Monitor 3.00 10.68 

Chair 4.00 21.60 
Table 7.00 18.97 

walking_halfsphere(Image5,6) 

Person 0.00 0 

4.17 0.707 
Monitor 3.00 8.01 

Chair 4.00 20.04 
Table 7.00 30.38 



 

 

Table 5. Similarity between fr3 sequence loop closure photos (ORB-SLAM2). 

ORB-SLAM2 Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 
Image 1 1.000 0.237 0.239 0.214 0.229 0.215 
Image 2 0.237 1.000 0.235 0.255 0.240 0.221 
Image 3 0.239 0.235 1.000 0.262 0.221 0.236 
Image 4 0.214 0.255 0.262 1.000 0.237 0.231 
Image 5 0.229 0.240 0.221 0.237 1.000 0.273 
Image 6 0.215 0.221 0.236 0.231 0.273 1.000 

 

Table 6 compares the relativerotational trajectory errors of the fr3 sequences.The dynamic 
amplitude of the sitting_xyz dataset is significantly smaller than that of the other  datasets. In 
this case, the semantic segmentation thread may exclude some static semantic information, 
leading to slightly lower trajectory accuracy in the improved ORB-SLAM2 compared to the 
original ORB-SLAM2.However, in high-dynamic scenarios such as walking_xyz and 
walking_halfsphere, the accuracy of loop closure detection has significantly improved. In high-
dynamic scenarios,  the root mean square error of the rotational component has improved by 
80.61% to 87.16%. The improved system shows an average accuracy increase of 61.57% across 
five test datasets. 

Table 6. Comparison of Relative Rotational Trajectory Errors for the fr3 Sequences. 

fr3 sequence 
Original ORB-SLAM2 Improved ORB-SLAM2 

algorithm Improvement Margin(%) 

Mean Median RMSE Mean Median RMSE Mean Median RMSE 

walking_rpy 5.672 3.513 9.342 0.972 0.831 1.348 82.80 76.28 85.84 

walking_static 4.713 2.437 6.383 0.673 0.654 0.817 85.69 73.21 87.16 

sitting_xyz 0.441 0.38 0.547 0.473 0.373 0.573 -7.26 1.84 -4.75 

walking_halfsphere 6.792 4.475 9.853 1.743 0.972 1.913 74.38 78.20 80.61 

walking_xyz 5.571 3.593 7.463 0.975 0.893 1.136 82.43 75.16 84.77 

Comparative experiments with other SLAM algorithms. To further validate the superiority 
of the proposed algorithm, a comparison is conducted between the proposed algorithm and other 
state-of-the-art algorithms designed for dynamic environments, such as DS-SLAM and Detect-
SLAM. The comparison results are presented in Table 7, where “-” indicates that the respective 
study did not provide pose accuracy analysis for the corresponding dataset. According to the 
comparison, the improved ORB-SLAM2 system in this paper performs well on most 
datasets.However, since DS-SLAM relies on optical flow for dynamic element removal, its 
performance may vary significantly across different datasets. 



 

 

Table 7. Comparison of ATE between other advanced dynamic SLAM algorithms and the 
proposed algorithm 

fr3 sequence 
DS-SLAM The algorithm 

in [18] 
Detect-

SLAM[19] 
The algorithm 

in [20] 
Improved ORB-

SLAM2 algorithm 
RMSE Median RMSE Median RMSE RMSE RMSE Median 

walking_rpy 0.444 0.283 0.133 0.083 0.296 0.097 0.039 0.027 

walking_static 0.008 0.006 0.066 0.023 - 0.013 0.011 0.009 

sitting_xyz - - 0.048 0.033 0.021 0.019 0.017 0.014 

walking_halfsphere 0.047 0.034 0.125 0.067 0.054 0.029 0.057 0.051 

walking_xyz 0.025 0.019 0.137 0.073 0.024 0.035 0.019 0.016 

6 Conclusion 

To enhance the loop closure detection algorithm of traditional visual SLAM systems in dynamic 
scenes, this paper proposes an improved visual SLAM loop closure detection algorithm 
integrated with semantic information based on the ORB-SLAM2 system, which performs well 
in recognizing loops in indoor dynamic environments. By leveraging the newly proposed 
BnSEBlock network, the U-Net++ model is enhanced to improve its semantic segmentation 
capabilities. The optimized loop closure detection algorithm, based on the improved U-Net++ 
model, initializes weights according to the motion levels of different semantic information. 
These weights are then dynamically updated based on the Euclidean distance of the centroids 
of HDBSCAN clusters of similar semantic information. Finally, comparisons are made using 
the TUM public dataset. The results show that, compared to the bag-of-words-based loop 
closure detection methods that perform poorly in dynamic scenes, the proposed algorithm 
effectively identifies loops in indoor dynamic environments. In the next phase, we will further 
leverage semantic information in visual SLAM systems and explore constructing semantic 
octree maps to support higher-level applications such as robot path planning and obstacle 
avoidance. 
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