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Abstract. Breast cancer remains a significant health challenge, with early diagnosis critical 
for improving patient outcomes. This study explores the application of the Attention U-
Net model for breast ultrasound image segmentation, aiming to enhance diagnostic 
accuracy in breast cancer detection. Experimental results demonstrated the model's 
accuracy stabilizing at approximately 0.95, with predicted masks showing close alignment 
to expert-annotated ground truths. Additionally, Grad-CAM visualizations illustrated the 
model's capability to concentrate on critical regions, enhancing interpretability. Despite its 
computational demands, the Attention U-Net model offers significant potential for medical 
applications, providing a robust framework for improving clinical diagnosis and treatment 
planning in breast cancer care. 
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1 Introduction 

Cancer has long been one of the significant health challenges faced by humanity [1], with many 
patients discovering their condition only when it is too late, significantly reducing the chances 
of successful treatment. Therefore, early diagnosis of cancer is crucial, as it not only improves 
patient survival rates but also provides better timing and conditions for subsequent treatment. 
Among various diagnostic technologies, ultrasound has played an important role in cancer 
diagnosis due to its unique advantages. 

Ultrasound technology offers significant benefits in the diagnosis of breast cancer [2]. Firstly, 
it enhances diagnostic accuracy. Secondly, compared to traditional radiological detection 
methods, ultrasound is safer as it does not involve radioactive substances or contrast agents, 
thereby avoiding radiation exposure or allergic reactions in patients. Furthermore, ultrasound 
enables real-time imaging, allowing physicians to dynamically observe the patient's internal 
structure and changes during the examination, which is vital for assessing the benign or 
malignant nature of tumors and determining the presence of metastasis. The application of 
precise image segmentation in medical image processing holds vast potential. Through accurate 
image segmentation, doctors can more reliably identify pathological tissues, leading to more 
effective treatment plans. Additionally, image segmentation techniques are also crucial in fields 
such as autonomous driving, robotic vision, and remote sensing analysis. However, the 
implementation of image segmentation technologies faces numerous challenges, primarily 
including issues such as blurred edges, occlusion, and noise, all of which can impact 
segmentation accuracy. 
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The U-Net model, proposed by Olaf Ronneberger et al. in 2015, is a deep learning model widely 
used in biomedical image processing [3]. U-Net, with its symmetric U-shaped architecture and 
efficient feature extraction capability, has become one of the preferred models for medical 
image segmentation tasks. The model consists of two main parts: the encoder and the decoder. 
The encoder is responsible for feature extraction, capturing high-level features from images 
through a combination of convolutional layers and max pooling layers. The decoder, on the 
other hand, reconstructs the feature maps into high-resolution segmentation images through 
deconvolution and upsampling. The skip connections in U-Net allow for effective concatenation 
of feature maps from corresponding layers in the encoder and decoder, thereby integrating 
semantic and spatial information at different levels. 

Despite the significant achievements of U-Net in medical image segmentation, the model may 
lose critical detail information when handling complex images, particularly in the decoder phase. 
Additionally, while the skip connections in U-Net help retain spatial information, they may also 
introduce redundant features, increasing computational load. To address these issues, Ozan 
Oktay and his team proposed the Attention U-Net model [4]. This model introduces an attention 
mechanism on the basis of U-Net, assigning weights to each pixel through a soft attention 
module, enabling the model to focus more on features relevant to the target area while 
suppressing activations from irrelevant regions. This mechanism helps reduce redundant 
information and improve segmentation accuracy. Therefore, when addressing medical image 
segmentation challenges, particularly in scenarios requiring precise segmentation of complex 
anatomical structures or pathological regions, the recognition accuracy of Attention U-Net 
surpasses that of traditional U-Net. 

This study aiming to explore the application and effectiveness of this model in the processing 
of breast cancer ultrasound images. Specifically, we will analyze the performance of Attention 
U-Net in breast ultrasound image segmentation tasks, assessing its ability to enhance 
segmentation accuracy and reduce false detection rates. Additionally, the study will discuss the 
advantages of the model in handling complex pathological regions, including how the attention 
mechanism effectively focuses on key features to more accurately identify and segment different 
types of tumors. We hope that the results of this research will contribute to the further 
development of breast cancer ultrasound image analysis, providing more precise solutions for 
clinical diagnosis and treatment. 

2  Previous works  

Traditional image segmentation methods have historically held an important position in the field 
of image processing. These early segmentation techniques employed manually designed 
features and rules to delineate different regions within images, encompassing various classic 
methods such as thresholding, region growing, and edge detection. These techniques have 
undergone extensive development, laying a solid foundation for the field of image segmentation. 

Thresholding is one of the simplest and most commonly used image segmentation methods [5]. 
This technique divides the pixels in an image into foreground and background based on one or 
more predefined thresholds. The advantages of thresholding include its rapid computation and 
straightforward implementation, making it suitable for images with clear gray value differences. 



 

 

However, thresholding often performs poorly when dealing with images that exhibit uneven 
lighting or substantial noise, leading to inaccurate segmentation results. 

Region growing operates by selecting one or more initial seed points and expanding the region 
based on similarity criteria [6]. This method can effectively segment areas with similar 
characteristics; however, its performance is highly dependent on the choice of initial seed points. 
Additionally, region growing typically requires significant computational resources, resulting 
in longer processing times when handling complex structures. It may also encounter issues such 
as over-segmentation or under-segmentation when processing images with ambiguous 
boundaries or intricate textures. 

Edge detection is another prevalent segmentation technique aimed at identifying the presence 
of object edges within an image [7]. By calculating the gradients of the image, edge detection 
can effectively locate strong edges. Nonetheless, this method is very sensitive to noise, and its 
performance is often suboptimal when dealing with discontinuous or blurred edges, frequently 
resulting in incomplete edge detection outcomes. 

Despite achieving satisfactory results in certain specific scenarios, traditional image 
segmentation methods face numerous limitations and challenges. Firstly, these methods often 
rely on manually designed features, which may fail to adequately represent the essential 
information of complex and variable image data. For instance, some features might not 
effectively differentiate similar regions or handle images with complex textures, leading to 
inaccuracies in segmentation results. Secondly, the performance enhancement of traditional 
methods is often constrained by computational resources and algorithm design. As the volume 
of data increases dramatically, traditional algorithms frequently exhibit inefficient computation 
when processing large-scale datasets. Many traditional algorithms require substantial time for 
feature extraction and parameter tuning, making it difficult to meet the demands of real-time 
processing. Furthermore, traditional methods struggle to adapt to changing environments and 
scenarios when addressing complex tasks; for instance, the segmentation performance can 
significantly degrade under varying lighting conditions and noise influences. Lastly, the 
limitations of traditional image segmentation methods become increasingly apparent when 
handling high-dimensional data. With the rise in image resolution and the emergence of 
multimodal data, traditional methods often fail to fully leverage the rich contextual information 
available, resulting in suboptimal segmentation outcomes. 

In this context, the introduction of deep learning technologies offers new possibilities for 
addressing these challenges. Deep learning models can automatically learn feature 
representations, enabling them to capture complex patterns and structures within images more 
effectively, thereby achieving more precise segmentation results [8]. This shift not only 
enhances the accuracy of image segmentation but also paves the way for handling complex 
scenes and large-scale datasets. 

With the explosive growth of data and the enhancement of computational capabilities, the 
application of deep learning in the field of image segmentation has become increasingly 
widespread. Deep learning models have demonstrated significant advantages in processing 
complex image data, as they can automatically learn feature representations from vast amounts 
of data without the need for manual feature design. This capability allows deep learning models 
to adapt to various types of images and their diverse features, resulting in more accurate and 
efficient image segmentation. The introduction of deep learning technologies marks a 



 

 

significant advancement in image segmentation techniques. By constructing deep neural 
networks, these models can extract richer feature hierarchies, capturing complex patterns and 
structures in images from low-level features to high-level semantic information. This multi-
layered feature learning ability enables deep learning models to maintain high segmentation 
accuracy even in the face of complex backgrounds, lighting variations, and noise disturbances. 
Furthermore, the scalability of deep learning models provides broad prospects for their 
application in image segmentation. Through transfer learning and data augmentation techniques, 
researchers can train efficient models on limited labeled data, significantly improving 
segmentation performance. This capability is particularly beneficial in fields such as medical 
image segmentation, where the costs of sample acquisition and annotation are high; deep 
learning can effectively overcome these challenges and promote advancements in related 
research. 

3 Dataset and Preprocessing 

 
Fig. 1. Data distribution. 

The dataset used in this study is derived from Breast Ultrasound Images [2]. This dataset is 
designed to facilitate the early diagnosis and detection of breast cancer, encompassing three 
categories of breast images: normal, benign, and malignant. It supports research on classification, 
detection, and segmentation based on deep learning techniques. 

In terms of sample size, the dataset is relatively balanced, consisting of 133 normal images, 437 
benign images, and 210 malignant images. The overall composition is illustrated in Figure 1, 
which reflects the distribution of samples across different categories. This diverse sample type 
provides rich data support for model training, enhancing the model's generalization ability and 
adaptability. All images were acquired at high resolution to ensure optimal image quality during 
analysis and processing. The resolution of the images is 256x256 pixels, which not only 
provides sufficient detail for deep learning models but also enables effective recognition and 
differentiation of various breast tissue characteristics. High-resolution images capture finer 
variations during feature extraction, thus improving the accuracy of both segmentation and 
classification. 

Before training the deep learning model, several preprocessing steps were undertaken to ensure 
data quality and model efficacy. Firstly, to address the dataset's diversity, data augmentation 



 

 

techniques were applied, including random rotation, scaling, and flipping. These augmentation 
methods aim to increase the number of training samples, enabling the model to maintain high 
accuracy when encountering images of varying orientations, sizes, and shapes. Additionally, 
data augmentation effectively reduces the model's dependence on specific samples, preventing 
overfitting. Secondly, all images were normalized to a range of 0 to 1 by dividing the pixel 
values by 255. This normalization step not only facilitates faster convergence of the model but 
also enhances training efficiency and stability. The standardized data effectively reduces 
variations in brightness and contrast among different images, allowing the model to focus more 
on learning features rather than being disturbed by noise. 

Subsequently, corresponding mask images were generated from the original images. These 
mask images, which share the same resolution as the original images, are used to identify the 
locations of regions of interest. The masks were manually annotated by experts to ensure that 
the model receives accurate target region information during training, thereby improving 
segmentation precision and accuracy. Finally, to evaluate the model's performance, the dataset 
was divided into training, validation, and testing sets, with the training set comprising 80% of 
the data for model training, the validation set accounting for 10% for parameter tuning, and the 
testing set making up the remaining 10% for final performance assessment. This division 
ensures the effectiveness and reliability of the model training process while enabling 
comprehensive performance evaluation across different datasets, thereby confirming the 
model's efficacy in practical applications. 

4 Model 

 
Fig. 2. Model architecture. 



 

 

This study employs the Attention U-Net model (Figure 2), which integrates an attention 
mechanism and builds upon the classic U-Net architecture. The core advantage of Attention U-
Net lies in its ability to identify and focus on key regions within images, thereby significantly 
enhancing the accuracy of segmentation tasks. This feature is particularly important in the field 
of medical image segmentation, as it allows for more precise identification of pathological areas, 
providing robust support for clinical diagnosis. 

The choice of Attention U-Net in this research is based on several reasons. First, by introducing 
the attention mechanism, Attention U-Net can better recognize and concentrate on critical 
features within images, which is essential for improving the segmentation accuracy of breast 
ultrasound images. Second, within the encoder-decoder structure of U-Net, Attention U-Net 
reduces unnecessary information transmission through attention gates, thereby enhancing both 
the efficiency and accuracy of the model. Despite the incorporation of the attention mechanism, 
Attention U-Net is designed to maintain computational efficiency, making it more practical for 
real-world applications. Furthermore, the model demonstrates stable performance 
improvements across different datasets and training scales, indicating strong generalization 
capabilities. 

In the implementation of this project, the training process and hyperparameter settings of the 
model have been meticulously planned. The dataset is divided into a training set (80%) and a 
validation set (20%) to facilitate model training and evaluation. This division ensures that the 
model receives ample data support during training while allowing for an assessment of its 
generalization ability during validation. The batch size is set to 8, a choice determined by 
memory capacity and training efficiency, effectively balancing training speed and memory 
usage. The model training is conducted over 20 epochs to ensure sufficient learning of data 
features. An appropriate number of iterations aids in achieving a balance between stability and 
accuracy, helping to avoid overfitting. The steps per epoch are calculated based on the batch 
size and the size of the training set, ensuring that all data is processed during each training cycle. 
This setup guarantees that the model can effectively utilize all samples for learning in each 
epoch. 

In terms of loss function selection, we employed the binary cross-entropy loss function, a 
common choice for binary classification problems, particularly suitable for scenarios where the 
model outputs probability values. This loss function effectively measures the discrepancy 
between the predicted probability distribution and the true labels, guiding the model training 
process. To accommodate the characteristics of the loss function, we selected the Adam 
optimizer. As an adaptive learning rate optimization algorithm, Adam combines the advantages 
of both RMSProp and Momentum, allowing for flexible adaptation to different training 
scenarios, thereby enhancing training efficiency and performance. 

5 Results 

On the test set, the model’s accuracy stabilized at approximately 0.95 in the later stages of 
training, demonstrating its progressive adaptation to the medical image segmentation task and 
continuous optimization in segmentation performance. This improvement was particularly 
evident when compared to the standard U-Net, which achieved a lower accuracy of only 0.83 
on the same task. The key advantage of the Attention U-Net over the traditional U-Net lies in 



 

 

its ability to learn spatially adaptive attention maps. These attention maps help the model focus 
on the most relevant regions of the image, suppressing irrelevant or background information. In 
medical image segmentation, where precision is critical and the structures of interest may be 
small or surrounded by complex backgrounds, this ability to focus attention significantly 
improves segmentation accuracy. In contrast, the standard U-Net relies on fixed, non-adaptive 
convolutional layers, which can be less effective in handling the complex and varying features 
in medical images, leading to lower segmentation performance. 

To further illustrate the results, Figure 3 compares the model's predicted masks with the original 
masks. As shown, the predicted masks align closely with the original masks, accurately 
segmenting target regions in the medical images. This high degree of alignment indicates that 
the model achieves precise segmentation and can effectively identify regions of interest. To gain 
deeper insights into the model's decision-making process, we applied Grad-CAM [9] to 
visualize the model’s attention regions (Figure 3). The results show that during segmentation, 
the model successfully focuses on key areas within the images, suggesting that it leverages 
critical information when making segmentation decisions. This visualization aids in 
understanding the model’s behavior and provides a useful guide for further optimization. 

 
Fig. 3. The illustration of manual segmentation (left), our results (middle) and Grad-CAM results (right). 



 

 

In conclusion, our study demonstrates the strong potential of deep learning in medical image 
segmentation. By integrating an attention mechanism, we further improved the model's 
performance. These findings not only provide valuable technical support for medical image 
analysis and clinical diagnosis but also pave the way for future research in this field. 

6 Conclusion 

This paper presents an Attention U-Net-based deep learning model, which incorporates an 
attention mechanism to effectively enhance segmentation accuracy and generalization 
capability in medical imaging. Experimental results demonstrate the model's outstanding 
performance, underscoring its adaptability to various datasets. Furthermore, compared with 
other complex deep learning models, the Attention U-Net achieves high computational 
efficiency without compromising precision, making it more feasible for real-world medical 
applications. 

However, the Attention U-Net model does have certain limitations, particularly in terms of 
computational resource demands and sensitivity to specific datasets. While the introduction of 
the attention module significantly improves segmentation accuracy, it also increases 
computational complexity and resource consumption. Implementing the attention mechanism 
requires intensive matrix operations and feature map processing, resulting in high memory usage 
and computational costs. This is especially pronounced when handling large-scale datasets or 
high-resolution images, where resource demands may hinder real-time clinical applications. 
Furthermore, the added complexity due to the attention mechanism can reduce the 
interpretability of the model. Although attention weights highlight feature importance, their 
direct impact on the final segmentation result is not always intuitive, complicating the model’s 
interpretability and its adaptability to different datasets. Additionally, training is sensitive to 
various hyperparameters, such as parameter tuning, optimizer selection, and loss function 
configuration. Misconfiguration can lead to overfitting or underfitting, limiting the model’s 
generalization and application range. 

Looking ahead, several promising directions for improvement include advancements in model 
structure, data handling, and training strategies. First, collecting more diverse and high-quality 
data could significantly enhance the model's generalization and accuracy. Given the variability 
in medical imaging, including disease type, pathological features, and imaging modalities, 
expanding dataset diversity can help the model capture subtle image characteristics 
comprehensively. Data augmentation techniques [10], such as rotation, scaling, and mirroring, 
can further enrich datasets, improving robustness across different scenarios. Exploring efficient 
large-scale pretrained models and multi-task learning [11] is also critical for future 
advancements. By leveraging pretrained large models, such as Transformers or deep 
convolutional neural networks, models can gain valuable prior knowledge from a broad range 
of visual tasks, enhancing performance in medical image segmentation. Multi-task learning 
frameworks enable the model to address multiple tasks, such as segmentation and classification, 
within a single structure, increasing resource efficiency and adaptability. Transfer learning [12] 
and zero-shot learning [13] also hold great potential for medical imaging analysis. Transfer 
learning allows pretrained models on natural images to adapt to medical images, offering 
promising performance even with limited data. Zero-shot learning extends this adaptability, 



 

 

enabling the model to make accurate predictions for novel pathology types or imaging 
modalities, thus addressing emerging or rare cases [14]. In terms of model architecture, 
exploring flexible adaptive attention mechanisms and lightweight designs may help maintain 
high precision while reducing computational demands. Adaptive attention mechanisms 
dynamically allocate attention across different regions [15], focusing on relevant information 
rather than uniformly processing all feature maps. Coupled with pruning and quantization, this 
approach can achieve a lightweight model structure, making it suitable for embedded systems 
and resource-constrained medical environments. Enhanced interpretability techniques should 
also be prioritized in future studies. The inherent "black box" nature of deep learning models 
limits their clinical applicability. Developing methods for visualizing the model’s decision-
making processes can offer clinicians more intuitive information. Improved model transparency, 
achieved through methods like Grad-CAM or other attention weight visualizations, can help 
clinicians better understand which regions and features the model prioritizes, increasing trust in 
the model’s outputs. 

In summary, the Attention U-Net demonstrates immense potential in medical image 
segmentation. Accurate segmentation can assist clinicians in more precisely delineating tumor 
boundaries, enhancing breast cancer diagnostic accuracy, informing treatment planning, and 
supporting treatment monitoring. These advancements provide a solid foundation for future 
medical imaging analysis and personalized healthcare, paving the way for broader AI integration 
in healthcare. 
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