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Abstract. Generative Adversarial Networks (GANs) have surfaced as a revolutionary 
element within the domain of low-dose computed tomography (LDCT) imaging, providing 
an advanced resolution to the enduring issue of reconciling radiation exposure with image 
quality. This comprehensive review synthesizes the rapid advancements in GAN-based 
LDCT denoising techniques, examining the evolution from foundational architectures to 
state-of-the-art models incorporating advanced features such as anatomical priors, 
perceptual loss functions, and innovative regularization strategies. We critically analyze 
various GAN architectures, including conditional GANs (cGANs), CycleGANs, and 
Super-Resolution GANs (SRGANs), elucidating their unique strengths and limitations in 
the context of LDCT denoising. The evaluation provides both qualitative and quantitative 
results related to the improvements in performance in benchmark and clinical datasets with 
metrics such as PSNR, SSIM, and LPIPS. After highlighting the positive results, we 
discuss some of the challenges preventing a wider clinical use, including the 
interpretability of the images generated by GANs, synthetic artifacts, and the need for 
clinically relevant metrics. The review concludes by highlighting the essential significance 
of GAN-based methodologies in the progression of precision medicine via tailored LDCT 
denoising models, underlining the transformative possibilities presented by artificial 
intelligence within contemporary radiological practice. 

Keywords: low-dose computed tomography, denoising, GAN, machine learning, deep 
learning, architecture optimization, restoration 

1 Introduction 

1.1 Overview of CT & LDCT Imaging 

Basic CT Imaging Definition & Workflow. Computed Tomography (CT) is a diagnostic 
modality that deals with a highly detailed, cross-sectional picture of structures inside the body 
by measuring X-rays transmitted through tissues. In a typical clinical setting, a CT scan involves 
the rotation of an X-ray source around the patient while the detectors on the opposite side receive 
the attenuated X-rays, a process followed by reconstruction into true images. Despite its 
diagnostic value, CT imaging involves ionizing radiation, which can potentially harm tissues, 
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especially with repeated exposure. Consequently, there is a strong emphasis on adhering to the 
ALARA principle (As Low As Reasonably Achievable) to minimize radiation dose while 
maintaining diagnostic quality. 

LDCT Acquisition & Noise Inevitability. Addressing this, LDCT has been introduced in 
practice as a methodology for the reduction of radiation exposure during CT scanning either by 
applying less intensity of X-rays or reducing the time of exposure to acquiring images. The 
major focus of low-dose CT is the reduction of the radiation dosage to which patients are 
exposed while simultaneously yielding images that retain diagnostic utility. In practice, low-
dose computed tomography works by decreasing the intensity of ionizing radiation originating 
from an X-ray source when it rotates around a patient. A low level of X-rays allows fewer 
photons to penetrate the body and reach detectors located on the opposite side. Consequently, 
the resulting images will possess higher noise levels and a lower contrast-to-noise ratio; they 
would thus likely mask small details, leading to further difficulty in detecting subtle 
abnormalities. There is a need for great balance in this approach between the dose decrease and 
image quality since there is a critical point of X-ray dose below which the images may become 
too degraded to be accurately interpreted. The challenge in low-dose CT is to optimize imaging 
parameters and processing techniques so that even when the dose of radiation is lower, detail 
and clarity are well maintained in order to get a reliable diagnosis. 

Overview of Traditional Denoising Methods. Noise might be explained as random variations 
in the data due to defects in the detector, external environmental disturbances, and variations in 
sensitivity—all these mask the real signal. The filter-based techniques will work for algorithms 
like Gaussian or median filtering for noise reduction, with simultaneous use of either statistical 
or spatial methods that ensure retaining significant features. In contrast, model-based methods 
allow the development of statistical or probabilistic noise and signal models that can be 
exploited in Bayesian denoising or wavelet methods or any other equivalent method to estimate 
noise before the removal of noise. However, these classical methods generally fail in front of 
complex noise that masks the important information; they also have limited adaptability to 
changing noise levels. 

1.2 Deep Learning-Based Denoising 

Recent studies have applied deep learning as one of the mainstream techniques to improve low-
dose CT imaging, especially in image denoising. Convolutional Neural Networks, like U-Net 
and ResNet architectures, have worked impressively on noise reduction inside low-dose CT 
imaging while keeping conserved important anatomical information. Generative Adversarial 
Networks (GANs) have evolved to generate high-quality images from low-dose data, closing 
the gap between low-dose and standard-dose CT. Even more so, GANs for CT denoising tasks 
have already employed attention-based architectures, such as Transformers, because they can 
explicitly model long-range dependencies of image patches. These models are further enhanced 
by transfer learning and ensemble techniques, while the quality of images in these models has 
tremendous potential for better clinical diagnostics. 



 

 

1.3 Necessity of the Review 

GAN-based models for low-dose CT denoising have been progressing at a rather remarkable 
speed, and it becomes necessary to have an in-depth review of their design and usage. This paper 
will investigate the details of leading GAN architectures, their respective advantages, and their 
potential applications in a clinical setting. 

2 Fundamentals of GAN-based Denoising 

2.1 Architecture of GANs 

Goodfellow et al. [1] first proposed Generative Adversarial Networks (GANs) in 2014, which 
is a major advancement in the field of generative modelling. The generator (G) and discriminator 
(D) are two neural networks that make up GAN [2]. The generator aims to generate data samples 
that are similar to real data. On the other hand, the discriminator attempts to distinguish between 
real samples and generated samples [3]. 

The basic architecture of GAN is usually modelled as a multi-layer perceptron. The generator 
utilizes random noise as input and generates synthetic data samples, and the discriminator 
evaluates these examples based on real data and offers responses to assist the generator's 
discovery. The training objective of the generator is to make the most of the likelihood that the 
discriminator will improperly classify the created sample as an actual example, so regarding 
improve the authenticity of its outcome. On the other hand, the discriminator has been trained 
to precisely distinguish between real data and created information, to maximize the loss function 
[1]. 

GAN is particularly useful for denoising low-dose computed tomography (CT) imaging. In 
clinical settings, low-dose CT is the preferred method for reducing patient radiation exposure, 
but this often leads to higher levels of image noise, thereby affecting diagnostic accuracy. 
Traditional denoising methods have high computational costs and may result in the loss of 
important image details. Training GANs can solve this problem. The generator is responsible 
for mapping low-dose CT images to equivalent images, which are CT images under normal dose 
conditions. If the final discriminator cannot distinguish between the generated image and the 
real image, we can achieve both denoising and feature preservation of the image. In this way, 
the texture and structural integrity of traditional dose CT images can be preserved [4]. 

2.2 Training GANs for Denoising 

Alternating Training. The alternating updating of generator and discriminator networks is an 
important part of the traditional GAN training process. At first, the discriminator was trained on 
a batch of genuine and produced images. The weight of the discriminator has been used to 
optimize its ability to distinguish actual images and create images. Ultimately, the generator is 
trained to generate photos that are more probable to trick the discriminator. This alternation 
process is iterated until the generator creates a photo that can not be identified from the real 
image, to make sure that the discriminator can converge to 50% accuracy. [1] 



 

 

Challenges in Training. Attaining a secure balance between the generator and the discriminator 
is among the main difficulties of training GAN to eliminate noise. If the discriminator ends up 
being as well strong, it can easily distinguish between actual images and produced images thus 
offering a bad slope for the generator. However, if the generator ends up being too solid, it might 
only produce output within a minimal range, which is called mode collapse. [1] In order to fulfil 
these difficulties and enhance the stability of GAN loss elimination training, there are numerous 
strategies to stabilize the understanding procedure between the generator and the discriminator. 
Feature matching: Feature matching urges the generator to match the attribute statistics removed 
from the intermediate layer of the discriminator, as opposed to straight trying to deceive the 
discriminator. [5] 

Small-batch discrimination: This innovation includes an extra layer to the discriminator that 
sees numerous pictures at the same time. This encourages the diversity of samples generated to 
assist find the mode collapse. [1] 

Single-sided label smoothing: This modern technology replaces the target label 1 of the actual 
example with a worth of a little less than 1 (e.g. 0.9). This can help to prevent the discriminator 
from being overconfident and provide a more useful gradient to the generator [1]. 

3 Review of GAN-based Denoising Techniques 

3.1 cGAN  

What makes cGAN clearly different from traditional GAN in[6] is that it controls generators 
and discriminators by utilizing other details (such as class labels or various other attributes). It 
allows the production of certain images that match desired features, meanwhile, the 
discriminator can make decisions based on the input information and conditional info.  

 In [7], a cGAN for low-dose chest CT image denoising was developed, consisting of a U-Net 
generator and a traditional discriminator. The U-Net generator has an encoder-decoder structure, 
which has quick connections between the corresponding layers in the encoder and decoder to 
preserve spatial information during the generation process, thus preserving anatomical details 
while denoising. The training and testing were conducted using the SPIE American-
Association-of-Physicists-in-Medicine (AAPM) lung-CT-challenge and Lung-Image-
Database-Consortium and Image-Database-Resource-Initiative (LIDC-IDRI) databases. 3200 
chest images for training and 400 images for testing. Before training, the author artificially 
destroyed these images with Gaussian noise to simulate low-dose conditions. The Structural 
Similarity Index (SSIM) is used to evaluate the performance of denoising models. The results 
showed that the proposed method achieved significant improvement in SSIM values, with CT 
images reaching 0.950, chest digital tomography (CDT) images reaching 0.973, and chest 
radiographic (CR) images reaching 0.961. Compared with noisy images, the method proposed 
in this article increased SSIM values by 17.36%, demonstrating its effectiveness in reducing 
noise while preserving fine anatomical details. 

As shown in Figure 1, Yi et al. [8] proposed a sharpness-aware cGAN architecture. In this 
architecture, the generator adopts a sharpness-aware loss function to reduce noise while ensuring 
that the denoised image retains sharp edges and fine details. The figure shows how the generator 
(G) receives a low-dose CT image (x) and produces a denoised output (ŷ). The discriminator 



 

 

(D) evaluates the similarity by judging whether the generated image pair (x,ŷ) is a virtual CT 
image pair or a real CT image pair (x, y), as shown by the adversarial loss Ladv(G, D). In 
addition, the sharpness-aware loss Lsharp(G) plays an important role in ensuring that the 
generated image (ŷ) maintains the same sharpness as the original high-dose CT image (y). 

 
Fig. 1. Sharpness Perception Condition GAN (cGAN) Architecture. Generator G inputs low-dose CT 
images (x) and results in deoxidized pictures (T). The style has multiple assessment courses to improve 
picture quality. First off, the discriminator D contrasts the picture pairs (x, ŷ) and (x, y) to identify whether 
the generated photo pairs are real or virtual, resulting in an adversarial loss of L_adv (G, D). At the same 
time, the intensity evaluation function S makes sure that the sharpness of the removed noise image (ŷ) 
matches the sharpness of the original high-dose image (y). The framework aims to keep visual integrity 
and physiological details that are vital to scientific applications 

The data set made use of in the study is an exclusive professional CT check, including low-dose 
and normal-dose upper-body CT pictures, and there are hundreds of paired images in the training 
set. Making use of indications such as SSIM and PSNR to examine efficiency, cGAN 
accomplishes 0.921 SSIM and 33.2 dB PSNR. The design performs far better than standard 
approaches, especially in preserving clarity and maintaining physiological information. 

3.2 CycleGAN  

In their 2017 paper, Zhu et al. [9] introduced CycleGAN, a novel type of Generative Adversarial 
Network (GAN) specifically designed for unpaired image-to-image translation tasks. Unlike 
traditional GANs that require paired training data, CycleGAN has realized the transformation 
of images from one domain to another to be independent, without one-to-one correspondence 
between source and target images. This capability is particularly useful in medical imaging, 
where acquiring aligned pairs of images—such as low-dose CT (LDCT) and normal-dose CT 
(NDCT) scans—is often impractical due to resource constraints.  



 

 

CycleGAN’s architecture comprises two generators, GAB and GBA, and two discriminator 
networks, DA and DB. The generators learn the mapping functions between Domain A and 
Domain B, transforming an image xA from Domain A to xAB in Domain B, and vice versa. 
Discriminators in turn aim to distinguish real images from generated ones in their respective 
domains. CycleGAN presents cycle consistency losses Lcycle1 and   Lcycle2. The key idea behind 
this is that if an image is transformed from one domain to another and then back again, it should 
return to its original state. The mathematical expression for a cycle consistency loss is as follows:  

 ℒ𝒸𝓎𝒸(𝐺, 𝐹) = 𝐸#∼%!"#"(#))|𝐹+𝐺(𝑥)- − 𝑥|(/ + 𝐸)∼%!"#"()))|𝐺+𝐹(𝑦)- − 𝑦|(/ (1) 

Here, ||⋅||1 denotes the L1 norm, which measures the absolute differences between the pixels of 
the reconstructed and original images. By minimizing this loss, the generators are instructed to 
produce authentic translations that preserve input images at large. 

 In addition to the cycle consistency loss, CycleGAN includes adversarial losses for each pair 
of generator and discriminator, represented by Ladv1 and Ladv2. These losses effectively propel 
GAB to produce indistinguishable images in Domain B in order to fool DB. Moreover, identity 
losses Lidentity1 and Lidentity2 help preserve color composition and other properties when working 
with images of the same domain. In Figure 2, the CycleGAN architecture is depicted, 
demonstrating how it accomplishes image-to-image translation between two domains. 

 
Fig. 2. Architecture of CycleGAN model for unpaired image-to-image translation between domains A and 
B. Generators GAB and GBA translate images between domains, producing xAB and xBA, respectively. Cycle 
consistency is enforced by reconstructing original images xABA and xBAB from translated images, with 
losses Lcycle1 and Lcycle2 penalizing reconstruction errors. Discriminators DA and DB differentiate real 
images from generated ones, guided by adversarial losses Ladv1 and Ladv2. Identity losses Lidentity1 and 
Lidentity2 ensure that applying a generator to an image from its target domain returns the image itself, 
preserving content. 

Wolterink et al. [4] elaborated on a specific cycleGAN architecture that comprises a generator 
CNN and a discriminator CNN. The difference from these earlier noise reduction networks is 
that adversarial feedback is included within the training process, where the mentioned generated 
images of normal-dose CTs from low-dose input data are rendered more realistic. The GAN 



 

 

architecture was constructed using voxel-wise loss in addition to adversarial loss. While voxel-
wise loss minimizes the mean squared error (MSE) between the generated and reference routine-
dose images, often resulting in overly smoothed outputs that can cloud over fine details, the 
additional adversarial loss derived from the discriminator's performance enforces the generator 
to preserve high-frequency details and image texture, effectively mitigating oversmoothing. The 
authors also show that their GAN can be trained without perfectly aligned pairs of low-dose and 
routine-dose images - a common constraint in clinical environments. This is achieved by 
training the generator using solely adversarial feedback. In field training, the network learns the 
appearance of routine-dose CT images directly from the low-dose inputs without requiring voxel 
alignment. This would mean several leaps in noise reduction techniques to be applied, 
specifically in small structures and the accuracy of coronary artery calcification quantification 
with low-dose CT.  

3.3 SRGAN  

Super Solution Generative Adversarial Network (SRGAN) is a deep learning model aimed at 
achieving image super-resolution through generative adversarial network technology. 

Christian Ledig et al. proposed in their 2017 paper [10] that SRGAN can generate high-quality 
high-resolution images through adversarial training of the generator and discriminator, 
preserving more details and realism. As shown in Figure 3, the generator is responsible for 
creating super-resolution images, while the discriminator evaluates the authenticity of these 
images and guides the generator to improve its output. The core concept of this method is to 
improve the visual quality of image reconstruction through adversarial training, making the 
generated images closer to real images in terms of details and textures. 



 

 

 
Fig. 3. The architecture of the super-resolution generator and discriminator network, with each 
convolutional layer having a corresponding kernel size (k), number of feature maps (n), and stride. 

Chi et al. proposed an LDCT CT that combines SR and denoising reconstruction networks [11]. 
The network they proposed consists of a Global Dual Guided Attention Fusion Module 
(GDAFM) and a Multi Scale Alignment Block (MAB). GDAFM guides the network to focus 
on the region of interest by fusing additional mask guidance and average CT image guidance, 
while MAB introduces layered features through overlapping connections to utilize multi-scale 
features and improve feature representation capabilities [11]. To suppress radial residual 
artifacts, they optimized their network using a feedback feature distillation mechanism (FFDM) 
[11]. 

They applied the proposed method to the 3D-IRCADB and PANCREAS datasets to evaluate 
their ability in SR reconstruction of LDCT images. For the 3D-IRCADB and PANCREAS 
datasets on PSNR/SSIM, their method outperforms the suboptimal methods 2.0923/0.0022 and 
1.0613/0.0297 at a scaling factor of 2, and outperforms the suboptimal methods 1.6609/0.0264 
and 2.3194/0.0505 at a scaling factor of 4 [11]. This result confirms the superiority of their 
method compared to other methods. 

3.4 Denoising GAN  

Denoising Generative Adversarial Network (GAN) is a deep generative model that can improve 
data quality through adversarial training in denoising tasks. Zhang et al. first proposed this 
concept in their paper [12]. As shown in Figure 4, Zhang et al. introduced an improved 
generative adversarial network architecture that significantly improves the effectiveness of 
image denoising and restoration by learning from noisy samples. The denoising GAN mainly 



 

 

consists of a generator and a discriminator. The generator is responsible for generating clear 
data samples, while the discriminator evaluates the authenticity of these samples, promoting the 
generator to gradually generate higher quality data. Compared with traditional GAN models, 
denoising GANs introduce noisy data during the training process, which helps improve the 
model's robustness to noise and the clarity of generated data. 

 
Fig. 4. Network architecture of denoising generative adversarial network. X is the noise block generated 
by the generative network, and x is the noise block extracted from the noisy image. The filter numbers of 
the power generation network from the second to the last unit are 256, 128, and 64, which are equal to the 
output channel numbers. The number of filters in the discriminative network from the first to the fourth 
unit is 64, 128, 256, and 512, respectively [12]. 

Kim et al. proposed a new method for handling various noisy data tasks [13] and demonstrated 
its powerful application potential in fields such as image processing and signal restoration. They 
proposed an unsupervised two-step training framework for image denoising, which uses low-
dose CT images from one dataset and unpaired high-dose CT images from another dataset [13]. 



 

 

The framework proposed by Kim et al. trains denoising networks in two steps. In the first step 
of training [13], they trained the network using the 3D volume of CT images and predicted the 
central CT slice from it. In the second step of training [13], this pre-trained network is used to 
train a denoising network and combined with a memory efficient denoising generative 
adversarial network (denoising GAN) to further improve objective and perceptual quality. 
Compared with unsupervised learning algorithms based on phantom and Mayo clinical datasets, 
their proposed method combined with Noise2Sim exhibits better objective quality in PSNR and 
SSIM [13]. 

However, through testing of Perceived Image Patch Similarity (LPIPS), it was found that this 
method is similar to U-Net (supervised learning), and Noise2Sim without perceptual operations 
often produces overly smooth images, leading to a decrease in perceptual quality. Nevertheless, 
their method achieved better LPIPS values and higher PSNR and SSIM values compared to 
WGAN-VGG, demonstrating satisfactory denoising performance comparable to WGAN-VGT 
in terms of perception [13]. 

3.5 DualGAN 

The DualGAN architecture is an extension of the traditional GAN framework, designed to 
improve the translation between noisy and clean images by incorporating two GANs that work 
in tandem. As stated by Yi et al. [14], DualGAN consists of two pairs of generators and 
discriminators, each trained to learn mappings in opposite directions between two domains, 
similar to the CycleGAN architecture. DualGANs are tailored to handle unpaired datasets, 
particularly useful in scenarios where obtaining paired Low-Dose CT and Normal Dose CT 
images is challenging. This approach is inspired by dual learning in natural language processing, 
but unlike the original which relies on pre-trained language models to decide the confidence of 
translational accuracy, the discriminators of DualGANs are trained adversarially against their 
respective translators to capture domain distributions.  

Consisting of a generator and two discriminators, DU-GAN, a variant of DualGAN, is 
developed for unsupervised denoising and artifact removal (Huang et al.) [15]. As shown in 
Figure 5, the generator, based on the Residual Encoder-Decoder Convolutional Neural Network 
(RED-CNN) architecture, takes a noisy low-dose CT image as input and generates a denoised 
image as output. There are two possible paths for a denoised image to fall into: one is the Image 
Domain Branch, which focuses on constructing the global structure and pixel-level details, and 
the other is the Gradient Domain Branch which works to perfect edges and contours of the image. 

In the Image Domain, the denoised low-dose CT image is compared to the original normal-dose 
CT and uses MSE (Mean Squared Error) loss to calculate differences in their pixel-wise details. 
Subsequently, two discriminators Dimg-enc and Dimg-dec are employed to assess whether the 
generated image is “real” or “fake” by comparing it to real LDCT images, calculating a global 
real/fake score that indicates how well the generated image matches real data. The generator, 
upon receiving the feedback, produces more imperceptible “fake” images to fool these 
discriminators.  

The Gradient Domain emphasizes the edges and textures of the image rather than the pixel 
values. To extract gradient information, a Sobel filter is applied to both the denoised and original 
LDCT images. The resulting gradient maps are then compared using L1 Loss to compare the 
edges in the denoised image with those in the original image. Two discriminators Dgrd-enc and 



 

 

Dimg-dec attempt to classify the gradient maps as real or fake. Similar to the image domain, the 
discriminators in the gradient domain provide a global real/fake score that further enhances the 
generator to deceive its corresponding discriminators. 

 
Fig. 5. Architecture of DU-GAN. In panel (a), LDCT images are being processed by a generator, producing 
denoised LDCT outputs. In panel (b), the image domain branch computes the mean squared error (MSE) 
loss between the denoised LDCT and ground truth LDCT images. The denoised image is also fed into an 
image-domain discriminator, Dimg, which classifies the output as real or fake at both the pixel and global 
level, with a global real/fake score of 0.44. Panel (c) illustrates the gradient domain branch, where the 
Sobel operator extracts gradients from the denoised LDCT, and an L1 loss is calculated with respect to the 
gradient of the ground truth. A gradient-domain discriminator, Dgrd, evaluates the gradient maps, yielding 
a global real/fake score of 0.61. 

DualGANs outperform traditional methods in various ways in terms of denoising, mainly 
through simultaneous global and local learning. The U-Net based discriminators are designed 
to encapsulate both global structures and local details, hence providing a more complete 
feedback mechanism for the generator. Subsequently, adversarial training across image and 
gradient domains in DU-GAN can significantly improve edge preservation and reduce streak 
artifacts commonly present throughout LDCT images. Meanwhile, regularization by CutMix in 
the discriminators can easily allow for generating per-pixel confidence maps that could assist 
the radiologist by visualizing uncertainty, an intrinsic component of the denoised results. 

3.6 Wasserstein-GAN 

Wasserstein GAN (WGAN) was proposed by Arjovsky et al [16] to solve the common stability 
problems in traditional GANs, such as mode collapse and difficulty in hyper-parameter tuning, 
etc. WGAN uses the Earth Motion Distance (EM) or Wasserstein Distance to measure the 
difference between the real data distribution and the generated data distribution instead of the 
Jensen-Shannon divergence used in the standard GAN [17]. 

WGAN is based on the Kantorovich-Rubinstein duality, which expresses the Wasserstein 
distance W(Pr,Pθ)between the real data distribution Pr and the Pθ generated data distribution   
Pθas  



 

 

 𝑊(Pr, 𝑃*) = sup
|,|$-(

𝐸#∼P [𝑓(𝑥)] − 𝐸.∼%(.))𝑓+𝑔*(𝑧)-/ (2) 

where f is a 1-Lipschitz function, gθ(z) is the generator function with input z, and p(z) is the 
prior distribution [17]. 

The training process involves optimizing the following objectives: 

 max
/∈1

𝐸#∼P [𝑓/(𝑥)] − 𝐸.∼%(.))𝑓/+𝑔*(𝑧)-/ (3) 

Here, fw is parameterized by w. The purpose of the optimization is to approximate the 
Wasserstein distance and thus provide a more stable and meaningful gradient for the training of 
the generator. The main advantage of WGAN is that it allows the batchers (formerly 
discriminators) to provide useful gradients even if the optimality has not been reached yet, thus 
enabling more stable training. 

Hu et al. [18] created a WGAN-based model to resolve the artifact correction issue in low-dose 
dental CT imaging. The generator made use of in this research study uses an optimized U-Net 
architecture to remove stripe artifacts while maintaining the underlying oral structure. The vital 
network has actually created several convolution layers in order to thoroughly examine the top 
quality of the created pictures. The study utilizes low-dose dental CT images and matching high-
grade image information collections for training and examination. The WGAN version has 
actually shown substantial renovations in getting rid of artifacts, with SSIM reaching 0.9582 
and PSNR getting to 42.7 dB, therefore verifying its efficiency in improving photo high quality 
and protecting important details. 

Huang et al. [19] suggested an attribute-enhanced WGAN, which consists of anatomical a priori 
information to improve low-dose CT photo elimination. The generator in this study adds extra 
layers to incorporate anatomical knowledge, which makes it possible for the version to focus on 
essential locations in CT pictures, such as lung and liver areas. The data set concentrates on lung 
and liver imaging, consisting of low-dose CT scans of various organs. The results show that this 
WGAN alternative accomplishes 0.9805 SSIM and 43.68 dB PSNR, which carries out 
excellently in decreasing noise while keeping physiological accuracy. 

In a study by Hu et al. [20], they presented a brand-new technique of using GAN to get rid of 
artifacts from low-dose multi-energy CT pictures with joint loss. The proposed p2pGAN model 
integrates the second-order differential operator (SODO) to address the challenges of multi-
energy CT imaging. Based on the U-Net design, the generator has four down-sampling and up-
sampling layers, which can effectively eliminate sound from different power levels. The version 
is trained on 32 rows of multi-energy CT estimate information sets at various power levels (80 
kV, 100 kV and 120 kV). The analysis indications show that the PSNR of the version is 45.25 
dB and the SSIM is 0.9862, which is much better than the standard linear interpolation method. 
Mahmoud et al. [21] suggested 3 WGAN designs for low-dose CT audio removal, each of which 
includes various loss functions: VGG loss, SSIM loss, and Structurally Sensitive Loss (SSL). 
The generator network consists of 8 convolutional layers, and the examination network consists 
of six convolutional layers and 2 fully connected layers. This study was carried out on the 
professional information collection of Mayo Clinic's low-dose CT challenge. In the proposed 
model, the WGAN-VGG-SSL version has the most effective performance, with PSNR being 



 

 

26.13 and SSIM being 0.8169. Compared to various other best models, this alternative executes 
well in getting rid of and keeping key photo functions. 

As received in Figure 6, Wang et al. [22] proposed a progressive Wasserstein-generated 
adversarial network (PWGAN-WSHL) to fulfil the obstacle. The architecture consists of three 
main components: a generator network, a hybrid loss function, and a discriminator network. 

 
Fig. 6. Progressive Wasserstein GAN with Weighted Structure-sensitive Hybrid Loss (PWGAN-WSHL) 
for Low-dose CT. Section 1 demonstrates the generator network, which processes the input CT images at 
six-time steps (t=1 to t=6) and contains a recursive structure. The recursive structure minimizes the 
parameters while maintaining performance. Section 2 introduces the hybrid loss function, which combines 
the NDCT reference image with the structure-sensitive hybrid loss and combines it with the SSIM-based 
hybrid loss function. Section 3 demonstrates the discriminator network, which distinguishes the generated 
CT images from the real normal-dose CT images by optimizing the generator and discriminator losses. 

The generator network (Part 1) is split into six stages, utilizing the recursive computation 
procedure to preserve the efficiency of the design while reducing the variety of specifications. 
Each phase includes convolutional layers, residual blocks, and LSTM units to capture time 
correlation, as displayed in the lower half of the generator framework. The mixed loss function 
(Part 2) combines weighted structural sensitivity loss, which integrates SSIM-based 
architectural loss and L1 loss to decrease sound while keeping key physiological attributes. This 
loss function aids the version to protect fine details excellently, which is important for clinical 
applications. Ultimately, the discriminator network (Part 3) uses the generator and the 
discriminator loss function to enhance the version by comparing the generated image with the 
typical dose CT image. Considerable experiments reveal that PWGAN-WSHL is significantly 
above existing methods in both quantitative and qualitative evaluation, especially in minimizing 
artifacts and retaining information in low-dose CT scan photos. 



 

 

4 Discussion 

4.1 Evaluation metrics introduction  

The Structural Similarity Index. The Structural Similarity Index (SSIM) is an evaluation 
parameter based on mimicking the human eye to assess perceived image quality. It evaluates 
the similarity between two images by assessing their brightness, contrast, and structure. 
The core idea of SSIM is to compare the average brightness of two images, compare the contrast 
between two images, i.e. the standard deviation of brightness, and compare the structural 
information of the images. This is usually achieved by comparing the local texture and shape of 
the image. Together, these factors constitute a comprehensive quality rating [23]. 

The value range of SSIM is -1 to 1, and the closer the value is to 1, the higher the image quality, 
that is, the more similar the two images are [23]. Currently, SSIM is widely used in image 
processing, compression algorithm evaluation, and computer vision. 

Peak Signal to Noise Ratio. Peak Signal to Noise Ratio (PSNR) is an indicator used to evaluate 
the quality of images or videos, widely used in image processing, video encoding, and 
transmission fields [24]. Its formula is: 

 𝑃𝑆𝑁𝑅 = 10 ⋅ log(2 H
3%

MSE
I (4) 

In the formula, R is the maximum possible pixel value of the image. For 8-bit images, R is 
usually 255. MSE represents the mean square error between the original image and the 
processed image, obtained by calculating the squared difference between each pixel in the 
original image and the processed image and then taking the average. 

PSNR can be used to measure the quality loss of images or videos, which is related to the degree 
of distortion of the original signal. The unit of PSNR is decibels (dB), with higher values 
indicating better image quality. 

Learning Perceived Image Patch Similarity. Learning Perceived Image Patch Similarity 
(LPIPS) was proposed by Zhang et al. [25]. It is an evaluation metric used to assess image 
quality and similarity. Compared with traditional image quality evaluation metrics such as 
PSNR and SSIM, LPIPS is more in line with human visual perception evaluation standards [25]. 
Therefore, this evaluation criterion is also widely used in machine learning. 

Root Mean Squared Error. Root Mean Square Error (RMSE) is an indicator used to evaluate 
the prediction error of a model and is widely used in regression analysis [26]. Its formula is: 

 𝑅𝑀𝑆𝐸 = K(
4
∑ (𝑦5 − 𝑦6M)74
58(  (5) 

In the formula, n is the number of data points,  𝑦5 is the i-th observed value and  i-th predicted 
value. 

RMSE is commonly used to measure the difference between model predictions and actual 
observations. Compared with other evaluation criteria, RMSE has unit consistency and high 
sensitivity. Unit consistency refers to RMSE having the same units as the data, making it easy 



 

 

to understand and interpret. High sensitivity refers to the high sensitivity of RMSE to outliers 
due to the square operation in the formula. 

4.2 Comparison between GANs 

Table 1. Results Comparison between GAN variants 

Dataset Model 
Metrics 

SSIM PSNR LPIPS GMSD RMSE 
LIDC-IDRI cGAN 0.973 - - - - 
Anthropomorphic 
Thorax Phantom 

& Cardiac CT 
Scans 

CycleGAN  ~44    

3D-IRCADB  
PANCREAS SRGAN 

0.8931 
 
 

0.8997 

32.4209 
 
 

30.5273 
 

   

Mayo Clinic 
for the AAPM 
Low Dose CT 

Grand Challenge 

WGAN 0.7992 27.6242 - - - 

Mayo Clinic DU-GAN ss 23.1102   0.0724 
Phantom 

 
 

Mayo 

Denoising 
GAN 

0.988 
 
 

0.951 

41.372 
 
 

35.862 

0.092 
 
 

0.131 

  

5 Challenges and Limitations  

5.1 Technical Challenges 

Despite significant progression, low-dose computed tomography (LDCT) removal using GAN-
based architecture still deals with some technological difficulties. 

A major difficulty is just how to achieve an equilibrium in between noise suppression and detail 
protection. Although MSE loss causes a high peak signal-to-noise ratio (PSNR) worth, it usually 
results in extreme smoothing, which obscures the information that are essential to medical 
diagnosis [18] On the other hand, reverse loss improves texture details, but might introduce 
artifacts or noise to make complex image interpretation [19] This trade-off needs mindful 
modification of the loss function to enhance 2 targets at the same time [22] 

It is an additional difficulty to extend it to various anatomical areas and dose levels. Most 
versions are trained on details data sets, which increases concerns about their performance in 
different clinical circumstances. As an example, models trained on cardiac CT might perform 



 

 

poorly in other body areas [8] Additionally, models trained at single-dose levels might be 
challenging to operate at different dose levels, thus limiting their clinical applicability [7] 

There are still issues with the pressing of artifacts, especially in complex scenarios involving 
steel or sports artifacts. While models such as m-WGAN show good promise, their effectiveness 
decreases when such challenging artifacts are encountered, highlighting the need for more 
robust training methods [27]. 

The lack of high-quality and low-quality paired CT datasets is a major obstacle. In clinical 
practice, it is difficult to obtain spatially aligned noisy and clean image pairs, especially those 
with specific artifacts. This limitation hampers the training process because most GAN models 
rely on these paired datasets to learn effective mappings. Computational complexity and training 
instability are also major issues. GAN-based networks require significant resources and long 
training times. In addition, training of GANs is inherently unstable and often requires careful 
tuning to prevent problems such as mode collapse, which limits their use in clinical settings 
where rapid deployment is critical [18]. 

Finally, evaluating GAN-based denoising models is challenging, especially in translating 
research metrics such as PSNR and SSIM into clinical relevance. High numerical scores do not 
always represent clinically useful images, specifically when spatial resolution is impaired or 
artifacts are introduced [7] To ensure that these designs satisfy the diagnostic needs, it is 
essential to develop a much more clinically oriented analysis procedure. 

5.2 Clinical and Practical Limitations 

One of the primary limitations of GAN is the possibility of introducing synthetic artifacts that 
do not exist in the original photo. Although GAN intends to produce sensible pictures by 
learning the circulation of training data, the procedure occasionally results in the production or 
change of artificial structures. Although refined, these adjustments might deceive medical 
professionals and lead to misdiagnosis. The black box nature of GAN intensifies this issue 
because it is typically challenging to recognize how the network will certainly modify the input 
data. 

One more restriction is the universalization of GAN in different patient populations. The 
efficiency of GAN mainly depends on the high quality and diversity of the training data. If GAN 
is not trained on the variability seen in clinical practice (such as various kinds of tissue, 
pathology, or imaging protocols), it might not be feasible to generalize to invisible data. This 
might lead to irregular removal performance. GAN might run well on some images however not 
well on various other images. Unsteady efficiency is not appropriate in clinical practice, due to 
the fact that it is most likely to jeopardize the safety and security of individuals. 

The application of GAN in the clinical workflow additionally brings some difficulties. GAN is 
computationally intensive and calls for a great deal of processing power for training and 
reasoning. In several medical settings, this need might not be fulfilled, specifically in small 
health centers or facilities that might not have the ability to make use of advanced computing 
infrastructure. Furthermore, the training of GAN is infamously tough. It generally calls for 
cautious change of superparameters and duplicated experiments to attain stable convergence. 
Therefore, healthcare institutions might lack the technical expertise required to establish and 
maintain this complex design. 



 

 

5.3 Future Directions 

Technical problem-solving methods. Generative Adversarial Networks (GANs) have made 
many new advances in recent years, including Progressive Growth GANs [28], Wasserstein 
GANs [16], and Conditional GANs [6]. Compared with traditional GAN models, these new 
GAN models can be used to generate better generated images. In addition to the models 
mentioned earlier, there are many new GAN models that can be used to improve existing models. 
On the other hand, some techniques and the integration of GAN with other machine learning 
techniques can also be used to improve the quality of generated images. For example, adaptive 
batch normalization and the combination of GAN and Transformers. Among them, adaptive 
batch normalization improves the quality of generated images and stabilizes the training process 
by adaptively adjusting the parameters of batch normalization [29], and the combination of 
GAN and Transformers mainly enhances the generation and modelling of sequence data. In 
summary, utilizing superior architectures and combining different technologies will be the main 
means to improve the quality of LDCT denoised images in the future. 

Clinical problem-solving methods. From a clinical perspective, the main limitations of GAN 
in denoising LDCT images are the possibility of introducing synthetic artifacts that do not exist 
in the original image, as well as the generalization of GAN in different patient populations. 
Addressing the practicality of LDCT denoising in clinical practice requires not only finding 
better GAN models in the future, but also establishing more accurate and effective evaluation 
criteria and parameters. As for the problem of universality of LDCT denoised images in different 
populations, it can be achieved by improving model capability and increasing dataset size. 

6 Conclusion  

Whether GANs opened up a whole new perspective for low-dose CT imaging, they indeed 
represent an effective solution that can ease the radiation dose vs. image quality dilemma. In 
this regard, we have discussed how GAN-based denoising procedures stand out with exceptional 
capabilities concerning learning sophisticated data distributions and generating high-fidelity 
images, hence holding immense promise for improving diagnostic accuracy while reducing 
patient risk. From the nuanced control afforded by cGANs to the unpaired data advantage 
afforded by CycleGANs and up to the resolution enhancement capabilities provided by 
SRGANs, different architectures of GANs present their own set of strengths and limits. 

This review has critically shown the enormous progress made in GAN-based LDCT denoising, 
from the early simple architectures through sophisticated models that incorporate anatomical 
priors, perceptual loss functions, and advanced regularization techniques. The performance 
improvement on benchmark and clinical datasets, as reflected in metrics such as PSNR, SSIM, 
and LPIPS, reassures the potential of these architectures in revolutionizing CT imaging. 

However, a number of challenges are standing in the way of widespread clinical adoption. 
Among these, there are the "black-box" nature of GANs, the potential for generating synthetic 
artifacts, and the need for strong evaluation metrics based on clinical relevance. There is also a 
need to overcome the computational demands of GANs and simplify their integration into 
existing clinical workflows. 



 

 

The future of GAN-based LDCT denoising is bright, as new architecture develops, hybrid 
models incorporating elements of CNNs and Transformers, and research based on unsupervised 
and semi-supervised learning methods will continue. As we are moving toward precision 
medicine, integration of patient-specific data and the development of personalized denoising 
models will play an essential role. Therefore, by embracing the potential of GANs yet 
addressing their limitations judiciously, we position ourselves to take advantage of AI in 
transforming LDCT denoising from a promising research area into regular practice of modern 
radiological practice. 
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