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Abstract. In the current landscape of pre-trained large language model (LLM) applications,
various methods such as data augmentation, Residual Learning (RL), Curriculum Learning (CL),
Low-Rank Adaptation (LoRA) and Retrieval-Augmented Generation (RAG), are commonly
employed to integrate more targeted information into pre-trained models. However, these methods
often fall short in terms of training costs or practical effectiveness. Therefore, finding a more
effective approach to enhance the capabilities of large language models in downstream tasks is
imperative. In this paper, we introduce Stochastic Adaption of Retrieval Augmentation (SARA),
an integrated fine-tuning strategy that introduces chained adaption stages while incorporating
features from Retrieval-Augmented Fine-Tuning (RAFT), in order to enhance the LLM’s ability of
effectively responding to domain-specific queries. By organizing the various adaptation stages in a
stochastic manner, we achieve improved performance, robustness and training efficiency compared
to existing fine-tuning methods.
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1 Introduction

In recent years, the advancement of large language models (LLMs) have significantly trans-
formed various applications, ranging from conversational agents [1] to automated content generation[2].
These models have shown remarkable capabilities in knowledge reasoning, making them increasingly
useful in diverse fields[3]. However, in specialized domains, the ability to retrieve accurate infor-
mation from specific documents becomes paramount [4]. This paper addresses the pressing need
for enhanced information retrieval capabilities within LLMs, particularly in contexts that demand a
higher degree of domain-specific knowledge.
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Current research has explored various methods[5], such as Data Augmentation[6], Residual
Learning (RL), Curriculum Learning (CL) [7], Retrieval-Augmented Generation[8], Low-Rank
Adaptation (LoRA) [9] and its variations, such as Chain of LoRA (CoLA) [10]. These methods have
demonstrated effectiveness in improving model performance, yet there remains substantial room for
enhancement, particularly concerning context-aware question-answering capabilities and training
efficiency[11].

In this paper, a novel approach is proposed for fine-tuning LLMs by incorporating Retrieval-
Augmented Fine-Tuning (RAFT) [12]. By utilizing Stochastic Adaption, we aim to improve the
training efficiency and enhance the contextual understanding and robustness of LLMs, enabling them
to provide more accurate responses based on specific user queries. We have named this method
Stochastic Adaption of Retrieval Augmentation (SARA).

To evaluate its effectiveness, we implemented SARA across various benchmarks to assess its
performance in diverse scenarios. The findings highlight SARA’s potential to address limitations in
existing fine-tuning methods, particularly in handling domain-specific queries.

Through the implementation of SARA, we successfully demonstrate a promising avenue for
making LLMs more reliable and accurate for practical applications. This research contributes to the
growing body of work that seeks to refine LLM fine-tuning processes, ensuring that these models not
only possess expansive knowledge but also excel in contextually relevant information retrieval.

2 Related Work

2.1 RAFT

RAFT (Retrieval-Augmented Fine-Tuning) is a training strategy aimed at enhancing the per-
formance of large language models (LLMs) in domain-specific, ”open-book” question-answering
tasks [12]. RAFT introduces three critical components that distinguish it from traditional training
approaches, and Figure 1 shows RAFT’s procedure to process the documents and generate the desired
dateset.

The first crucial element of RAFT is the usage of distractor documents during training. These
documents, irrelevant to the query, are included along with the golden document, which is the relevant
source in the training set. By exposing the model to a mixture of relevant and irrelevant information,
RAFT emulates real-world retrieval conditions, where retrieved documents may contain both useful
and non-useful content. This strategy improves the model’s ability to differentiate between relevant
and irrelevant information, which is an essential skill for better performance in retrieval-augmented
generation (RAG) systems.

Another key innovation in RAFT is the introduction of the P% hyperparameter, the proportion
of training data that includes the golden document. Contrary to common conception, the researchers
have found that limiting the inclusion of golden documents to a subset of the training data can
enhance model performance. This encourages the model to balance memorization with contextual
reasoning, and to develop robustness when extracting relevant information from incomplete or
imperfect contexts.

The final core component of RAFT is the incorporation of Chain-of-Thought (CoT) reasoning



in the training process [13]. The model is trained to generate a logical reasoning sequence that leads
to the answer rather than producing a direct response. The inclusion of CoT significantly improves
the model’s problem-solving capabilities and generates more accurate and interpretable outputs. This
approach helps guide the model by mitigating the chances of overfitting to straightforward answers
and ensures it can handle more complex queries with increased reliability.

Fig. 1. RAFT procedure: The document is split into chunks (oracles), and questions are generated correspond-
ingly. Oracles appear in context with probability p%, alongside distractors (oracles unrelated to the current
question). Answers with CoT reasoning are generated based on the questions and context.

2.2 LoRA and Chain of LoRA

Low Rank Adaptation (LoRA) is a widely used fine-tuning method, whose key idea is to
introduce low-rank matrices to make possible parameter-efficient fine-tuning [14]. Based on this,
Chain of LoRA (CoLA) tries to diminish the generalization error and improve models’ performance
by learning a low-rank adaptive matrices repeatedly to form an augmentation in high rank for the
LLM weights [10]. Additionally, the procedure of CoLA draws inspiration from the concept of
residual learning and extends in the form of a chain structure, which is shown in Figure 2.

Additionally, since RAFT is a fine-tuning method that requires carriers for implementation,
instead of full parameter fine-tuning, we will utilize LoRA and CoLA for efficiency.



Fig. 2. Iterative framework of Chain of LoRA. CoLA starts with the LoRA tuning on a frozen LLM, then merges
the LoRA weights into the model to form a new base model, and introduces new LoRA weights to that model.

3 Our Method

In this section, we present the details of our method, Stochastic Adaptation of Retrieval Augmen-
tation (SARA). Apart from stochasticity, SARA incorporates RAFT’s approach to dataset handling
and the chain structure from CoLA. Based on this architecture, we further purpose two proven
frameworks: SARA-D and SARA-P.

3.1 Algorithm of SARA

In SARA, We partition the entire tuning process into three adaption stages, or layers: Ada1,
Ada2, and Ada3, and model weights are merged between stages. Each stage focuses on a distinct yet
interconnected purpose, with stochastic elements being utilized in Adas. In the stochastic process, the
stochastic decider s and the threshold T play a crucial rule. Furthermore, we will demonstrate that
residual learning, curriculum learning and data augmentation are naturally integrated into our method.
In the explanation of our algorithm, we will use distraction as the metric.

3.1.1 Ada1

Ada1 refers to the first adaptation layer of the language model, which functions as a layer that
allows the model to quickly become familiar with and learn the fundamental aspects of the task. The
difficulty level of the data points is reduced, and stochastic elements are applied to augment them
back to their original complexity. In the case of augmented data points, the distractors can vary, which
aligns with the concept of data augmentation by introducing variability.



Algorithm 1 SARA-Ada1 (Stochastic)

1: Input: original training data points D with number N
2: Initialize the stochastic decider s1 and threashold T1
3: for i = 1, . . . ,N do
4: choose a distractor d in D[i]
5: Update: D[i]⇐ D[i]−d
6: sample the stochastic decider s1 from the range (0,1)
7: if s1 < T1 then
8: select a unique distractor du from the rest N −1 data points
9: Inject: D[i]⇐ D[i]+du

10: end if
11: forward pass
12: backward pass and update parameters
13: end for

The Ada1 layer processes each data point in a stochastic manner and feeds it into the forward
and backward passes, as depicted in Algorithm 1.

3.1.2 Ada2

In Ada2, the stochastic threshold T2 = 0 and each individual data point remains unchanged,
with only the order of training being resampled. The objective of Ada2 is to consolidate the model’s
knowledge and establish a solid baseline.

Since each data point in Ada1 is processed in a stochastic manner, we can express the relationship
between the data points DAda1 and DAda2 as:

DAda1[i] =

{
DAda2[i] with probability T1

DAda2[i]−Distractor with probability 1−T1
(1)

Then we show how residual learning (RL) and curriculum learning (CL) are naturally integrated
into our method.

Nature of Residual Learning: We denote the optimal weights tailored for the specific task as
W . Then we have

W =Wpretrained +∆W, (2)

where ∆W stands for the optimal weight update. For the data points DAda1[i] =DAda2[i], since the
model has already learned in Ada1 and the weights have been merged, in Ada2, it can be considered
as learning the residual of ∆W −B1A1, where B1 and A1 represent the low-rank matrices that were
learned and merged in Ada1. This transforms the problem into a simpler optimization task, as it no
longer involves learning ∆W from the ground up.



Nature of Curriculum Learning: We denote the set of data points DAda1[i] = DAda2[i]−
Distractor as I, i.e.,

I = {DAda2[i] |DAda1[i] = DAda2[i]−Distractor} (3)

and the difficulty of each data point as Di. As the model learns, it progressively focuses on data
points with increasing difficulty, represented as:

W =Wpretrained +∑
i∈I

∆Wi where D[i] increases for i ∈ I, (4)

where I is the index set of data points corresponding to increasing difficulty.

3.1.3 Ada3

In Ada3, the objective is to enable the model to refine its learned knowledge while also enhancing
its robustness when dealing with more challenging examples. Therefore, we introduce difficulty to
the data in a stochastic manner in this adaption layer.

Algorithm 2 SARA-Ada3 (Stochastic)

1: Input: original training data points D with number N
2: Initialize the stochastic decider s3 and threashold T3
3: for i = 1, . . . ,N do
4: sample the stochastic decider s from the range (0,1)
5: if s3 < T3 then
6: select an extra distractor de
7: Inject: D[i]⇐ D[i]+de
8: end if
9: forward pass

10: backward pass and update parameters
11: end for

As depicted in Algorithm 2, each data point has a certain probability of having an extra distractor
added. Denoting the stochastic threshold in Ada3 as T3, we have:

DAda3[i] =

{
DAda2[i] with probability 1−T3

DAda2[i]+Extra Distractor with probability T3
(5)

Using the same reasoning as in Ada2, we conclude that each data point now has a probability
of 1−T3 of being classified as a residual learning data point. For these points, the model learns the
residual of ∆W −∑

2
i=1 BiAi to make optimal weight updates, based on the previously learned low rank

matrices B1A1 and B2A2 from Ada1 and Ada2, respectively. Data points with additional distractors
injected, which effectively create new training scenarios, inherently incorporate elements of data
augmentation, and can therefore be classified as augmented data points.



3.2 Framework of SARA-D.

SARA-D is a framework that we propose based on SARA, which uses distraction as the metric.
The upper portion of Figure 3 stands for the architecture of RAFT, while the lower sections correspond
to our proposed Stochastic Adaption framework.

In RAFT, each chain is trained on the complete training set, utilizing a fixed number of distractors.
In the SARA-D framework, stochastic elements are introduced in both Ada1 and Ada3. Weight
merging between Ada layers is also employed to consolidate knowledge and facilitate further residual
learning.

Fig. 3. Framework of SARA-D. Green circles indicate the golden documents, red circles indicate distractors,
and blue circles represent extra distractors chosen in a stochastic manner. From our experiments, the reasonable
values for the stochastic thresholds are T1 = 0.5, T2 = 0 and T3 = 0.15. In Ada1 and Ada3, the notation [1,2]
and [2,3] represents all potential values within those ranges, reflecting the inherent stochasticity of the process.

3.3 Framework of SARA-P

As mentioned earlier in RAFT, the proposed feature p (the probability of golden documents ap-
pearing in the context) can effectively help LLMs learn to filter out irrelevant information, preventing
the model from generating arbitrary answers when the correct one is not available. We have fully
considered and leveraged the role of p, using its value as a measure of the difficulty. Based on this,
we construct another kind of SARA framework, SARA-P.

As shown in Figure 4, for the stochastic adaption layers under the SARA-P architecture, we
apply an increasing difficulty with p values of 1, 0.6, and 0.2, with the stochastic threshold T2 = 0.4
and T3 = 0.65 in Ada2 and Ada3 respectively. For each Ada layer, the golden context of each data
point is either kept or discarded in a stochastic manner. In contrast, for the control group RACoLA,
we use fixed p = 0.6 for all three chains.

We draw an analogy to the human learning process in order to explain SARA-P. For beginners in
a new field, we ensure that all the learning materials contain the correct answers, preventing them from



getting overwhelmed in early stages. Since the materials guarantee the inclusion of correct answers,
this learning stage is relatively easy and requires only a small amount of study. In the first layer of
SARA-P, the LLM is trained on the p = 1 materials just once. Then, the difficulty gradually increases
with p values shifting to 0.6 and 0.2. As the model learns from these materials, its ability to filter out
irrelevant information must strengthen. However, considering that in real-world scenarios, situations
where correct answers are unavailable do exist but are not the norm, high-difficulty materials with p =
0.2 are studied less frequently. This ensures the model develops its question-answering capabilities
more effectively in common scenarios where p = 0.6 is typical.

Fig. 4. Framework of SARA-P. Green circles indicate contexts containing golden documents, while red circles
represent distractors. The color proportion reflects the corresponding p value. From our experiments, the
reasonable values for the stochastic thresholds are T1 = 0, T2 = 0.4 and T3 = 0.65.

4 Experimental Setup

4.1 Models and tasks

Models: We experiment with SARA to fine-tune Llama3.1-8B, a new and powerful model.
Tasks: We assess the effectiveness of our approach using PubMed [15], Hotpot [16] and the

Huggingface API dataset [17]. Pubmed is a domain-specific (biomedical) context-based question
answering dataset[18], while Hotpot is relatively general domain. The Huggingface dataset measure
the model’s ability to generate correct, functional and executable API calls based on given API
documents.

Methods compared: In the current write-up, we primarily compare our approach with RAFT,
which greatly enhances the model’s retrieval ability. For future research, we plan to include additional
baselines.



4.2 Implementation Details

We implement our method SARA as well as all experiments utilizing PyTorch, Transformers
library [19] and Unsloth framework. The experiments are carried out on NVIDIA A100(40G) GPU,
and the scores are compared within the same seed.

The training data size is chosen from {1k, 8k, 20k}, while the validation and test data sizes
are each set to 25%. The p-value is chosen from {0.2, 0.6, 1}. We use AdamW 8bit as our base
optimizer, and adopt a linear learning rate schedule with the initial learning rate chosen from {1e-5,
5e-5, 1e-4}. LoRA dropout, weight decay and early-stopping are enabled during all training process,
aiming to keep the models with best performance, prevent over-fitting and record accurate training
time for further comparison.

5 Results and Analysis

5.1 RAFT

Table 1: RAFT + LoRA compared with Llama3.1 and LoRA. With the assistance of retrieval information and
LoRA, RAFT + LoRA obtains enormous improvement relative to the original Llama 3.1 and LoRA.

Models F1 Gains relative to Llama 3.1

Llama3.1 66.3 —
LoRA 70.7 + 6.6%

RAFT + LoRA 74.4 + 12.2%

To evaluate the effectiveness and feasibility of RAFT, we compare it against the LLaMA 3.1
model fine-tuned using LoRA. We also employ the LoRA fine-tuning method when validating RAFT
to ensure horizontal comparability. The results demonstrate a remarkable 12.2% improvement in
performance for RAFT + LoRA compared to LLaMA 3.1, and LoRA also has a 6.6% performance
boost over the Llama 3.1 baseline, as depicted in Table 1.

5.2 RACoLA

Table 2: Performance of RAFT + CoLA with different chain lengths. The score of RAFT + CoLA rises as the
chain length increases.

Models BLEU Gains relative to RALoRA

RAFT + LoRA 47.09 —
RAFT+ CoLA (2 chains) 47.30 + 0.45%

RAFT + CoLA (3 chains) 47.46 + 0.79%



Based on the improvement achieved by RAFT, we move forward with integration of RAFT with
Chain of LoRA (CoLA).

We examine how the number of chains in RAFT + CoLA affects the model’s performance [10].
We reproduce the experiments in the CoLA paper and obtain consistent results that the chain length
of CoLA is positively correlated with the model capability, even after RAFT is integrated. RAFT +
CoLA with 3 chains outperforms RAFT + LoRA model by 0.79% and has the best performance, as
displayed in Table 2.

5.3 SARA

In this section, we compare our method SARA with RAFT (on top of CoLA with three chains),
the best previous baseline, to demonstrate further improvement in performance, robustness and
training efficiency. We also provide Llama3.1 for reference and include ablation studies on hyperpa-
rameters of SARA. We use the harmonic mean of RougeLsum precision and recall as the evaluation
metric for PubMed and HotPot, which we denote as F1. For API tasks, we compare the models’
functionality accuracy and hallucination. We adopt the oracle + distractors pattern in all test datasets.
In subsequent sections, any mention of RAFT will specifically refer to RAFT implemented using
CoLA.

5.3.1 The SARA-D Framework

We first implement SARA using SARA-D framework. All the training data are designed as
p = 1 for fair comparisons.

Table 3: Performance comparison of Llama3.1, RAFT, and SARA across PubMed, HotPot, and Huggingface
datasets. SARA consistently outperforms RAFT accross various tasks.

PubMed HotPot Huggingface

Models F1 F1 Accuracy Hallucination

Llama3.1 47.11 40.25 37.28 0.3042
RAFT 71.58 51.24 76.43 0.0638
SARA 72.46 51.37 80.31 0.0542

SARA vs. Llama3.1 + 53.81% + 27.63% + 115.42% - 82.18%
SARA vs. RAFT + 01.23% + 00.25% + 05.08% - 15.05%

As shown in Table 3, using the SARA-D framework, our SARA model consistently surpasses
the baseline models. Compared to the base Llama 3.1 model, the improvements are substantial,
reaching up to 53.81% on HotPot QA and 115.42% on Huggingface evaluation, along with an 82.18%
reduction in hallucination.

Even against RAFT, SARA demonstrates superior performance, achieving a 5.08% increase in
functionality accuracy and a 15.05% further reduction in hallucination on the Huggingface evaluation.
Note that for HotPot QA, since SARA is not specifically optimized for chain-of-thought (CoT)



reasoning for the current write-up, we don’t observe significant improvements when comparing our
SARA model with RAFT.

5.3.2 The SARA-P Framework

We then implement SARA using SARA-P framework. All the training data are designed as
p = 0.6 for fair comparisons.

Table 4: Implemented using SARA-P, SARA still consistently outperforms RAFT.

PubMed HotPot Huggingface

Models F1 F1 Accuracy Hallucination

Llama3.1 47.11 40.25 37.28 0.3042
RAFT 71.61 51.24 78.87 0.0542
SARA 72.02 51.52 82.08 0.0442

SARA vs. Llama3.1 + 52.88% + 28.00% + 120.17% - 85.47%
SARA vs. RAFT + 00.57% + 00.55% + 04.07% - 18.45%

As shown in Table 4, the base Llama 3.1 model achieves scores of 47.11 on PubMed and 40.25
on HotPot. RAFT improves these results to 71.61 and 51.24, respectively. SARA further enhances
performance and reaches a 52.88% improvement over Llama 3.1 on PubMed and a 28.00% increase
on HotPot. When compared to RAFT, SARA shows a modest yet consistent improvement of 0.57%
on PubMed and 0.55% on HotPot.

For the API dataset, SARA achieves a 120.17% increase over Llama3.1 and a 4.07% gain
over RAFT on functionality accuracy. Hallucination also drops significantly, with SARA reducing
hallucinations by 85.47% compared to Llama3.1 and 18.45% compared to RAFT (Table 4).

5.3.3 Training cost of SARA

Fig. 5. Training time and memory consumption comparison between SARA frameworks and RAFT.



In addition to performance improvements, we also analyze the computational costs of SARA.
No additional memory needed: As illustrated in Figure 5, no extra memory is required during

training, since the LoRA ranks r controls the tunable model parameters and are set the same.
Improved training efficiency: Both implementations of SARA demonstrate reduced training

time. On PubMed, the reduction in training time is modest but consistent, with SARA-D requiring
95.12% and SARA-P 98% of the time needed by RAFT. On the HotPot QA and Huggingface
API datasets, SARA-D demonstrates roughly a 5% reduction in training time. However, SARA-P
significantly reduces training time, requiring only 71.83% on HotPot and 75.49% on Huggingface
compared to RAFT, as early stopping is triggered during the last adaption stage Ada3.

These results highlight that SARA not only enhances model performance, but also accelerates
convergence during the training process.

5.3.4 Ablation Study

The level of stochasticity to introduce: As described in Section 3.1, different stochastic
thresholds T ∈ [0,1] are adopted in different stages of Adas. Specifically, we study the stochastic
threshold T3 in SARA-D, which regulates the extent of augmentation in Ada3.

Fig. 6. SARA-D model performance under different values of T3.

T3 = 0 signifies that no stochasticity is introduced, while T3 = 1 represents the scenario in which
all data points are augmented. The horizontal baselines are set to represent the performance of RAFT.
From Figure 6, we consider the optimal value for T3 to be around 0.15, where the SARA model
achieves its best performance on both the PubMed and Hotpot QA datasets. Ablation on HotPot QA
also reveals a twin peak around T3 = 0.5, suggesting that the model may benefit from the additional
distraction, and potentially enhancing its ability to distinguish relevant information from distractors
in highly noisy environments like HotPot QA.



6 Conclusions and Future Work

In this work, we present the Stochastic Adaptation of Retrieval-Augmented (SARA) to enable
more efficient and effective fine-tuning of large language models, whose innovation is to introduce
stochastic adaptation layers to enhance the retrieval ability of models. Current experimental results
show that SARA consistently outperforms previous baselines with less training cost.

We are actively working on applying SARA across various domains of data and large language
models (LLMs). We are also developing adaptation layers tailored to various metrics, including the
complexity of chain-of-thought (CoT) reasoning.
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