
Optimization Strategy for Car Following and Lane 
Changing Models of CAV in Mixed Traffic 

Environments 

Wanyue Li1,†,*, Haowen Cui2,†, Liming Chen3,†, Qing Zhan4,† 

{L15662675317@outlook.com1, haowencui@ucsb.edu2,  
1244671021@qq.com3, zhanqing202303@163.com4} 

College of Transportation Engineering, Tongji University, Shanghai, 200092, China1 
College of Letters and Science, University of California Santa Barbara, Goleta, 93117, United States2 

Information Management and System, Hubei University of Economics, Wuhan, 430205, China3 
Economics and Management School, Wuhan University, Wuhan, 430072, China4 

*corresponding author 
†These authors contribute equally to this work and should be considered co-first authors. 

Abstract. A mixed traffic environment is an environment where different types of agents, 
for instance, Connected Autonomous Vehicles, Human Driven Vehicles, and pedestrians 
in the same traffic space. In reality, such a mixed traffic environment is the most common 
for Connected Autonomous Vehicles, so it is practical to study the trade-off between the 
safety and efficiency of Connected Autonomous Vehicles. The paper proposes an 
optimization strategy for car-following and lane-changing models of Connected 
Autonomous Vehicles in mixed-traffic environments. In this study, real-time data (e.g., 
acceleration, position, signal status, etc.) from CARLA's inbuilt sensors are utilised to 
dynamically adapt the vehicle's decision-making logic. Compared to existing offline 
optimisation methods, it can better adapt to the uncertainty in real road environments. In 
order to check the validity, we use Carla to set up a simulation environment and evaluate 
the behavior of autonomous vehicles. Furthermore, we collect data through multiple 
sensors, such as acceleration sensors, to accurately measure vehicle status. Ultimately, we 
gather the data from the sensors and analyze it by mathematical methods. Through this 
experiment, we find out that the lane change strategy avoids unnecessary lane changes and 
shows strong adaptability. 
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1 Introduction 

When self-driving cars drive on the road, they usually need to perform lane-changing behaviors 
in order to obtain a better driving environment [1]. We need to use lane-changing models and 
strategies to describe and guide the lane-changing behavior of self-driving vehicles. Currently, 
the complex urban traffic situation requires self-driving vehicles to accurately perceive the 
surrounding environment and autonomously decide the lane changing behavior, so as to improve 
the stability and success rate of the lane changing behavior [2]. 

With the application and development of autonomous driving technology, related researchers at 
home and abroad have conducted a series of studies on the lane changing model of vehicles. A 
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review by Paden et al. demonstrates the core methods of motion planning and control technology 
for autonomous driving vehicles, pointing out the limitations of traditional geometric and 
sampling methods in dealing with complex scenarios [3]. Wang and Chan introduce Deep 
Reinforcement Learning (DRL) to solving the autopilot merging problem on freeway entrance 
ramps, which significantly improves the decision-making effect and shows that the machine 
learning-based strategy has advantages in dynamic driving environments, but the experiments 
are not tested in real environments and lack of real data for generalization [4].Trauth et al. 
proposed a reinforcement learning-enhanced motion planning framework, which improves the 
complex environments by combining the traditional sampling methods and reinforcement 
learning adaptability, but the model needs to be trained for a long time and the scope of 
application is more limited [5]. This is consistent with the findings exhibited by the nuPlan 
dataset and test framework for urban roads, which provide an in-depth evaluation of learning-
based planning algorithms for autonomous driving, revealing the limitations of current learning 
algorithms that are difficult to generalize to long-tail events [6]. 

Regarding the optimization of following behavior, the MOBIL model introduces a “courtesy 
factor”, which enables the model to strike a balance between safety and courtesy, guaranteeing 
the safety of lane-changing behavior and optimizing traffic flow [7]. In addition, the FRENETIX 
framework provides an efficient and reliable solution for self-driving vehicle motion planning 
in dynamic and complex environments through modularized design and sampling-based 
trajectory planning algorithms, especially in complex scenarios with high success rate and real-
time adaptability [8]. However, the high computational complexity of MPC algorithms limits 
their real-time applications, especially in large-scale traffic scenarios. In contrast, the Scenario-
Risk Net model, which combines graph neural network (GNN) and attention mechanism, adds 
the ability to perceive mesoscopic risk scenarios to the autonomous driving system, which can 
improve the accuracy of driving decisions and system responsiveness in complex environments 
[9]. These types of risk-based models provide good performance support in coping with driving 
risks in dynamic environments, which can improve the safety of decision-making in self-driving 
vehicles.  

With the combination of autonomous driving technology and smart networking technology, the 
road traffic flow has gradually transformed into a hybrid driving phase consisting of 
conventional drivers (HV) and autonomous vehicles (CAV), and domestic and foreign 
researchers have also done a lot of research on lane changing models in this hybrid driving 
situation. For example, in terms of specific lane-changing decision optimization, Gu et al. 
proposed a lane-changing decision system based on deep auto-encoder (DAE) and XGBoost 
model, which improves humane decision-making ability in complex dynamic environments 
through online learning and data batch training [10]. On this basis, Pek et al. then proposed a 
fail-safe trajectory planning method based on convex optimization, which achieves a balance 
between safety and comfort by guaranteeing a collision avoidance trajectory at any time point 
[11]. 

Existing research has addressed various aspects of autonomous driving operations, such as 
perception systems employing sensors to map the environment, decision-making algorithms for 
behavioral planning, and control systems to execute these decisions. However, as HDV 
behaviors are hard to predict, the crucial limitation that current research still faces is how to 
adapt CAVs to driving alongside HDVs in real-world scenarios. In our research, we used the 
CARLA simulator to create a test environment concerning the urban road environment, 



conducted advanced simulations and data analysis, and further optimized the vehicle lane-
changing model. 

We constructed a realistic simulation environment, observed sensor data in the simulator, and 
conducted a comprehensive analysis of the observed accelerations in the x, y, and z axes to 
further optimize lane-changing behaviors and enhance the safety and efficiency of CAVs. 

2 Literature Review 

Lane-changing rules and their corresponding values are crucial to this research of connected and 
autonomous vehicles (CAVs). According to Deng et al., who examined a dynamic cooperative 
lane-changing model where the preceding vehicle accelerates in their study, "A Dynamic 
Cooperative Lane-changing Model for Connected and Autonomous Vehicles with Possible 
Accelerations of a Preceding Vehicle,". They set the traffic flow in the target lane to 60 vehicles, 
the downstream flow of the subject vehicle (SV) to 10, and the upstream flow to 50. The 
simulation time varied from 100 to 2000 steps with 50 units per step. The speed of the first 
vehicle in the target lane is set to be 5 to 25 m/s, and the simulation is continuously increased 
with a step size of 1 m/sec. The initial interval between successive vehicles was distributed from 
1 to 3 seconds with a gradient of 0.1 s. The initial distance between SV and PV ranged from 10% 
to 90% of the distance between the preceding vehicle (PV) and the vehicle in front of the PV 
(FV) in steps of 5%, and the initial speed difference between SV and PV was varied from -3 to 
3 m/s with a step size of 0.5 m/s [12]. 

As for Jiang et al. [13], who simulated the forced lane-changing process on a curved two-lane 
road in their study "Cooperative CAV mandatory lane-change control enabled by V2I," set a 
simulation environment that included a 180-meter long, two-lane highway. The outer lane 
merges at 126 to 146 meters, and both lanes are set to be 3.6 meters wide. The lane-change 
section was specified from 30 to 146 meters, with a speed limit of 20 m/s. Vehicle initialization 
involved an initial speed deviation of the leading vehicle of -1/180  s/m and an upper-speed limit 
of 18 m/s, with three other vehicles initialized under different headways and speed deviations 
in uncongested traffic conditions [13]. 

Zhang et al. [14], in "A Cooperative Control Framework for CAV Lane Change in a Mixed 
Traffic Environment," discussed a cooperative control framework for CAV lane change in 
mixed traffic environments. They set the boundary lateral acceleration as 6.958 m/s². 
Additionally, Li et al. [15], in "Dynamic lane changing trajectory planning for CAV: A multi-
agent model with path preplanning," explored a multi-agent model for lane-changing trajectory 
planning, using initial state data of 30 vehicles in reality. While Wang et al. [16] employed deep 
reinforcement learning for lane change decision-making in their study "Lane Change Decision-
Making through Deep Reinforcement Learning." These studies collectively emphasize the 
importance of specific lane-changing rules and their values in optimizing vehicle behavior in 
various traffic conditions [14-16]. Table 1 shows the range of parameters in previous research 
mentioned. 



Table 1. Parameters and their range in the studies and corresponding references 

Study Parameter Range/Values 

Deng et al. [12] Speed of first vehicle 5 to 25 m/s (step size: 1 m/s) 

 Headway time 1.0 to 3.0 s (step size: 0.1 s) 

 Distance (SV to PV) 10% to 90% of PV-FV distance (step size: 5%) 

 Speed difference (SV to PV) -3 to 3 m/s (step size: 0.5 m/s) 

Jiang et al. [13] Lane length 180 meters 

 Lane width 3.6 meters 

 Speed limit 20 m/s 

 Speed deviation (leading vehicle) Upper limit: 18 m/s 

Zhang et al. [14] Boundary lateral acceleration 6.958 m/s² 

Li et al. [15] Initial state data 30 vehicles 

Wang et al. [16] - - 

3 Real-Time Parameter Optimization in Simulation 

3.1 Experimental Environment Setup 

The primary objective of this experiment is to simulate the behavior of CAV within the CARLA 
simulation environment and optimize the lane-changing model by analyzing their driving 
behavior. The core focus of this experiment lies in the collection of sensor data before, during, 
and after the vehicle's lane-changing maneuvers. 

The experiment was conducted in the "Town04" map of CARLA, where a Tesla Model 3 was 
selected as the test vehicle. The vehicle was initialized at a designated generation point and 
operated in an autonomous driving mode to ensure that there was no human intervention in the 
behavior of the CAV during the entire simulation process, thereby guaranteeing that all data 
collected reflects the autonomous behavior of the CAV. 

To collect comprehensive data, various sensors are integrated into the vehicle. The data from 
each sensor is stored in designated directories along the specified save path, with images saved 
in folders corresponding to their type (e.g., RGB images in 'cam', semantic images in 'sem'), and 
other sensor data recorded in text files. Additionally, our simulation generates multiple NPC 
(Non-Player Character) vehicles to simulate a realistic traffic environment. These NPC vehicles 
are also programmed to operate in autonomous driving mode, simulating typical traffic 
conditions and vehicle interactions. The experimental interface is shown in Figure 1, where 
white vehicles are CAV vehicles and black vehicles are generated NPC vehicles 



 
Fig. 1. CAV vehicles travelling in CARLA environment 

3.2 Optimisation Strategies based on Q-learning 

We use the Q-learning algorithm, which is the core part in our experiment. It is a method that 
guides the vehicle action according to the environment in which the vehicle is located. The 
incentive mechanism of this algorithm is to calculate based on lane safety, traffic conditions and 
signal compliance, and is designed to motivate vehicles to make more rational driving decisions. 
For data getting, we use Carla's built-in sensor like, camera, imu, GNSS and other sensors to 
connect and configure to the main car.  With the callback function that give us the output in 
various form, like image and text, we are able to efficiently process and save this sensor data, 
which helps us to evaluate the efficiency. 

Another core part of our code is the reward function setup. It mainly calculates the reward value 
for each action based on safe distance, compliance with traffic rules and the current state of the 
vehicle.  By this way, we can get a relatively good parameter. When it comes to making 
decisions and changing lanes, we create a series of rules by considering multiple factors such as 
traffic signals, speed, and distance from surrounding vehicles. These rules are designed to 
determine whether lane changes are safe and effective, thereby ensuring that vehicles can make 
informed decisions while on the road. 

3.3 Optimization Model Design 

Our proposed model leverages Q-learning to dynamically optimize lane-changing and car-
following behaviors of CAVs. The state space 𝑆	includes the vehicle's current speed	𝑣, distances 
to the front and rear vehicles (𝑑! , 𝑑"), target lane density𝜌, and traffic signal status 𝜎: 

𝑆 = {𝑣, 𝑑! , 𝑑" , 𝜌, 𝜎} 

Actions 𝐴 is how our CAV will possibly react during simulation, including maintaining the 
current lane, changing to the left lane, or changing to the right lane: 

𝐴 = {𝐾𝑒𝑒𝑝	𝐿𝑎𝑛𝑒, 𝐶ℎ𝑎𝑛𝑔𝑒	𝐿𝑒𝑓𝑡, 𝐶ℎ𝑎𝑛𝑔𝑒	𝑅𝑖𝑔ℎ𝑡} 



To optimize the decision quality of the model, we use the Q-learning algorithm to continuously 
update the state-action values (Q-values) through Bellman's equation to learn the long-term 
benefits of taking different actions in each state. Its update equation is as follows: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 +𝑚𝑎𝑥#!𝑄(𝑠$, 𝑎$) − 𝑄(𝑠, 𝑎)] 

Where α is the learning rate, which controls the effect of new information on the existing Q-
value; γ is the discount factor, which measures the importance of future rewards; and r is the 
immediate reward, which reflects the effect of the current behavior. 

3.4 Reward Function Design 

The key to model optimization lies in the design of the reward function, which needs to strike a 
balance between safety and traffic efficiency. We design a set of multidimensional reward 
mechanisms, firstly, the safe distance reward component ensures driving safety by evaluating 
the distance between the vehicle and the front and rear vehicles, when the front and rear 
distances satisfy the set thresholds, the vehicle receives a positive reward, otherwise it is 
penalized. Secondly, the speed reward assesses fluency through the gap between the vehicle 
speed and the average speed of the target lane; the smaller the gap, the higher the reward. In 
addition, the traffic signal reward determines whether a lane change is allowed based on the 
current signal status, giving a reward when the light is green or yellow, and imposing a penalty 
when the light is red. Finally, the lane density reward is dynamically adjusted according to the 
traffic flow density of the target lane to encourage CAVs to change lanes in low-density lanes. 

The optimization strategy balances exploration and exploitation through the ϵ-greedy algorithm. 
Randomly select actions with a small probability	𝜖	to explore new state-action pairs, and select 
the current action with the largest Q value with a large probability 1 − 𝜖	to learn the optimal 
strategy from the existing experience. This strategy can effectively improve the exploration 
efficiency of the model, while avoiding falling into local optimal solutions.	

The reward function 𝑅 balances safety and efficiency: 

𝑅%&%#' = 𝑅( + 𝑅) + 𝑅* + 𝑅+ 

Where 𝑅( is the safety distance reward, which evaluates the distance between the vehicle and 
the surrounding vehicles (both in front and behind). Here, 𝑑!	is the distance to the vehicle ahead, 
and 𝑑" is the distance to the vehicle behind. If the distances are within a safe range, the model 
assigns a positive reward: 

𝑅( = H+10						𝑖𝑓	𝑑! 	≥ 50		𝑎𝑛𝑑	𝑑" ≥ 30	
−10																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒															

 

𝑅) stands for speed alignment reward, where encourages the vehicle to align its speed with the 
average speed of the target lane. Here, β is a penalty coefficient for speed deviation, v is the 
current speed of the vehicle, and 𝑣'#,- is the average speed of the target lane.: 

𝑅) = −𝛽|𝑣 − 𝑣'#,-| 

𝑅* stands for traffic signal compliance reward that comply with traffic signals. Positive rewards 
are given for lane changes under green or yellow lights, while penalties are imposed for red light 
violations: 



𝑅* = H
+5										𝑖𝑓	𝜎 = 𝑔𝑟𝑒𝑒𝑛	𝑜𝑟	𝑦𝑒𝑙𝑙𝑜𝑤	𝑙𝑖𝑔ℎ𝑡
−20																				𝑖𝑓	𝜎 = 𝑟𝑒𝑑	𝑙𝑖𝑔ℎ𝑡														 

𝑅+ stands for the lane density penalty which penalizes lane changes into higher-density lanes, 
encouraging lane changes into less congested lanes. Here, η is the penalty coefficient, and ρ\rhoρ 
is the density of the target lane.: 

𝑅+ = −𝜂𝜌 

3.5 Simulation Process and Data Validation 

During the entire simulation process, our test vehicle continuously monitors the surrounding 
roads and vehicle environment via multiple sensors, performing calculations based on 
predefined criteria to determine the appropriate timing and conditions for lane changes and make 
lane changing decisions. The set criteria include maintaining a safe distance from vehicles ahead 
and behind, checking the current speed against the target lane speed, observing traffic signals, 
assessing the density of lanes, responding to emergency vehicles, and considering when and 
how often previous lane changes were made. The lane-changing logic determines whether the 
test vehicle should change lanes by evaluating these criteria. If conditions are met, the vehicle 
will proceed with the maneuver and shift to an adjacent lane. The simulation runs continuously, 
collecting data and monitoring the vehicle's behavior. 

Upon completion of the simulation, we terminated the observed CAV and NPC vehicles, as well 
as the operation of each sensor, and cleaned up the simulation environment. The simulation run 
was saved to document the conclusion of the experiment and to record the specific time points 
associated with key experimental behaviors. Post-simulation, we reviewed the data collected by 
the sensors to determine both the accuracy of the sensor measurements and the appropriateness 
of the lane-changing behaviors. These reviews ensured the integrity of the data and the validity 
of the entire experiment. Our experiments are designed to provide valuable insights into the 
lane-changing capabilities of CAVs under varying traffic conditions. 

4 Analysis of Sensor Data Correlation and Acceleration Changes 

4.1 Correlation Matrix Analysis 

Firstly, we analyzed the correlation of the data and found that whilst the correlation of 
acceleration in the x, y and z directions was high, the correlation between the gyroscopes was 
low. As can be seen in Figure 2., although the acceleration measurements are different in each 
direction, the overall measurements do not interact with each other very much. However, it is 
worth noting that the correlation between the acceleration components is high in each direction. 
This indicates that the acceleration values in the same direction axis have a consistent 
relationship. 



 
Fig. 2. Correlation heat map of the parameters 

4.2 Acceleration Change Over Time 

Figure 3 show the acceleration values for each directional component (x, y, and z) over time. 
The data show that the acceleration in the z-direction remained relatively constant throughout 
the recording period, indicating minimal vertical motion or stability in that axis. In contrast, the 
accelerations in the x and y directions were highly variable. Specifically, the acceleration in the 
x-direction shows a stable pattern with significant fluctuations, while the acceleration in the y-
direction shows two distinct variations. 

 
Fig. 3. Time series plots of the acceleration data in each direction 



These observations highlight the dynamic response of the sensor, where stability in the z-
direction contrasts with variability in the x- and y-directions. variations in x- and y-acceleration 
may indicate periodic motion or orientation changes in the sensor, which may be related to 
specific events or conditions during the data collection period. Analysing these variations can 
provide insight into the motion patterns of the sensor and help to understand the factors affecting 
acceleration in different directions. 

4.3 Acceleration Change with Time Scaling 

We did a time series analysis of the data collected by the sensor. In Figure 4, the total 
acceleration with scaled timestamps of up to ten seconds is presented. We observe that the total 
acceleration shows a significant change in the time interval within 6.5 seconds, which provides 
us with more information about the vehicle's behavior over a shorter period of time, and the two 
accelerations with significant changes indicate that the vehicle changed lanes during this period 
of time. 

As can be seen in the figure, there are two significant peaks or changes in total acceleration 
before the 6.5 second time stamp. These changes indicate a significant change in the direction 
or motion dynamics of the vehicle or object equipped with the sensor. Such changes are usually 
associated with behaviors such as lane changes or sudden adjustments in driving behavior. 

We observe that changes in acceleration are closely related to vehicle actions, and in this 
experiment changes in vehicle acceleration are related to the vehicle's steering and lane changing 
behaviors. Detecting the acceleration changes of the surrounding vehicles is also very important, 
as human drivers react to the surrounding vehicles and generate operational commands every 
moment, thus obtaining the driving information of the surrounding vehicles can help us make 
more detailed adjustments and feedbacks to the lane-changing behaviors, which is especially 
useful for improving the lane-changing model and optimizing the vehicle control strategies in 
the simulation environment. 

 
Fig. 4. Total acceleration change over time 



5 Conclusion 

This study proposes an innovative optimization strategy for the following and lane changing 
model of a connected autonomous vehicle (CAV) operating in a mixed traffic environment. By 
utilizing Q-learning, we develop a dynamic decision-making model that continuously adjusts 
parameters in real-time based on environmental feedback, aiming to effectively balance safety 
and efficiency. 

For this experiment we used the CARLA simulation environment to model and evaluate the 
behavior of self-driving vehicles. Through extensive simulations in the CARLA environment, 
we evaluate the performance of the proposed model under different traffic conditions. The 
results show that the optimized lane changing model significantly improves vehicle 
performance. Moreover, the model effectively reduces unnecessary lane changing, improves 
traffic flow efficiency and maintains safety standards by adhering to dynamic constraints such 
as safety distance, traffic signal compliance and lane density. 

After summarizing and analyzing the experimental results, we have the following main findings. 
We performed a correlation analysis, and the results of the correlation matrix showed that while 
the acceleration in the x, y, and z directions were highly correlated within each direction, the 
correlation between directions was relatively low. We also collected and analyzed all the sensor 
information, and found that the acceleration data collected by the sensors in each different 
direction were unique. This effectively helped us to accurately interpret the data and calibrate 
the sensors. Acceleration is also correlated with time, and we found that the acceleration in the 
Z direction of the experimental vehicle remained stable while the X and Y directions showed 
significant variations using time series analysis. This suggests that there is a periodic or event-
driven motion of the vehicle body, which was analyzed to be possibly related to changes in the 
vehicle's handling or driving conditions. We also performed a time-scaled acceleration analysis, 
and in our experiments when we scaled the timestamps to 10 seconds, we found two significant 
acceleration changes just before the 6.5 second mark. We visualized and analyzed this series of 
data, and we found that the two peaks appearing in the icon may be the time points when the 
vehicle appears to operate while driving. The conclusions of the experiment helped us 
understand the behavioral patterns of self-driving vehicles in lane changing, and also served as 
the theoretical basis for us to optimize the lane changing model, which provided us with quite 
important help for our subsequent research. 

The study proposes a new optimization scheme for self-driving lane-changing models. The 
scheme is tested to help self-driving vehicles better balance their passing efficiency and safety 
when changing lanes. In this experiment. In this experiment, we use the simulation driving 
simulation platform CARLA, and conduct simulation experiments as well as feasibility 
experiments of the optimization scheme on the platform. In the study of related problems, we 
also noticed that there are some problems with the strategy, the operation of the steering action 
is relatively rough, and there is some subjectivity in the steering threshold timestamp prediction, 
which is a common problem in related research, and we will select more different environments 
and types of vehicles to further improve the strategy in the subsequent study. 
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