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Abstract. Large language models (LLMs) have emerged as a powerful tool in the natural 
language process, allowing information extraction and answer generation from pre-trained 
databases. Regarding untrained external corpus, the retrieval-augmented generation (RAG) 
techniques enable quick establishing of databases. However, this process is currently of 
low accuracy when handling problems with strong indexing correlations, such as time-
relevant input. This paper proposes a non-vector retrieval-augmented generation (NVRAG) 
model to enhance the RAG model for processing multi-index related complex queries 
based on a non-vector database and text-to-SQL technology. NVRAG stores relevant 
parameters in a non-vector database to narrow the embedding range and improve indexing 
accuracy. Experiments on a weather briefings database are conducted to validate the 
effectiveness of the NVRAG model. The results show that compared with the original 
RAG, the faithfulness and accuracy rate of NVRAG are higher, thereby sacrificing the 
response time. By implementing this approach, the system's ability to handle complex 
query requests is enhanced. 
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1 Introduction 

In recent years, the application of large language models (LLMs) has matured across various 
fields, particularly in natural language processing and information retrieval tasks [1,2]. However, 
these models still demonstrate inadequate extraction capabilities when dealing with databases 
that have not undergone pre-training [3]. To address this issue, retrieval-augmented generation 
(RAG) models based on vectorized indexing have emerged, and many researchers have 
thoroughly studied the performance of these models [4-7]. RAG enhances the ability of LLMs 
to learn from untrained data by leveraging database indexing, thereby improving the overall 
effectiveness of information retrieval processes [8]. Nevertheless, RAG exhibits relatively low 
accuracy when handling problems with strong indexing correlations. This limitation primarily 
stems from RAG's insufficient optimization capabilities for multi-key-value queries, which 
hampers its performance in complex query scenarios, particularly when multiple parameters are 
involved [9]. Therefore, proposing a method based on text-to-SQL conversion will significantly 
contribute to improving both the accuracy and efficiency of queries, enabling more precise 
interactions with databases. This study proposes an innovative approach that leverages text-to-
SQL conversion to transform user-input natural language queries into specific database queries. 
This method aims to address the performance issues encountered by existing RAG models when 
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relying solely on vector databases for semantic matching, particularly in relation to indexing 
and correlation challenges, thereby enhancing overall query performance and reliability. 

2 Literature review 

2.1 Retrieval-augmented generation 

RAG models combine the strengths of information retrieval and generative models to enhance 
the processing capabilities of untrained data. As depicted in Figure 1, its working principle 
mainly consists of two stages: the retrieval stage and the generation stage [10]. In the retrieval 
stage, RAG first receives the user's natural language query and utilizes a retriever to search for 
relevant documents from an external database. This process typically relies on vectorization 
techniques, embedding both the query and the documents into the same semantic space for 
semantic matching. The retriever selects several documents that are most relevant to the query 
based on similarity scores, providing support for the subsequent generation stage. In the 
generation stage, RAG combines the retrieved documents with the original query and inputs this 
information into a generative model. The generative model generates a response based on this 
information, aiming to provide an answer that is highly relevant and informative in relation to 
the user's query. During this process, the generative model leverages the contextual information 
from the retrieved documents to enhance the accuracy and relevance of its output. Overall, RAG 
seeks to improve model performance in handling complex queries by integrating both retrieval 
and generation functionalities. This model has been applied in various fields and has received 
positive feedback [11,12]. 

 
Fig. 1. Workflow of the original RAG model. 

In the retrieval module, the construction of the database serves as the starting point for all 
subsequent steps. A knowledge library (containing all knowledge documents) first undergoes 
data cleaning and partitioning, followed by question splitting, ultimately constructing an index 
through HNSW (Hierarchical Navigable Small World) [13]. Through this, the documents are 
converted into question-and-answer pairs, where key values are transformed into vectors and 



 

 

stored in a vector database. Then, by employing a top-K recall method, the system efficiently 
retrieves similar content. The generation module takes the relevant results returned from the 
retrieval module, along with the optimized user queries, and sends this information to a 
generative AI to produce a final answer. 

A significant shortcoming of this standard framework is that the matching algorithm of RAG is 
overly reliant on the indexing of question-answer pairs and the similarity of user statements [14]. 
This reliance can hinder the model's ability to accurately address queries that involve multiple 
associated indices, such as statistical questions regarding sums over a three-month period or 
multi-value optimization problems. Semantic matching methods, such as vector algorithms, 
struggle to provide precise answers in these cases. 

2.2 Test-to-SQL and large language models 

Based on large model fine-tuning, the text-to-SQL method converts natural language queries 
into structured SQL statements [15]. It enables users to interact with databases using natural 
language without the need for SQL tools, thereby bridging the gap between user inquiries and 
database queries and facilitating better interaction with databases. Formally, given a user query 
(in natural language) and the corresponding database schema, the model can generate a 
corresponding SQL query for retrieving the required content from the schema to answer the 
user's question. 

LLMs excel in natural language understanding and generation, effectively capturing user intent 
and contextual information [16]. Additionally, pre-trained language models possess strong 
capabilities in handling diverse language structures and semantics, enabling them to address 
various user expressions. Furthermore, code-specific LLMs, such as CodeLLaMa and 
StarCoder, have been pre-trained on code data, allowing them to generate code that aligns well 
with user requirements [17]. Through fine-tuning, LLMs can be optimized for specific database 
structures and domain knowledge, resulting in SQL statements that better meet practical needs. 

In summary, the text-to-SQL method based on large model fine-tuning significantly enhances 
the efficiency of user interaction with databases by integrating natural language processing and 
database query generation. In this paper, user inputs are presented in natural language, which 
may contain potential SQL information and query intent. This method can be effectively 
integrated into the retrieval module of Retrieval-Augmented Generation (RAG), improving 
information retrieval capabilities and addressing the challenges of joint queries across multiple 
indices, thereby avoiding information loss caused by similarity matching algorithms. 

3 Methodology 

In this paper, the text-to-SQL algorithm is effectively leveraged to significantly enhance the 
response capability of the RAG model when dealing with complex multi-key value associations. 
When the RAG model stores vector data, it also retains a wealth of additional information, 
including the original question-answer pairs, index IDs, dataset IDs, and various other relevant 
metadata in a separate, organized database. Notably, this information is not originally utilized 
during the matching process. Therefore, the text-to-SQL approach is employed to systematically 
extract key information from this database. By converting user queries into precise SQL 
statements, targeted and efficient searches can be performed within the database. This method 



 

 

allows us to accurately retrieve relevant question-answer pairs, which then facilitates and 
enhances the processes within the generative model. The workflow of the proposed non-vector 
retrieval-augmented generation (NVRAG) model is depicted in Figure 2. 

 
Fig. 2. Workflow of NVRAG model. 

3.1 Retrieval module 

In the original RAG model, question-answer splitting chunks and indexes text, storing it in a 
vector database and filtering relevant question-answer pairs through similarity matching 
algorithms. In NVRAG, we record essential information to be retained in a non-vector database 
during the question-answer splitting process. This information is typically explicit, consistently 
present in each document, easily identifiable and extractable (e.g., temporal information, 
numerical data, or Boolean values). It can narrow down the scope of the retrieval vector index 
when matching user inputs. To achieve question-answer splitting, we will add the following 
guiding statement to the original QA splitting prompt, so that it considers the influence of 
key_element when constructing QA pairs and marks it explicitly: 

Match the content within <context></context> to see if it is related to 
{{explicit_element}}. Extract the relevant information. 

When user input is detected to contain SQL-related information (implemented in the generation 
module), the optimized user statement, after processing context and resolving references, will 
be passed to the text-to-SQL model for conversion into the corresponding SQL statement. This 
conversion process will utilize text-to-SQL technology, and through appropriate fine-tuning of 
the model, it can effectively transform natural language (i.e., user input) into SQL statements. 
Specifically, the converted SQL statements will include retrieval of display information, 
typically represented as a query statement with inclusion relationships that effectively reflect 
the user's needs and intentions. In this paper, this conversion process is crucial, as it ensures that 
the user's intent is accurately captured and transformed into a format that can be executed in the 
database. The search query step will match the vector data within the defined scope, thereby 
efficiently retrieving relevant information and ensuring that the query results align with the 



 

 

user's expectations. This structured approach not only enhances the accuracy of the generated 
SQL queries but also improves the overall performance of the system, making the user 
experience more seamless and efficient. The prompt involved in this process is as follows: 

Convert the content within <question></question> into an SQL query statement: 
<question> 
{{question}} 
</question> 
The database type you should match is {{db_type}}, and the content within 
<schema></schema> represents the table information that needs to be matched: 
<schema> 
{{schema}} 
</schema> 
Response requirements: 

- If you are unsure of the answer, please return None. 
- You need to incorporate the current time into your response, with the current time being 

{{time_now}}. 
- When the question contains temporal information, you need to match it in the 

{{column1}} field of the data table. 
Below is a conversion example. 

<example> 

 
Upon obtaining the SQL query, more precise and relevant QA pairs can be retrieved from the 
corresponding database. These pairs are then provided to the retrieval module, which narrows 
the search range from the entire knowledge base to a defined scope determined by key 
parameters through SQL filtering. Followed by these processes is the normal flow of the RAG 
module, where semantic matching and full-text search matching are involved. Then, the content 
with higher similarity is passed to the LLM for final response generation. 

3.2 Generation module 

This module primarily handles user inputs and efficiently delivers them to the retrieval module 
to obtain appropriate responses. The information is then passed to the generative AI for final 
answer generation.  
Upon receiving user input, the generation module first performs a series of pre-processing steps, 
which include text cleaning, context management, and pronoun resolution to enhance clarity 
and coherence. Subsequently, the module classifies the user's input to effectively filter out 
potential explicit-data-related information, ensuring that sensitive data is handled appropriately 
and securely. This structured approach allows for improved interaction and response quality. 
The prompt for scenario classification is: 

Analyze the following user input to determine whether the information contained is related 
to the specified scenarios, and provide a score (0-10) for each specified scenario. 

Scoring criteria: 

- Relevance of the input to the specified scenario. 



 

 

- Alignment of the user's intent with the scenario. 

- Presence of comparative or evaluative elements. 

Please score each aspect separately and provide an overall score (the average of the three 
scores). 

[Specified Scenario 1]: 

… 

[Specified Scenario 2]: 

… 

[User Input]: 

… 

 
When the retrieval module returns relevant vector data through Top-K sorting, the user's 
question is answered using a generative AI model, by integrating the user's input with 
information from the knowledge base. 

4 Experiment 

This study compares the capabilities of the original RAG and NVRAG models in extracting 
temporal information. Three criteria: response abilities, faithfulness and accuracy rate (AR) 
presented in Retrieval Augmented Generation Assessment (RAGAS) [18] will be evaluated for 
two models on the weather briefing dataset to assess their performance. 

A FastGPT image was deployed on the server to separately test and validate the performance of 
the native RAG model and the NVRAG model, as well as to adjust them. In FastGPT, the entire 
knowledge base consists of three parts: library, collection, and data. FastGPT utilizes the PG 
Vector plugin of PostgresSQL as the vector retriever, with HNSW as the indexing method. 
MongoDB is used for accessing other non-vector data. 

The dataset used in this study is the weather briefing dataset, which contains 100 consecutive 
weather data entries, encompassing multiple pieces of information, such as date, weather 
conditions, meteorological elements, clothing recommendations, travel suggestions, and 
summaries. This dataset was imported into FastGPT to generate the knowledge base. 

The final generated knowledge base contains 1432 key-value pairs, corresponding to the 100 
weather contents. The open-source model Chat2DB_sql_7B was used to construct the Text-to-
SQL module, which was deployed on an A100 cloud server. In this experiment, the focus was 
primarily on assessing the model's ability to extract and respond to time information; thus, the 
model extracted the corresponding time information and passed it to the database, which was 
called upon during retrieval. User inputs in this experiment were generated by a LLM by the 
following prompt: 

You now have a weather report-related database and a large language model that can extract 
knowledge from it to answer questions. This database contains 100 days of weather report 



 

 

data since {{start_time}}. The weather reports include date, weather conditions 
(temperature, humidity, wind speed, precipitation probability, air quality), meteorological 
elements, clothing suggestions, travel suggestions, and summaries. Please generate 
{{num_total}} user inputs to test the model's response capability. 
Requirements: 

• The generated user inputs should be as different as possible; no two user inputs 
should be exactly the same. 

• User inputs must include time information, which can be a continuous time period 
or individual dates. The time intervals in your generated inputs should fall within 
the 100 days after {{start_time}} (including the start date). 

• Try to include multiple dates in your content; you can ask about the weather 
conditions over a period or compare the weather on multiple dates. 

• The generated content should be contextually relevant and meaningful; do not 
fabricate unreasonable input data. 

 
Which generates user inputs presented in Table 1. 

Table 1. Example of LLM-generated user inputs 

"Please tell me the weather from August 1 to August 5, 2024, including temperature and 
precipitation probability." 

"Can you compare the weather on August 3 and August 7, 2024, to see which day is better 
for going out?" 

"What are the wind speed and air quality like on August 6, 2024? Is it suitable for outdoor 
activities?", 

…… 

 
After retrieving the knowledge base information from the retrieval module, the OpenAI GPT-
3.5-turbo model is invoked as the generative model to respond to user inquiries. As for 
evaluation standards, faithfulness serves as a measure of the model's accuracy, while AR 
assesses the alignment of the generated answers with the initial questions or instructions. For all 
generated data, tests are conducted on both the original RAG model (provided by the FastGPT 
platform) and the NVRAG. 

5 Results 

In this study, a comparative analysis is conducted on the performance of the RAG model and 
the NVRAG model when handling general user inputs and time-related user inputs. The average 
data after removing outliers and cleaning is presented in Table 2. 



 

 

Table 2. Performance of two models 

  Faithfulness AR Response time 
General user 

input 
RAG 0.89 0.93 2.10s 

NVRAG 0.88 0.92 2.24s 
Time-relevant 

user input 
RAG 0.32 0.46 2.98s 

NVRAG 0.85 0.91 3.76s 
 

The experimental results indicate that the NVRAG model outperforms the RAG model in 
addressing multi-index related queries, specifically those related to time ranges in this 
experiment. 

For general user inputs, the faithfulness and AR of the RAG model and the NVRAG model are 
relatively close, with values of 0.89 and 0.88 for the RAG model and 0.93 and 0.92 for the 
NVRAG model. This suggests that both models can provide accurate and reliable answers when 
handling routine queries. However, in terms of response time, the RAG model slightly 
outperforms the NVRAG model, with response times of 2.10 seconds and 2.24 seconds, 
respectively. This is due the fact that the RAG model can retrieve relevant information from its 
vector database more quickly when processing general queries. 

When processing time-related user inputs, the performance of the NVRAG model is 
significantly superior to that of the RAG model. Specifically, the faithfulness and AR of the 
NVRAG model reach 0.85 and 0.91, while the RAG model only achieves 0.32 and 0.46. This 
result indicates that the NVRAG model can provide more accurate and relevant answers when 
handling complex queries related to time. The performance difference is mainly attributed to 
the design of the NVRAG model. In the NVRAG model, a text-to-SQL-based algorithm is 
introduced to extract key information from a non-vector database using SQL queries. This 
approach enables the NVRAG model to better handle multi-key-value associated queries, 
particularly those involving complex time-related information. By converting user queries into 
SQL statements, the NVRAG model conducts targeted searches within its database, thereby 
improving the accuracy and relevance of the queries. 

However, this improvement also leads to an increase in response time. When processing time-
related user inputs, the response time of the NVRAG model is 3.76 seconds, compared to 2.98 
seconds for the RAG model. Additionally, due to the increased number of retrieval and query 
steps, the consumption of tokens also increases. Nevertheless, the significant performance 
enhancement of the NVRAG model in complex queries makes the additional response time and 
token consumption acceptable. 

6 Conclusion 

This paper proposes a non-vector retrieval-augmented generation (NVRAG) model based on a 
non-vector database and text-to-SQL technology to handle complex queries involving multi-
index associations. This method improves upon the original RAG model by introducing a non-
vector database in the retrieval module to store relevant parameters, narrowing the embedding 
range, and enhancing indexing accuracy. Experimental results demonstrate that, compared to 



 

 

the original RAG model, the NVRAG model exhibits significantly better performance in 
handling complex queries, especially time-relevant range queries. Specifically, the NVRAG 
model outperforms the RAG model in terms of faithfulness and accuracy rate (AR), particularly 
in scenarios involving multi-key-value association queries. 

The primary advantage of the NVRAG model lies in its ability to extract key information from 
user queries more effectively through text-to-SQL conversion, enabling targeted database 
searches. This approach addresses the limitations of traditional RAG models when dealing with 
complex, multi-index-related problems, particularly in time range queries and multi-value 
optimization tasks. The NVRAG model can provide more accurate and relevant answers in such 
cases. However, this improvement comes at the cost of increased response time, primarily due 
to the additional SQL query and multi-step retrieval operations in the process. Nevertheless, the 
experimental results suggest that the performance gains of the NVRAG model more than 
compensate for the slightly longer response time, making it more competitive in handling 
complex query tasks. 

Furthermore, the paper highlights that the NVRAG model imposes certain requirements on the 
document format used to construct the knowledge base. The documents should contain easily 
extractable, well-structured information to facilitate SQL query execution. Future research 
should focus on optimizing the response time of the NVRAG model while maintaining its high 
performance in complex queries. Additionally, exploring the application of the NVRAG model 
across broader domains and datasets will be essential to validate its generalizability and 
scalability in real-world applications. 
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