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Abstract. Object detection technology has been applied in multiple fields, and compared 
to traditional methods, using AutoML to complete object detection tasks may be more 
convenient and less labor-intensive. This study focuses on the performance of object 
detection models, comparing the AutoML platform EasyDL with the popular object 
detection models YOLOv8 and YOLOv10. The experiments were conducted on two 
datasets: mask detection and slightly larger traffic sign detection. The study compares 
certain performance metrics of the models and demonstrates the ease or difficulty of 
completing tasks. The results indicate that EasyDL provides a user-friendly and simplified 
workflow, allowing users without technical expertise to operate it; however, due to 
inherent platform limitations, its training time is relatively long. Additionally, on larger 
datasets, the YOLO models outperform EasyDL in terms of both accuracy and speed. 
Nevertheless, on smaller datasets, the performance of EasyDL is very close to that of 
YOLOv8 and YOLOv10. Despite the longer training time, EasyDL delivers competitive 
results, indicating the feasibility of AutoML in object detection tasks. This study 
innovatively conducts a comparative analysis of the performance dimensions of AutoML 
and YOLO models across different task scales, providing new insights for practitioners 
and non-professionals seeking efficient and accessible solutions for object detection tasks. 
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1 Introduction 

In recent years, with the rise of deep learning technology, the field of computer vision has seen 
unprecedented progress [1]. Object detection technology, as one of the most fundamental and 
important research topics in this field, has been widely applied in several key areas such as road 
condition detection in autonomous driving, facial recognition in security, cell detection and 
lesion image screening in the medical field, and defect detection and classification of products 
in industrial applications [2-5]. These scenarios and experiments have fully demonstrated the 
advantages of object detection technology over traditional methods in terms of convenience and 
accuracy. 

However, despite the potential application value of rapidly developing object detection 
technology in many fields, its ease of use remains unsatisfactory. For individuals without 
relevant knowledge and experience, independently completing steps such as dataset annotation 
and partitioning, model selection, environment setup, coding, and model parameter adjustment 
and training is a daunting task. Even for experienced researchers, the repetitive tasks of feature 
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extraction, model selection, and parameter tuning required by this technology are time-
consuming and labor-intensive, with limited significance [6, 7]. 

To simplify this process, Automated Machine Learning (AutoML) technology has emerged. 
AutoML aims to reduce human intervention in machine learning tasks through automated 
processes, thereby lowering the technical barrier [8, 9]. Since 2014, AutoML has become a 
popular research direction in the field of artificial intelligence [10]. Several platforms and 
systems and tools, such as Auto-sklearn system,TPOT(aTree-based Pipeline Optimization 
Tool),Auto-Keras framework, Baidu’s EasyDL and Google’s AutoML platform,have been 
developed [11-13]. They can automate operations in data preprocessing, model selection, 
parameter optimization, and evaluation, helping users without relevant background knowledge 
efficiently build high-quality models [6]. 

This study focuses on the effectiveness of AutoML in the field of object detection. To identify 
the characteristics, advantages, and disadvantages of AutoML compared to traditional machine 
learning, this study will train models using the EasyDL AutoML platform and the YOLOv8 and 
YOLOv10 frameworks on two datasets—Face Mask Detection and Traffic Signs Detection—
and compare their performance metrics. 

The innovation of this study lies in its systematic evaluation of the performance of AutoML in 
comparison to traditional machine learning techniques within specific object detection tasks. 
Through comparative experiments conducted on diverse datasets, the research reveals the 
strengths and weaknesses of different models across varying task scales. This work addresses a 
gap in the existing literature concerning direct comparisons between AutoML and traditional 
models, providing a novel perspective on the feasibility of machine learning automation in 
object detection tasks. The findings of this study will offer robust theoretical foundations and 
practical references for future researchers and practitioners in selecting and applying AutoML 
platforms to generate high-quality models. 

In the second section, this paper will introduce the AutoML and You Only Look Once (YOLO) 
algorithm frameworks and their roles in object detection. The third section will provide a 
detailed description of the characteristics of the datasets used, the workflows of AutoML and 
YOLO models, and the evaluation metrics and methods for the models. The fourth section will 
describe the experimental process in detail and present the results. Finally, the paper will 
summarize and evaluate the experiments and propose directions for future research. 

2 Literature Review 

In the task of object detection, comparative research between AutoML and traditional methods 
like YOLO has become a key focus. YOLO is a popular object detection model known for its 
speed, robustness, and adaptability, with the capability to achieve real-time frame rates when 
processing video streams. It is widely used in fields such as surface defect detection, UAV object 
detection, Autonomous vehicles and so on [14, 15]. Compared to YOLO, the more convenient 
and comprehensive AutoML systems often require more computational resources and time 
during the training and model optimization process, which may limit their use in applications 
with high real-time demands. Nonetheless, the continuous advancements in AutoML technology 
are gradually narrowing the gap between AutoML and YOLO in terms of performance and 



 

 

practicality. Particularly in terms of automation and flexibility in model generation, AutoML 
has demonstrated its unique advantages. 

In recent years, AutoML has become a major research direction in the field of machine learning, 
with its definitions and applications varying across different studies. According to relevant 
research, the core goal of AutoML is to reduce reliance on data scientists and domain experts, 
allowing users to automatically build high-performance machine learning models without 
extensive knowledge of machine learning or statistics [16]. Studies have also shown that 
AutoML significantly enhances the efficiency and flexibility of the machine learning process 
by automating steps such as data preprocessing, feature engineering, model selection, and 
hyperparameter optimization [8]. Additionally, AutoML is defined as a computational approach 
that automates learning configuration and optimizes model performance by incorporating task 
experience. These studies collectively indicate that the greatest advantage of AutoML lies in 
reducing human intervention and improving the efficiency of model building through 
automating multiple steps of the machine learning workflow. 

As a typical AutoML platform, Baidu’s EasyDL provides a one-stop AI development service 
for users without an algorithmic background or those seeking efficient development. The 
EasyDL platform integrates the entire process, from data annotation and cleaning to model 
training and deployment, significantly simplifying the traditional AI model development 
process. This allows enterprise users to apply AI technology to project implementation more 
easily without the need to master complex algorithmic details. 

At the same time, the YOLO series of algorithms, as classic object detection algorithms in the 
field of deep learning, have been widely adopted for their efficiency and real-time capabilities. 
Since its initial proposal in 2015, the YOLO algorithm has undergone multiple improvements, 
gradually enhancing its accuracy and adaptability in object detection tasks [17]. YOLOv3 
introduced the Feature Pyramid Network (FPN), which improved its ability to detect multi-scale 
objects, while YOLOv5 further enhanced usability and ease of deployment due to its open-
source nature and widespread community support . The recently released YOLOv8 and 
YOLOv10 further optimized the network architecture and introduced new technologies, 
significantly improving object detection performance, particularly achieving higher accuracy 
and efficiency while reducing computational costs [18, 19]. 

Although the YOLO algorithm performs excellently in object detection, its model design and 
parameter optimization still rely heavily on expert experience. This complexity limits its use by 
non-expert users, and AutoML technology is gradually being introduced to the field of object 
detection to address this issue. Existing research has proven that AutoML can automatically 
complete model design, optimization, and evaluation without human intervention, achieving 
performance comparable to traditional methods. For example, Karimanzira et al.’s research 
demonstrated that an underwater object detection solution developed based on AutoML 
technology exhibited excellent performance on the test set, validating the effectiveness of 
AutoML [20]. L. Faes et al. evaluated the utility of automated deep learning software to develop 
medical image diagnostic classifiers by health-care professionals. They found that most 
automated models showed comparable discriminative performance and diagnostic properties to 
state-of-the-art performing deep learning algorithms [21]. J. C. O. Koh et al examined the 
application of AutoML for image-based plant phenotyping, finding its significant potential to 



 

 

enhance plant phenotyping capabilities applicable in crop breeding and precision agriculture 
[22]. 

However, direct comparative research between AutoML and the YOLO algorithm in object 
detection tasks remains limited, especially in terms of performance differences across various 
datasets. To fill this research gap, this paper will compare the performance of the AutoML 
platform and YOLOv8 and YOLOv10 on multiple datasets, analyzing their respective strengths 
and weaknesses to provide references for future research and applications. 

3 Research Methods 

3.1 Selected Datasets  

This study conducted comparative experiments on two different datasets to evaluate the 
performance of AutoML technology and the YOLO framework when dealing with datasets of 
varying sizes and label quantities. 

The first dataset, called Face Mask Detection, is designed to identify and classify the correctness 
of mask-wearing. Example images are shown in Figure 1 (a). The original dataset contains 853 
images across three categories (With mask; Without mask; Mask worn incorrectly), along with 
bounding box annotations in PASCAL VOC format. In total, there are 121 annotations for Mask 
worn incorrectly, 3184 annotations for With mask, and 716 annotations for Without mask [23]. 

 
Fig. 1. Examples of datasets: (a) Face Mask Detection dataset; (b) Traffic Signs Detection dataset. 

The second dataset, named Traffic Signs Detection, is intended to identify various traffic signs. 
Compared to the previous dataset, this one has significantly more categories and images. It 
contains 4969 images covering multiple traffic sign categories, including Green light, Red light, 
Stop sign, Speed limit 10-120, and 15 other types, with a total of 5689 annotations. Example 
images are shown in Figure 1 (b). Although this dataset includes more categories and images, 
the overall background information is relatively simple, with fewer distractions, making training 
potentially easier [24]. Additionally, data augmentation techniques were applied to this dataset. 



 

 

It is worth noting that after importing the data into the EasyDL platform, the number of valid 
images read was fewer than the original dataset claimed. The platform’s summary showed that 
848 and 4735 images were read, respectively, which is less than the originally reported 853 and 
4969 images. This discrepancy might be due to the platform not importing images with empty 
annotation files, which were present in the original datasets. 

3.2 AutoML Model Workflow 

 
Fig. 2. AutoML Workflow [6]. 

As shown in Figure 2, once the raw data is imported into the AutoML model, the system can 
execute semi-automated data labeling based on the user’s requirements. If the data is already 
labeled, the model will automatically perform tasks such as data cleaning, handling missing 
values and outliers, normalizing data, and splitting the dataset. These preprocessing steps ensure 
that the data is of high quality and consistent, enabling it to be effectively used for model training 
and testing, thereby improving the overall model performance. 

Next, the system enters the feature engineering phase, with the goal of maximizing the 
extraction of key features from the data for the model to use. AutoML automatically handles 
tasks such as feature selection, feature extraction, and feature construction. It combines 
advanced methods like meta-learning to optimize the feature engineering process, enhancing 
model performance and reducing the need for manual intervention [25]. 

After completing feature engineering, AutoML moves on to the model selection and 
hyperparameter optimization phase. The system selects the optimal model through two main 
approaches: traditional model selection and Neural Architecture Search (NAS). In the traditional 
approach, the AutoML system automatically evaluates various algorithms (such as SVM, KNN, 
decision trees, etc.) and adjusts hyperparameters to select the algorithm best suited for the 
specific task and dataset. NAS, on the other hand, focuses on automatically designing neural 
network architectures to optimize their generalization capability and computational efficiency 
[26]. Once the model architecture is selected, AutoML utilizes techniques like Bayesian 
optimization and random search to automatically fine-tune and optimize the hyperparameters 
[27]. 



 

 

Finally, in the model evaluation phase, methods such as cross-validation are used to assess the 
model’s performance, generating multiple performance metrics. These metrics enable users to 
choose the optimal model. Through this automated process, AutoML greatly simplifies the 
complex workflows of machine learning while improving efficiency and model performance. 

3.3 YOLO Model Workflow 

The YOLO model is an end-to-end object detection method that converts the object detection 
task into a regression problem, enabling the location and classification of objects to be 
completed in a single forward pass. The YOLO model workflow consists of the following key 
steps: 

Input Image Segmentation. First, the YOLO model divides the input image into multiple grids. 
Each grid is responsible for detecting whether an object exists within it and predicting its 
bounding box and class. 

Bounding Box Prediction. For each grid, the YOLO model predicts multiple bounding boxes. 
Each bounding box contains the following information: center coordinates (x, y), width, height, 
and a confidence score indicating the likelihood that the box contains an object. 

Class Prediction. Simultaneously, the YOLO model predicts the probability distribution of 
object classes for each bounding box. These class scores are combined with the confidence 
scores to determine which category the detected object belongs to. 

Non-Maximum Suppression (NMS). To avoid duplicate detections, YOLO uses the non-
maximum suppression technique, removing redundant bounding boxes and retaining only the 
detections with the highest confidence scores. 

Output Results. Finally, the YOLO model outputs the bounding boxes containing objects along 
with their corresponding class labels, which are annotated on the original image. The output 
includes both the location and classification information of each object, facilitating further 
processing and analysis. 

Through these steps, the YOLO model achieves fast and efficient object detection, making it 
suitable for real-time applications such as autonomous driving and video surveillance [28]. 

3.4 Model Evaluation 

Since the EasyDL platform provides only partial model evaluation metrics, this study primarily 
utilizes the parameters of mAP, precision, and recall, in conjunction with training time, to assess 
model performance. 

Precision and Recall. Precision quantifies the proportion of true positives among all positive 
predictions, evaluating the model’s ability to avoid false positives. In contrast, recall calculates 
the proportion of true positive predictions among all actual positive instances, measuring the 
model’s capability to detect all instances of a certain class. This can be expressed as: 

 Precision = !"
!"#$"

 (1) 

 Recall = !"
!"#$%

 (2) 



 

 

The relationships between states and decisions can be classified into four possibilities: TP (True 
Positive), FN (False Negative), FP (False Positive), and TN (True Negative), as shown in Table 
1. 

Table 1. Relationship Between State and Decision. 

Decision 
State 

Positive Negative 
Positive TP  FP  
Negative FN  TN  

 
F1-Score: The F1-score is a metric that considers both precision and recall, allowing for the 
evaluation of the model’s accuracy and completeness in detecting all targets. It is calculated as 
follows: 

 F1	 = &×"()*+,+-.×/)*011
"()*+,+-.#/)*011

 (3) 

mAP (Mean Average Precision). mAP is a crucial metric for assessing the overall performance 
of object detection models. For each target class, a P-R curve can be computed based on its 
precision and recall at different IoU thresholds, with the area under the curve representing the 
average precision (AP) for that class. Ultimately, mAP is the mean of all class APs. In this study, 
we used mAP50, which is the mAP value calculated at an IoU (a measure of the overlap between 
predicted and actual bounding boxes) threshold of 0.50, primarily to gauge the model’s overall 
accuracy in detection tasks. 

During the final model evaluation, we assessed model performance using the precision and 
recall data at the highest F1-score, along with mAP50, a commonly used metric. Additionally, 
we compared the training times of each model to evaluate their training efficiency. 

4 Experiments 

4.1 Experimental Environment 

Table 2. Detailed Experimental Environment. 

Category Configuration 

Processor 12th Gen Intel(R) Core(TM) i7-12700H   
2.30 GHz 

Graphics Card NVIDIA GeForce RTX 3050 Ti Laptop 
GPU 

CUDA Version 12.3 
YOLOv10 Version and Environment Python3.9 
YOLOv8 Version and Environment Python 3.7 

AutoML Version EasyDL 2022.12 
 



 

 

As shown in Table 2, the experiments were conducted on a computer equipped with a 12th Gen 
Intel Core i7-12700H processor, an NVIDIA GeForce RTX 3050 Ti laptop GPU, and a CUDA 
version of 12.3. The YOLOv10 model was run in a Python 3.9 environment, while the YOLOv8 
model utilized a Python 3.7 environment. The AutoML platform used for the experiments was 
Baidu’s EasyDL, version 2022.12. 

4.2 Experimental Steps 

Dataset Preprocessing. In the operation of the YOLOv8 and YOLOv10 frameworks, the 
dataset must contain the segmented images and the annotation information in YOLO format. 
The EasyDL platform does not require dataset segmentation but mandates the use of annotations 
in PASCAL VOC format. Therefore, the dataset needs appropriate preprocessing before 
application. First, we divided the two datasets into training and testing/validation sets in a 7:3 
ratio for the YOLO framework.   

For the Face Mask Detection dataset, since it already includes annotations in PASCAL VOC 
format, it can be directly input into the EasyDL platform for training. Additionally, to ensure 
compatibility with the YOLOv8 and YOLOv10 frameworks, we need to generate YOLO-format 
annotation files for this dataset. 

For the Traffic Signs Detection dataset, which comes with annotations in YOLO format, it can 
be directly applied to the YOLOv8 and YOLOv10 frameworks after segmentation. We also 
need to generate PASCAL VOC format annotations for training on the EasyDL platform. 

EasyDL Platform Operations. Dataset Preparation and Import. First, a data repository for 
rectangular box annotations needs to be created on the EasyDL platform, and the dataset should 
be imported according to the file format required by the platform. The import method selected 
is “Local Import of Compressed Package,” using the XML (VOC) annotation format. Once the 
import is complete, as shown in Figure 4, the platform allows users to view the annotation status 
of the dataset and provides features for manual annotation and platform-assisted automatic 
annotation. 

 
Fig. 3. View of Imported Dataset Annotations on EasyDL Platform. 



 

 

Model Training. Using the platform’s default data preparation configuration, the training 
configuration adopts the “Regular Training” method, with the training environment set to “GPU 
P4,” while the rest of the settings remain at their default values. Training is then initiated. 

Result Evaluation. Upon completion of training, a complete evaluation report is automatically 
generated, including metrics such as mAP, precision, and recall, which users can view directly 
on the platform. 

YOLO Framework Operations. Dataset Preparation and Import. Place the segmented datasets 
(training, testing, and validation sets) in the designated directory of the YOLO framework, and 
create an images folder and corresponding labels folder as required by the framework. Next, 
write the train.py and data.yaml files, specifying the pretrained model and training parameters 
in the train.py file, such as epochs=100, batch=4, while keeping other parameters at their default 
settings. In the data.yaml file, specify the dataset path, the number of label categories, and their 
names. 

Model Training. In the YOLOv8 environment, use the yolov8s.pt pretrained model for training; 
in the YOLOv10 environment, use the yolov10s.pt pretrained model. Both pretrained models 
are of comparable scale and exhibit high speed. The purpose of selecting a pretrained model is 
to simulate a scenario for small-scale personal use, thereby reducing training difficulty and 
resource consumption. Once preparations are complete, run the train.py file to start training. 

Result Evaluation. Upon completion of training, a brief evaluation result is automatically 
displayed in the terminal, and the running time is recorded. Complete evaluation results can be 
obtained in the corresponding result file. The model.val() function can also be run to obtain 
evaluation results. 

4.3 Experimental Results 

Table 3. Comparison of Some Performance Metrics. 

 P R mAP Time(h) F1-score Max 
Traffic Signs Detection Dataset 

EasyDL 0.898 0.752 0.815 4 0.82 
YOLOv8 0.953 0.944 0.91 3.564 0.95 
YOLOv10 0.951 0.942 0.97 3.539 0.95 

Face Mask Detection Dataset 
EasyDL 0.897 0.888 0.851 3 0.89 
YOLOv8 0.928 0.779 0.851 0.460 0.85 
YOLOv10 0.884 0.765 0.847 0.777 0.82 

 
From Table 3, it can be observed that the performance of YOLOv8 and YOLOv10 on both 
datasets is similar, particularly on the Traffic Signs Detection Dataset, where YOLOv10 
achieved a mean Average Precision (mAP) of 0.970, surpassing YOLOv8’s 0.910. Both models 
are nearly identical in precision (P), recall (R), training time, and F1-score, and they generally 
outperform EasyDL’s performance. 



 

 

For the smaller Face Mask Detection Dataset, EasyDL excelled in mAP (0.851) and recall 
(0.888), demonstrating good performance in precision (0.897), and its performance is generally 
superior to the YOLO models. However, its training time of 3 hours is significantly longer than 
that of YOLOv8 (0.460 hours) and YOLOv10 (0.777 hours). This may be attributed to the 
queuing for computational resources required by the AutoML platform’s training process, and 
the automation process could also have increased the overall training time. Additionally, the 
training time for YOLOv10 is slightly longer than that for YOLOv8 (0.777 hours compared to 
0.460 hours), with the gap in training time narrowing for the Traffic Signs Detection Dataset. 
YOLOv8 demonstrates better efficiency, which may be related to differences in the features of 
its pre-trained models. 

Overall, YOLOv8 exhibited good training efficiency and performance on both datasets, making 
it especially suitable for time-sensitive tasks. EasyDL shows excellent performance in certain 
metrics on smaller datasets, but its longer training time may limit its application in scenarios 
where real-time performance is crucial. 

5 Conclusion 

During the training of object detection models, the EasyDL platform demonstrated significant 
convenience, allowing users without relevant technical backgrounds to use the platform easily. 
Despite employing the platform’s default low-configuration model and experiencing longer 
training times due to inherent limitations in platform management and automated machine 
learning algorithms, EasyDL can still match the performance of YOLOv8 and YOLOv10 
models in certain tasks. However, on larger datasets (such as the traffic sign detection task), the 
performance of YOLO models is clearly superior to that of the EasyDL platform. Overall, the 
model performance achieved through EasyDL meets a high standard, indicating that applying 
automated machine learning in object detection tasks is feasible, particularly for users outside 
the computer science field. 

This study systematically evaluates the performance of the automated machine learning 
platform compared to the classical object detection algorithms across different object detection 
tasks. The results demonstrate that the automated machine learning platform has advantages in 
ease of operation, requiring no specialized technical knowledge from users, while YOLO 
models necessitate manual environment configuration, coding, and parameter adjustments. On 
smaller datasets (such as mask detection tasks), the performance of automated machine learning 
and YOLO models is comparable; however, in larger datasets like traffic sign detection, YOLO 
models excel. 

The main contributions and innovations of this paper lies in the systematic assessment of the 
performance of automated machine learning platforms against classical object detection 
algorithms in various tasks, providing a reference for non-technical users regarding automated 
machine learning platforms. The research findings indicate a substantial potential for automated 
machine learning platforms in object detection tasks, especially in simplifying operational 
processes and lowering technical barriers. Additionally, through in-depth comparative analysis, 
this study offers practical recommendations regarding the use of AutoML or traditional models 
in specific application scenarios, paving the way for the adoption of object detection 
technologies by non-expert users and small businesses. This perspective is groundbreaking in 



 

 

the current research landscape, assisting users in making more informed choices between 
efficiency and ease of use. 

Future research will further explore the following directions: training models using non-default 
settings of the platform, testing other automated machine learning platforms, and conducting 
experiments with larger-scale datasets to validate and extend the conclusions drawn in this paper. 
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