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Abstract. The core of the Particle Flow (PFlow) algorithms in High Energy Physics experiments
lies in reconstructing the intrinsic nature and kinematic properties of both charged and neutral
particles, utilizing the data provided by detectors. Through effective trajectory analysis methods
for various particle types, it becomes evident that the magnetic field significantly influences the
accuracy of final reconstruction efforts. In this paper, we present several computer vision models
aimed at enhancing PFlow algorithms. We employ a Multilayer Perceptron (MLP) to address
scenarios where no magnetic forces interfere with particle tracks. Subsequently, we conduct
a comprehensive discussion and comparison of the experimental results obtained from various
enhanced Convolutional Neural Network (CNN) models, such as Polar Coordinate Processing,
Parameterized Differential Operators (PDOs), Cylindrically Sliding Windows (CSW), tailored to
the characteristics of our datasets.

Keywords: Particle reconstruction, High-energy detectors, Convolutional neural networks, Polar
processing, Image fusion

1 Introduction

The general-purpose high-energy collider experiment aims to measure the trajectories of charged
particles and the energy deposits in calorimeter clusters. Under the influence of a magnetic field, the
tracks of charged particles exhibit deflection compared to those of neutral particles, providing crucial
information necessary for reconstructing, verifying, and scaling the energy of the particles involved
in the event. These particles primarily include charged and neutral hadrons, photons, electrons,
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muons, and neutrinos. Some other particles have a lifetime too short to be directly measured in the
experiment, necessitating their reconstruction from decay products. This experiment is of significant
importance for the study of energetic particles, which underscores the urgent need for research into
PFlow algorithms.

PFlow algorithms are specifically designed to offer an effective means of reconstructing the
nature and kinematic properties of particles within the detector acceptance during collisions in high-
energy physics experiments. The key challenge lies in distinguishing neutral particles from charged
ones by analyzing the detected tracks. One of the major challenges in developing PFlow algorithms
is designing a model that can effectively differentiate between charged and neutral particles. The
algorithm must accurately track particles by fusing images from three independent detectors: the
Electromagnetic Calorimeter (ECAL), the Hadronic Calorimeter (HCAL), and the Tracker. For
instance, the position of a charged particle will shift due to deflection, which must be accounted for
in the particle track identification process.

In this paper, we adopt various computer vision approaches to address this fundamental issue in
PFlow algorithms. We propose several neural network architectures, including MLP, U-Net and CNN.
As for CNN, we make many attempts, such as utilizing Polar Coordinate Processing, employing
PDOs, adding CSW and introducing masks for selectively image processing, to improve the design
of the models from different perspectives and compare the results in the experiment. Although some
related studies exist, most of them focus on particle separation [1]. Our work is distinct in its emphasis
on image fusion and particle reconstruction. We explore different concrete models and investigate the
effects of varying particle emission angles during data generation.

2 Related Work

Our work is situated within the domain of multi-modal image fusion, specifically in the context
of PFlow reconstruction. This task requires the fusion of images from three distinct detectors—ECAL,
HCAL, and Tracker—to produce ground truth images. To address this challenge, we will first provide
a brief overview of relevant image fusion techniques, with a particular emphasis on their application
to PFlow reconstruction.

2.1 Image Fusion Methods

Traditional image fusion methods rely on mathematical transformations to manually analyze ac-
tivity levels and design fusion rules in either the spatial or transformation domains. These approaches,
often referred to as traditional fusion methods [2–5], face significant limitations, such as crude feature
fusion strategies and inadequate differentiation in feature extraction [6]. Consequently, there has been
a growing trend towards the adoption of deep learning methods in this field. For example, CNNs offer
significant potential for image fusion, as they can jointly implement image transformations, activity
level measurements, and fusion rules (or portions thereof) through the learned representations within
CNN [6].



2.2 Image Fusion Methods Applied to PFlow Reconstruction

In the specific context of PFlow reconstruction, deep learning algorithms have also seen
widespread application, particularly those based on calorimeter images, such as CNNs, GNNs,
and DeepSets. Among these, GNNs have emerged as the predominant deep learning architecture
applied in particle physics. At present, the most commonly used deep learning networks in particle
physics are GNNs. Theoretically, particles and their interactions are well-suited to being modeled
as graph nodes and edges. In practical applications, GNNs have demonstrated strong performance
across a range of high-energy physics tasks, including charged particle tracking [7], jet classification
[8], and clustering [9].

In the subsequent sections, we will explore the capabilities of various deep learning algorithms,
including those traditionally used in image segmentation, such as U-Net, to address the specific
challenge of multi-modal image fusion within the context of PFlow reconstruction.

3 Simulated Dataset

This study utilizes a dataset generated through Monte Carlo simulations to replicate the behavior
of particles passing through various detectors (Tracker, ECAL, and HCAL) in high-energy physics
experiments. We have adjusted the simulation to reflect two key contributions: modifications to the
magnetic field and the implementation of an angle wrapping strategy.

3.1 Dataset Overview

The dataset includes 10,000 sets of Trkp, Trkn, ECAL, HCAL, and Truth images, each with
a resolution of 56×56 pixels. Trkp and Trkn represent the trajectories of positively and negatively
charged particles recorded by the Tracker detector system, respectively. All images are stored in TIFF
format.

3.2 Simulation Parameters

We modified the magnetic field affecting the deflection of charged particles traversing the
Tracker, ECAL, and HCAL layers.

3.3 Angle Wrapping Strategy

The azimuthal angle φ represents the direction of a particle’s path in the transverse plane relative
to the central axis of the detector, typically constrained to [−π,π]. Magnetic field deflections may
cause φ values to exceed this range. To preserve data integrity, we implemented an angle wrapping
strategy ensuring φ values remain within [−π,π].

Control data sets were generated:

1. No angle wrapping (labeled as ’No’).



2. Wrapping φ to [−π,π] (labeled as ’Yes’) using:

φ f = (φi +π) mod (2π)−π

where φi and φ f are the initial and final angles, respectively.

Experiments evaluated the impact of angle wrapping on model performance.

3.4 Image Storage

After simulating each event, the system generates and stores five main types of images: Truth,
Trkp, Trkn, ECAL, and HCAL. These images are saved in TIFF format.

The simulation code used in this study has been uploaded to a GitHub repository, making it
available for other researchers to reference and replicate. The code can be accessed at https:
//github.com/Robin0526/Neural-Networks-for-Particle-Reconstructio
n-in-High-Energy-Physics-Detectors.

4 Experiment Procedure

This section aims to compare the performance of various Neural Networks in particle energy
reconstruction tasks and to investigate the specific impacts of deflection and angle wrapping strategies
on model performance.

Fig. 1. Composition of the datasets

4.1 Data Generation and Preprocessing

Figure 1 illustrates the composition of our dataset. Data were generated under three distinct
conditions labeled as ’Yes’, ’No’, and ’Polar’. For each condition, data points were created corre-
sponding to 12 different magnetic field strengths: 0.00, 0.05, 0.10, 0.25, 0.35, 0.50, 0.75, 0.90, 1.00,

https://github.com/Robin0526/Neural-Networks-for-Particle-Reconstruction-in-High-Energy-Physics-Detectors
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1.20, 1.40, and 1.50. To enhance data diversity and robustness, each data point was replicated four
times.

The input data includes four types of images: Trkn, Trkp, ECAL, and HCAL, with the corre-
sponding Truth values serving as labels. Each image type undergoes independent min-max normaliza-
tion. The processed dataset is then randomly shuffled and divided into training, testing, and validation
sets in a 7:2:1 ratio.

4.2 Training Process

We conducted comparative experiments on ’Yes’ and ’No’ datasets. For each dataset, we
evaluated the performance on three types of models: MLP, U-Net, and CNNs (A broad category of
CNN models, including several variants). These models will be detailed in Section5.

All experiments were conducted using the TensorFlow framework with CUDA acceleration.
The training parameters were set to 100 epochs, an initial learning rate of 0.001, and a batch size of
32. The loss function used was Mean Squared Error (MSE), optimized using the Adam algorithm
[10].

Fig. 2. Composition of the experiments



4.3 Evaluation and Visualization

Model performance was evaluated by calculating the standard deviation (STD) of the pixel-wise
differences between the predicted and true values. A smaller STD indicates better reconstruction
accuracy.

Figure 2 illustrates the composition of the experiments, focusing on the evaluation of different
models and angle wrapping strategies. Initially, we summarized the performance of different models
under varying magnetic field strengths using line plots to compare their STD values. Subsequently,
for CNN models, we further analyzed the impact of angle-wrapping strategy by comparing the trends
in STD values.

5 Experiments and Analysis

In this section, we present a variety of deep neural network models developed to reconstruct
particle properties in high-energy collision events accurately. Each model is tailored to handle specific
aspects of the data, from simple scenarios with no magnetic field deflection to more sophisticated
approaches involving multi-dimensional convolutions and graph-based learning. In this study, we
investigate the model reconstruction outcomes across two datasets: one with angle wrapping strategy
and another without. Given that particles emitted out of the angle range of −π to π are omitted in
the reconstruction prior to specification, we anticipate superior reconstruction performance for the
dataset incorporating angle specifications, which indicates that the model effectively captures the
inherent periodicity of emission angles.

5.1 MLP

To better understand the characteristics of the dataset, we begin with a simple scenario where
KBField = 0 (indicating zero magnetic field). In this case, simulated particles do not experience any
deflection, meaning the pixel points in the Trkp, Trkn, ECAL, and HCAL images correspond directly
to those in the truth images. Therefore, we use the pixel values at corresponding positions from the
first three images to predict the pixel values of the truth image.

Given the characteristics of the dataset, we chose the MLP model for our initial attempts. This
choice is due to its simplicity, ease of implementation, and suitability for handling such structured in-
put data. Additionally, the MLP model offers computational efficiency, allowing for quick processing
and training. While MLP itself is a simple model, it can serve as a building block for more complex
models.

5.1.1 Framework of MLP Model

The architecture MLP model is structured as follows. The input layer consists of four nodes,
each corresponding to a pixel value extracted from the Trkn, Trkp, ECAL, and HCAL images at the
same (x, y) coordinate. The model includes three hidden layers, comprising 256, 128, and 64 neurons,
respectively, all of which utilize the Rectified Linear Unit (ReLU) activation function. These hidden
layers are specifically designed to capture essential patterns within the data. Finally, the output layer



generates a regression prediction that corresponds to the true value of each pixel, enabling accurate
reconstruction of the target variable.

5.1.2 Model Assessment

We employ various metrics to assess the model’s effectiveness, as illustrated in the three figures
below.

Figure 3 displays a 2D histogram of true versus predicted values, excluding instances where
the true values are zero. The majority of points align closely along the diagonal, indicating a strong
model fit. Figure 4 presents a scatter plot of predicted versus true values, showing a clustering around
the horizontal zero line, which further supports the model’s accuracy. Additionally, Figure 5 provides
histograms of the differences, including zero values.

However, the MLP model performs poorly in the presence of a magnetic field bias. To achieve
image reconstruction under such conditions, we require a more sophisticated model. Therefore, we
adopted the U-Net model.

Fig. 3. Hist2d of true vs predicted (excluding zero)

Fig. 4. Scatter plot of predicted vs true

Fig. 5. Histograms of predicted-true

5.2 U-Net

5.2.1 Framework of U-Net Model

The U-Net model is distinguished by its symmetric encoder-decoder structure and skip con-
nections between the encoding and decoding paths. These skip connections effectively preserve
high-resolution spatial features, ensuring that critical detail information is not lost during the image



Fig. 6. U-Net Architecture

fusion process. Although the U-Net model is not traditionally used in the field of image fusion, we
have attempted to construct a U-Net model for particle reconstruction.

The input to the U-Net model is a four-channel image with dimensions of (56, 56, 4), where each
channel corresponds to image data from the ECAL, HCAL, Trkn, and Trkp detectors, respectively.
The model architecture, as illustrated in Figure 6, consists of three main components: the encoder path,
the bottleneck layer, and the decoder path, incorporating residual blocks and attention mechanisms.

In the encoder path, a series of residual blocks are used, each composed of two convolutional
layers followed by batch normalization and ReLU activation. The introduction of residual blocks
enhances the model’s feature extraction capabilities, enabling it to better handle the complex feature
combinations present in multi-channel image fusion. At the network’s core, the bottleneck layer
represents the deepest part of the architecture, containing the highest number of filters, and serves as
a crucial connection between the encoding and decoding paths. The decoder path gradually restores
the spatial dimensions through upsampling layers, integrating attention blocks at this stage, allowing
the network to focus on the most relevant parts of the feature maps. The final output is generated
through a convolutional layer with a linear activation function, producing a single-channel output for
the image reconstruction task.

Figure 7 demonstrates the error distribution of the U-Net model under both unbiased and biased
conditions (with magnetic field strengths of 0.50 and 0.80). The distributions appear to follow a
Gaussian pattern. Under biased conditions, the distributions flatten and become wider, indicating a
decline in model performance.

However, the overall STD of the U-Net model remains high, leading to suboptimal reconstruc-
tion performance. Consequently, we developed a series of CNN models to further enhance the



performance.

Fig. 7. Error Distribution of U-Net on Different KBField

5.3 CNN

From the perspective of the entire experiment, this section presents four models in ascending
complexity: a conventional CNN, a 3D convolutional neural network (3D-CNN), a hybrid model
(CTW-CS-NAH) that integrates cylindrical translation windows (CTW), cylindrical near-field acoustic
holography (CSA-NAH) and 3D-CNN, and a PyTorch-based deep learning model utilizing nn.Conv2d.
Below is a detailed description of the four models employed in this section:

5.3.1 Overview of Four Models

Conventional CNN The traditional architecture starts with two convolutional layers, each contain-
ing 32 filters of size 3×3, which are designed to capture local features such as edges and textures. The
following third convolutional layer contains 64 filters of size 5×5, aimed at capturing more complex
and larger-scale patterns in the images. Then another convolutional layer with 32 filters is included
in the final part for further feature refinement, followed by a single-filter convolutional layer of size
1×1 to generate the final reconstructed image. This network is designed for the purpose of efficiently



integrating information from four channels. In addition, it is able to capture features in the images to
achieve accurate reconstruction.

nn.Conv2d This model implements a standard CNN based on PyTorch for processing 2D image
data. Through multiple convolutional and upsampling layers, the model extracts the characteristics of
the images and generates the output. With the help of custom dataset classes and data loaders, the
code can load and process large-scale image data. The Adam optimizer and mean squared error loss
function ensures that the model notices the features in the images. Finally, the model’s predictions and
ground truth values for the test set are saved as NumPy arrays for subsequent analysis and evaluation.

3D-CNN Traditional CNNs mainly focus on learning features in the planar space, which possibly
limit the ability to fully capture the spatiotemporal relationship present in the data. Therefore, we
develop a 3D-CNN model to break the limitations of 2D convolutional networks. An additional
dimension is introduced, treating the raw data as volumetric and applying 3D convolution operations.
Specifically, the network begins with two 3D convolutional layers that both contain 32 filters of size
3×3×3, which is followed by another 3D convolutional layer with 64 filters, also using 3×3×3 filter
sizes, in order to enable the model to capture more complex and multi-scale patterns in the volumetric
data. The final convolutional layer applies a 3×3×3 filter to compress the feature map into a single
channel, so it can preserve the volumetric format instead of flattening or reshaping it into 2D. This
architecture successfully improves the function of the model to learn complex spatial patterns in
volumetric data, contributing to prediction accuracy.

CTW-CS-NAH Combined with CTW and stacking to handle 3D data, this model applies a 3D
convolutional neural network-based autoencoder model. The input data is mapped to a cylindrical
coordinate system with the introduction of the CTW transformation, so it is capable of capturing
geometric information in 3D space. This is followed by 3D-CNN-based autoencoder layers for
feature extraction and reconstruction. With the help of cylindrical near-field acoustic holography
(NAH), which is referred as CS3C-NAH, the model is capable of dealing with complex structures
and geometric features in 3D data as well as helping improve robustness. This innovative method
allows the model to better adapt to the characteristics of 3D data[11].

5.3.2 Results Analysis

Initially, we experimented with both the CNN and nn.Conv2d models, generating comparative
plots of their STD values with and without controlling phi within the range [−π,π], and comparing
the STD images when both models were set to ’Yes’. The results are presented in figs. 8 to 10
and table 1.

From fig. 10 and table 1, it is clear that the nn.Conv2d model exhibits much lower STD values
than the conventional CNN. We attribute this result to the superior feature extraction capability of
the PyTorch-based Standard CNN model, which includes more convolutional layers, upsampling
layers to improve image reconstruction resolution, and a more flexible and efficient data-loading
mechanism (through CustomDataset and DataLoader). Additionally, during training, the model



Fig. 8. CNN Yes VS No Fig. 9. Conv2d Yes VS No

Fig. 10. CNN VS Conv2d

handled the alignment of target and predicted image sizes effectively. Furthermore, PyTorch provides
greater customization and flexibility, facilitating further adjustments and experimentation, making this
model more advantageous for complex tasks. However, the overall result is not ideal. Even though



Table 1: STD Comparison of CNN and Conv2d

CNN Conv2d
0 0.005491874 0.0023165008
5 0.009711155 0.003498844

10 0.010969961 0.0050339295
25 0.013173911 0.0056292927
35 0.012891463 0.0062466157
50 0.015354893 0.0071801706
75 0.016224669 0.008718811
90 0.018442026 0.009806737

100 0.019447459 0.009883293
120 0.022187682 0.0107982615
140 0.022474126 0.012066324
150 0.024374973 0.013125393

the nn.Conv2d model produced generally lower STD values, the ’Yes’ values were consistently
higher than the ’No’ values, indicating that neither model successfully learned the transformation
expressed by the code ”phi = np.mod(phi + np.pi, 2 * np.pi) - np.pi”. This led us to explore other
approaches. Considering that 3D CNNs have significant advantages over traditional 2D CNNs in
processing 3D data, particularly in capturing local features and structural information in 3D space,
we constructed 3D-CNN and CTW-CS-NAH models. While both models employed 3D convolutions,
CTW-CS-NAH theoretically offers additional advantages by transforming the input data into a
cylindrical coordinate system, allowing it to better capture geometric and structural information in
3D space. This transformation effectively handles the complex structures and geometric features in
3D data, improving model performance and robustness. Moreover, by better utilizing the geometric
information in 3D data, the model typically exhibits lower loss values and higher prediction accuracy
during training and testing. Below are STD comparison plots with and without controlling phi within
the range [−π,π], along with the complete comparison of both models.

From fig. 13, it is evident that the 3D-CNN model has lower STD values but exhibits noticeable
oscillations. The CTW-CS-NAH model shows higher STD values, but the gap between the ’Yes’
and ’No’ plots is smaller compared to the 3D-CNN model, with the ’Yes’ and ’No’ images being
closer to each other. Furthermore, both models exhibit regions where the ’Yes’ STD is lower than
the corresponding ’No’ STD, indicating that both models achieved the target in certain ranges. We
believe the higher STD observed in the CTW-CS-NAH model may be attributed to the increased
complexity and uncertainty introduced by the cylindrical transformation. This transformation can
lead to significant changes in the input data distribution, particularly where certain features (such as
image edges) may be stretched or compressed during the transformation. This introduces uncertainty
at the input layer, making it difficult for the model to quickly converge to a stable solution, thus
increasing output fluctuations and, consequently, the STD. Additionally, the NAH method is designed
to handle nonlinear and uneven signals, and its adaptive smoothing based on local features could also



Fig. 11. 3DCNN Yes VS No Fig. 12. CTW-CS-NAH Yes VS No

Fig. 13. new3dcnn VS no3dcnn VS newtwcsanah VS noctwcsanah

increase uncertainty in the output, especially in cases where the input data contains noise or uneven
feature distribution. These factors collectively contribute to increased output variability, resulting
in higher STD. In contrast, the 3D-CNN model is more stable during training due to its focus on



extracting local features through convolutional layers, thus yielding lower STD.
Finally, we plotted all the ’Yes’ images from each model for comparison and summary.

Fig. 14. CNN VS Conv2d VS 3DCNN VS CTW-CS-NAH

From fig. 14, it is clear that while neither the CNN nor nn.Conv2d models successfully learned
the transformation ”phi = np.mod(phi + np.pi, 2 * np.pi) - np.pi”, we found that nn.Conv2d was
highly effective at reducing STD. During our experiments, the loss of nn.Conv2d dropped to 0.00005
after just 10 epochs, which is an impressive performance. For the 3D-CNN and CTW-CS-NAH
models, although both exhibited relatively higher STD values, especially the CTW-CS-NAH model,
we believe they show greater potential for learning to control phi within the range [−π,π]. Unlike the
previous two models, the ’Yes’ and ’No’ images for these models display an interwoven pattern, and
the STD does not increase with increasing kBField; instead, it tends to decrease as kBField increases,
which is an interesting observation.

5.4 Fanshape and Cylindrical

We refer to the work presented in [12], which aims to more effectively capture the rotational
and spiral structures of tropical cyclones. The model proposed in that study first converts satellite
images of tropical cyclones from Cartesian to polar coordinates and then employs a CNN for feature
extraction. Given that the LHC experiment, which our study is based on, involves a cylindrical
geometry similar to, but not identical to, the structure of tropical cyclones, We have progressively
developed three innovative models—Fanshape, FanShapeReal, and Cylindrical—drawing on the
insights from this work. The following sections outline the methods applied in these models and
provide a brief description of each.



5.4.1 Image Processing in Polar Coordinates

In this experiment, all models use polar coordinate transformation to process images. The
purpose of introducing polar coordinate transformation is to better handle rotationally symmetric
data, thereby improving the performance of the model in specific tasks. Through polar coordinate
transformation, the model can more effectively capture the rotationally symmetric features in the
image.

5.4.2 Introduction of Masks

Masking is a key technique in image processing. By selectively processing specific areas of the
image, the model’s ability to capture specific features can be enhanced. After applying a mask, the
convolution operation can be effectively restricted to specific areas of the image, allowing the model
to focus on areas of interest. This technique is particularly useful when processing data with special
geometries. For example, when processing typhoon images, masks can help the model extract image
features more effectively, thereby improving the performance of the model [13].

5.4.3 Overview of Three Models

Fanshape In this model, we define a fan-shaped convolutional layer (FanShapeConv2D), where
convolution kernel weights are created in the build method, but no fan-shaped mask is applied. In this
method, we do not use masks for convolution operations.

FanShapeReal A fan-shaped mask (Fan mask) is created, and in the call method, this mask is used
to apply masking to the convolution kernel. The convolution kernel is masked by the fan-shaped
mask before being applied. Therefore, only the weights within the fan-shaped region are used.

Cylindrical In this model, we define a cylindrical convolutional layer (CylindricalConv2D). A
cylindrical mask (Cylindrical mask) is created in the build method, and in the call method, this mask
is used to apply masking to the convolution kernel. The cylindrical mask is created based on radius
constraints. This ensures that the convolution kernel is effective only within the cylindrical region.

5.4.4 Results Analysis

The size of the convolution kernel can affect the model’s performance and training. Larger
kernels expand the receptive field, enabling the model to capture broader features. This is beneficial
for processing global structures and contextual information in images. However, larger kernels also
increase the number of parameters, which can make the model more complex and prone to overfitting.
Conversely, smaller kernels have a limited receptive field, which is more suitable for capturing local
features, making them useful for detailed image analysis. Smaller kernels also reduce the number
of parameters, leading to a simpler model that is easier to train but may struggle to capture broader
features. To determine the most suitable convolution kernel, we experimented with kernel sizes of
(3,3), (5,5), and (7,7) across the three models and generated comparative results for each:



Fig. 15. Fanshape (3,3) VS (5,5) VS
(7,7)

Fig. 16. FanshapeReal (3,3) VS
(5,5) VS (7,7)

Fig. 17. CNNCylindrical (3,3) VS
(5,5) VS (7,7)

From the figs. 15 to 17, we can draw a similar conclusion: the STD is highest for the (3,3)
kernel, moderate for the (5,5) kernel, and lowest for the (7,7) kernel. Since the (5,5) kernel provides a
balance between computational complexity and feature extraction capability, capturing features over
a sufficient range without excessive information loss, we ultimately chose this kernel for subsequent
experiments. We plotted comparative graphs and STD tables for the Fanshape, FanshapeReal, and
Cylindrical models using the (5,5) kernel, with and without code to constrain the value of phi to the
range [−π,π]. The results are as follows:

Fig. 18. Fanshape (5,5) Yes VS No
Fig. 19. FanshapeReal (5,5) Yes VS
No

Fig. 20. CNNCylindrical (5,5) Yes
VS No

From the fig. 21 and table 2, when using the same polar coordinate processing method and a (5,5)
convolution kernel, we observe that although FanshapeReal and Cylindrical show some improvements
over Fanshape, the STD results alone do not clearly indicate which model performs better. However,
from the fig. 19, we see that, for most cases, the STD is lower when the code ”phi = np.mod(phi +
np.pi, 2 * np.pi) - np.pi” is applied compared to when it is not, which is quite interesting. This led us



Fig. 21. Fanshape VS FanshapeReal VS CNNCylindrical with (5,5) Kernel Size

Table 2: STD Comparison of Fanshape, Fanshapereal and Cylindrical

Fanshape Fanshapereal Cylindrical
0 0.0054750843 0.0050113676 0.0054712333
5 0.015689295 0.017815063 0.0173143

10 0.022113267 0.023390392 0.02218945
25 0.028838407 0.030668806 0.028454734
35 0.03264405 0.031127691 0.030673325
50 0.034627117 0.03618995 0.0331151
75 0.036390625 0.03509658 0.036384415
90 0.03712367 0.038192295 0.037428554

100 0.037532486 0.03649251 0.038483374
120 0.040464997 0.037991293 0.037856884
140 0.039155573 0.036352392 0.038140904
150 0.037717547 0.037607875 0.03875772

to further experiment and refine the FanshapeReal model, focusing our attention on improving the
polar coordinate transformation method.

Since the original cyclic polar coordinate transformation method tends to lose information,
preserving the accuracy of image features is particularly important in fan-shaped and Cylindrical-
Conv2Ds. As convolution operations rely on the relationships between neighboring pixels, we believe
that using improved polar coordinate transformation and interpolation methods can enhance the



precision of these operations. We added resampling and interpolation methods to the original code,
further dividing the polar transformations into three types: the original cyclic assignment, bilinear
interpolation, and bicubic interpolation. Bilinear interpolation considers the weighted average of
four neighboring pixels, producing smoother results. This method effectively reduces edge effects
and artifacts, improving image quality. Bicubic interpolation, on the other hand, considers a larger
neighborhood of 16 pixels, resulting in finer and smoother outputs. Although more computationally
intensive, it provides higher precision. However, because it takes into account more neighboring
pixels, bicubic interpolation may introduce artifacts such as ringing effects, especially near the edges
of the image. To evaluate the impact of these changes, we generated Yes and No comparison graphs
for bilinear and bicubic interpolation, and a comparison of Yes images for cyclic assignment, bilinear,
and bicubic methods, along with their corresponding STD tables. We observed several interesting
phenomena:

Fig. 22. FanshapeReal Bilinear Yes VS No Fig. 23. FanshapeReal Bicubic Yes VS No

In the fig. 22, we notice that when using the Bilinear polar coordinate transformation, in the
range of kBField = 0.05 to kBField = 0.25, the STD is lower when the code ”phi = np.mod(phi + np.pi,
2 * np.pi) - np.pi” is applied compared to when it is not. This result meets our requirements within this
range. Additionally, from the fig. 24, we observe that both bilinear and bicubic interpolation methods
reduce the STD compared to simple cyclic assignment, verifying that bilinear and bicubic interpolation
can better smooth images and reduce noise and errors during polar coordinate transformation, thereby
improving model training and prediction accuracy. In contrast, the simple cyclic assignment may
cause discontinuities or jumps in certain areas of the image, introducing more errors. As a result,
after using bilinear and bicubic interpolation, the experimental STD is much smaller than with simple
cyclic assignment. However, when comparing bilinear and bicubic interpolation, we find that the STD



Fig. 24. Fanshape Circular VS Bilinear VS Bicubic with (5,5) Kernel Size

Table 3: STD Comparison of Circular, Bilinear and Bicubic

Circular Bilinear Bicubic
0 0.0050113676 0.0040768925 0.005337935
5 0.017815063 0.008892259 0.011868012
10 0.023390392 0.011909938 0.016592793
25 0.030668806 0.017441515 0.017687324
35 0.031127691 0.019633738 0.019468237
50 0.03618995 0.019767828 0.020942265
75 0.03509658 0.019245364 0.022016276
90 0.038192295 0.021533381 0.023149991

100 0.03649251 0.021784123 0.023559364
120 0.037991293 0.020548724 0.024985474
140 0.036352392 0.023540195 0.024187502
150 0.037607875 0.02087024 0.023820218

for bilinear interpolation is lower than that for bicubic interpolation, although bicubic interpolation
produces more stable and smoother images, with less oscillation. This indicates that both bilinear
and bicubic interpolation have their advantages and disadvantages in image interpolation: bilinear
interpolation better smooths the image, reducing noise and error, thus lowering the STD; while bicubic
interpolation better preserves the overall structure and stability of the image, reducing oscillations and
improving the visual quality. Although bilinear interpolation has a lower STD, its stronger smoothing



may result in the loss of certain details and edge information, potentially affecting the visual quality
of the image.

In summary, although bilinear interpolation has certain shortcomings, it undoubtedly outper-
forms the other two polar coordinate transformation methods. Therefore, we decided to apply bilinear
interpolation to another model we developed, the Cylindrical model, which uses a cylindrical network.
To ensure the rigor and comprehensiveness of the experimental results, we also applied bicubic
interpolation. Below are the figs. 25 to 28 generated after successfully applying these methods.

Fig. 25. Cylindrical Bilinear Yes VS No Fig. 26. Cylindrical Bicubic Yes VS No

From the fig. 27, we can observe that the superior ability of bilinear interpolation to reduce the
STD has been validated once again. Additionally, the fig. 25 demonstrates that when bilinear interpo-
lation is applied to the Cylindrical model, the STD is lower in both the kBField >1.00 and kBField =
0.35 conditions when the code ”phi = np.mod(phi + np.pi, 2 * np.pi) - np.pi” is used, compared to the
case without this line of code. This marks a significant improvement over the initial results in fig. 20
where the Yes images were almost entirely above the No images. Furthermore, the fig. 28 shows
that when both the Cylindrical and fanshapereal models use bilinear interpolation, the Cylindrical
model exhibits not only a more stable performance but also a lower STD in most cases compared to
the fanshapereal model. This suggests that the cylindrical network in the Cylindrical model, when
using bilinear polar coordinate transformations, is indeed better suited for the LHC experiments.
Overall, while neither the Cylindrical nor the fanshapereal model fully met our expectations, both
models demonstrated good performance in specific areas and can serve as a solid foundation for
further research by other investigators.



Fig. 27. Cylindrical Circular VS Bilinear VS Bicubic
with Yes dataset and (5,5) Kernel Size

Fig. 28. Bilinear Cylindrical VS FanshapeReal with No
dataset and (5,5) Kernel Size

5.5 CSWCyCnov

5.5.1 CSW Mechanism

After converting the input image from Cartesian coordinates to polar coordinates, we introduces
the CSW mechanism to better process polar images. CSW is capable of simulating the effect of
”rolling the image into a cylinder” by connecting the top and bottom of the input image, which
not only allows the convolution kernels to maintain image continuity when crossing boundaries but
also addresses the boundary issues that often happen in traditional convolution layers in polar or
cylindrical coordinate systems. CSW also expands the receptive field of the boundary units, enabling
the convolutional layers to extract complex features from rotated images, which improves feature
extraction efficiency as a result. Moreover, this mechanism ensures the robustness of features after
image rotation.

Introduction to CyConv Layer The CyConv layer is a cylindrical version compared with the
traditional convolutional layer. The CyConv layer uses a convolution kernel of the input image along
a cylindrical shape, which not only processes features in the central region due to the cylindrical
wrapping property, but also effectively converts the rotation problem into a translation problem.
Consequently, This design enables the network to better capture rotation-invariant features [14].

Introduction to Torch.cat and Torch.roll In PyTorch, torch.cat is a function used to deal with
multiple tensors along a specified dimension, allowing for the formation of a larger tensor without



changing the internal structure. Torch.roll is another function used to cyclically shift the elements
of a tensor along a specified dimension. By setting the shift steps and dimension, the elements of
the tensor will be rearranged, which is of great use for handling cyclic data or in Recurrent Neural
Networks (RNN). Both of them play important roles in deep learning model construction and data
processing, providing greater flexibility in handling and manipulating tensor data.

Implementation of the CSW Mechanism Using torch.roll and torch.cat, we implemented a method
to process cyclic data, which can be considered as an approximation of CSW Mechanism.

Specifically, torch.roll is added to cyclically shift the input tensor. In the CyConv2d class,
the line rolled input = torch.roll(input, shifts=-pad, dims=3) shifts the input tensor along the width
dimension (i.e., the 3rd dimension), which allows the input data to ”wrap around” and handle edge
pixels during convolution, similar to sliding a window on a cylindrical surface. Then torch.cat
connects the shifted input tensor with the results of the convolution. In the CyConv2d class, the line
”combined out = torch.cat([conv out, rolled input], dim=1)” concatenates the convolution output
with the shifted input tensor, which makes the convolution results combined with the original input
data, enhancing the expressiveness of the convolution operation. A subsequent 1×1 convolution layer
is applied to adjust the number of channels in the concatenated tensor so that the output tensor has
the expected number of channels.

This code uses a method to process cyclic data with the introduction of both torch.roll and
torch.cat, which successfully improves the ability to handle edge information in images.

5.5.2 Model Introduction

This study used seven models in total:

Cat To implement this mechanism, we first designed a custom CNN model. The input to the model
consists of four different types of image data stacked to form a four-dimensional tensor X, which
is then standardized. The core of the model replaces traditional convolutional layers with custom
CylindricalConv2D. The entire network consists of five convolutional layers, with ReLU activation
functions following the first four layers, and the final convolutional layer producing the output.

CyConv2d achieves cylindrical convolution by performing special padding on the input tensor
along the width dimension. During the forward pass, the padding size is first calculated, and then the
input tensor is cyclically padded using the torch.cat function, meaning the last few columns of data
are added to the front of the tensor, and the first few columns are appended to the end. The padded
tensor is then subjected to standard 2D convolution. The weights of this layer are initialized using
Xavier uniform distribution to ensure the effectiveness of the convolution operation.

Roll The use of torch.cat for padding the input tensor yielded suboptimal results. We hypothesize
that this is because torch.cat merely manually concatenates the start and end of the input tensor,
failing to adequately simulate the effect of ”rolling the image into a cylinder.” Therefore, we replaced
torch.cat with torch.roll. torch.roll essentially performs a cyclic shift operation on the data, which
intuitively aligns with the requirement of simulating a cylindrical structure.



Specifically, we used the torch.roll function in CyConv2d to cyclically shift the input tensor
along the width dimension, allowing the convolution operation to process data with periodic or
circular structures.

Roll2 When addressing the image fusion problem for the Emcal, Hcal, and Tracker detectors, we
observed that since the detector images exhibit periodic boundary properties, rolling along a single
dimension may not sufficiently capture the periodic patterns in both dimensions. Therefore, we
extended the periodic convolution operation to roll along both the width and height dimensions,
aiming to more accurately simulate the periodic boundary conditions in detector images.

Roll1cat Rolling the image along only one dimension may lead to information loss and boundary
effects. To enhance the fusion of images, we introduced concatenation between the original input and
the convolution output, followed by a 1×1 convolution layer to adjust the number of channels. This
modification achieves more comprehensive feature fusion, as it preserves the global information from
the original input while combining the local features extracted by the convolution. This improves the
model’s ability to capture complex image features and addresses the challenge of fusing images from
different detectors.

Rollcat Both of the above modifications to Roll effectively reduced the model’s error. Therefore,
we attempted to combine these two improvements. In CyConv2d, we used torch.roll to cyclically
shift the input tensor along both the width and height dimensions, simulating periodic expansion.
After the convolution operation, we used torch.cat to concatenate the convolution results along the
channel dimension.

Roll1catBilinear In previous iterations, we employed a nested loop method to convert images from
Cartesian coordinates to polar coordinates. This method involved calculating the radial distance and
angle for each pixel and mapping it to a new coordinate position. While this method is straightforward,
it relied on integer indexing for interpolation, which limited its accuracy, particularly in high-precision
physical detector data, leading to distortion or blurring. To improve the accuracy of the coordinate
transformation, we adopted bilinear interpolation. This method calculates a weighted average of the
four nearest pixels in the polar coordinate grid, allowing for more precise handling of image details
and reducing the distortion caused by integer mapping. This improvement increased the smoothness
between pixels during the transformation, making the image conversion from Cartesian to polar
coordinates more natural.

Roll1catBicubic To further enhance the accuracy of interpolation, we ultimately adopted bicubic
interpolation. Compared to bilinear interpolation, bicubic interpolation uses a larger neighborhood of
pixels for weighted calculations, preserving more detail and achieving higher precision during the
polar coordinate transformation. This method is particularly well-suited for handling the complex
image structures present in high-energy physics detector images. It effectively reduces error during
the polar coordinate transformation, ensuring the quality and consistency of image fusion.



5.5.3 Results Analysis

After generating a series of comparison images between the models for both ’Yes’ and ’No’
conditions, we observed several interesting phenomena. We present the images below(figs. 29 to 34).

Fig. 29. Roll Yes VS No Fig. 30. Roll2 Yes VS No

Firstly, we noticed a common pattern in these images: the lines representing ’Yes’ and ’No’
are intertwined, with the ’Yes’ STD values being larger in some instances and the ’No’ values
being larger in others. We believe that these models, to varying degrees, have learned some of the
differences between the images generated with and without controlling the range of phi to [−π,π]
using the phi = np.mod(phi + np.pi, 2 * np.pi) - np.pi code. However, an intriguing observation
was made when closely examining the roll1cat Bilinear Yes vs No(fig. 33) and roll2 Yes vs No
images(fig. 30)—they look almost identical. After further consideration, we believe that the cyclic
shift operation of torch.roll allows the convolution kernel to ”see” the other side of the image when
processing edges, preventing edge information loss. Meanwhile, the torch.cat concatenation operation
enhances the expressiveness of the convolution. Perhaps both methods improve the convolution’s
ability to process edge information, capturing similar features and thus producing similar results.
That said, explaining how these features are captured theoretically remains a challenge. Additionally,
when closely observing the roll1cat Bicubic Yes vs No and roll1cat Yes vs No images, they also look
very similar, if not identical. To further explore this, we created a comparison plot of roll1cat Circular
vs Bilinear vs Bicubic Yes images, along with a corresponding table showing the exact STD values
for each point. The results are shown in fig. 35.

In fig. 35, three lines are present, but only two are visible. This is because the Circular line (blue)
and the Bicubic line (green) almost completely overlap. The first and third columns in the STD table
also show very close values (though not identical, which rules out the possibility of using the wrong



Fig. 31. Roll1cat Yes VS No Fig. 32. Rollcat Yes VS No

Fig. 33. Roll1cat Bilinear Yes VS No Fig. 34. Roll1cat Bicubic Yes VS No

dataset or running the wrong code). After rigorous verification, our code indeed implemented bicubic
interpolation using map coordinates. Although bilinear and bicubic polar coordinate transformations
successfully reduced STD and improved model learning capacity in the earlier fan-shape category,



Fig. 35. Roll1cat Circular VS Bilinear VS Bicubic

Table 4: STD Comparison of Circular, Bilinear and Bicubic

Circular Bilinear Bicubic
0 0.07736404 0.071788125 0.07709758
5 0.07481675 0.07831088 0.07459799

10 0.0769816 0.07814097 0.07675308
25 0.0745811 0.07896046 0.07483935
35 0.07399389 0.07449576 0.073866785
50 0.07537529 0.07494992 0.07515803
75 0.075673856 0.07416574 0.07550721
90 0.074095726 0.078812346 0.07393851
100 0.07650898 0.07388787 0.076327816
120 0.07852839 0.07522836 0.07840324
140 0.07665938 0.07464537 0.076487705
150 0.07693428 0.077027045 0.07669269

they produced unexpected and even puzzling results in this section: the final result of using bicubic
interpolation in polar coordinates was almost identical to the simplest circular assignment, and the
performance of roll1cat with bilinear interpolation was very similar to that of roll2. Despite searching
the literature, we were unable to find an explanation for this anomaly.

In conclusion, this section’s models, through the combination of CyCNN and CyConv2d, and
the use of torch.roll and torch.cat, implemented enhanced convolution operations. These operations



allow the convolution kernel to ”see” the other side of the image when processing edges, preventing
edge information loss. From the resulting images, it is evident that the code has, to varying extents,
learned the significance of the ”phi = np.mod(phi + np.pi, 2 * np.pi) - np.pi” code in the dataset
generation. However, the observed phenomena, where roll1cat with bilinear interpolation performed
similarly to roll2, and roll1cat with circular and bicubic interpolations produced very similar results,
raise questions. These theoretical challenges certainly warrant further investigation by researchers.

5.6 PDOs

PDOs are a novel approach in CNNs, where a linear combination of differential operators, such as
gradient and Laplace operators replaces traditional convolutional kernels. PDOs are particularly suited
for handling complex geometries, including unstructured grids and spherical signals, by calculating
differential operators within local neighborhoods to enable efficient convolution operations [15].

PDOs significantly reduce the number of parameters required in convolutional layers, thereby
improving the parameter efficiency of the model while maintaining or enhancing performance.
Compared to traditional methods, PDOs are better at processing spherical or non-Euclidean data,
avoiding projection distortion, and combining local and global information, which allows the model
to flexibly adapt to complex data structures.

We considered introducing a convolutional kernel based on PDOs into the model, replacing the
traditional convolution kernel to effectively process information captured by the detector. We designed
four models: Conv2D, Conv2DCylindrical, Conv2DCylindrical+, and Conv2DCylindrical++Bilinear.

5.6.1 Overview of Four Models

Conv2D The model framework consists of several key components. First, the input data is four-
channel image information (EMCal, HCal, Trkn, Trkp), which is processed by a customized PDO-
Conv2D layer. This layer is based on PDOs to extract geometric information from the image by
calculating unit convolution, x-direction gradient, y-direction gradient, and Laplacian features. The
extracted features are further abstracted by three standard convolution layers (using 32 3×3 convo-
lution kernels, 64 5×5 convolution kernels, and 32 3×3 convolution kernels respectively), and then
a 1×1 convolution layer to generate the final single-channel output. The model is trained with the
Adam optimizer and is suitable for multimodal data fusion and feature extraction tasks for complex
geometric shapes.

The PDOConv2D layer is the core of the model. It performs convolution operations through unit
convolution, x and y gradients, and Laplacian operators, each corresponding to a different convolution
kernel. The final output is a linear combination of these results. Compared with traditional convo-
lutional layers, PDOConv2D can capture complex geometric features more effectively, especially
when processing irregular grids and multi-directional gradient information, improving the model’s
perception of local structures and edges.

Conv2DCylindrical In high-energy physics experiments, particle detectors such as the ECAL,
HCAL, and Tracker (Trkn and Trkp) capture the movement and energy deposition of particles from



various directions, forming three-dimensional spatial information. This data typically contains three-
dimensional structures, not just two-dimensional plane data. Therefore, we improved the model’s
PDOConv2D layer by adding z-direction gradient processing, making it more suitable for fusing
images obtained from the detectors.

This model captures particle movement, energy deposition, and potential trajectory curves across
the x, y, and z directions. This capability allows for a more comprehensive and accurate reconstruction
of particle dynamics and energy distribution.

Conv2DCylindrical+ We introduced a dz kernel to improve the model’s performance by enhancing
z-direction gradient calculations. Here, the z-direction gradient indicates changes in the ”depth” of
the input data, not the conventional z-axis. The z-direction gradient convolutional kernel detects
differences in the image’s z-direction by calculating changes between adjacent pixels, focusing on
variations in the channel dimension.

The calculation of the z-direction gradient greatly enhances the model’s capability to manage
complex geometric structures and three-dimensional spatial data. This leads to more comprehensive
and accurate predictions. It also boosts overall precision and adaptability.

Conv2DCylindrical++ and Conv2DCylindrical++Bilinear To better handle the cylindrical sym-
metry present in data from high-energy physics experiments, we further refined the above models.
These models use bilinear interpolation to transform images from Cartesian to polar coordinates and
implement a true cylindrical network by utilizing a custom CylindricalPDOConv2D layer. Specifi-
cally, the CylindricalPDOConv2D layer performs convolution operations using PDOs to extract x and
y gradients, Laplace features and adds z-direction gradients (convolved through the dz kernel). After
convolution, the model applies ReLU activation functions and pooling layers to reduce the feature
map size, followed by standard convolution and upsampling layers to restore resolution and generate
the final single-channel output.

By converting Cartesian coordinates to polar coordinates, the model can more naturally process
cylindrical data, which is particularly important for handling detector data in high-energy physics ex-
periments. The polar coordinate system is well-suited to circumferential or cylindrical data, avoiding
distortions that may occur when converting to a two-dimensional plane. The CylindricalPDOConv2D
layer enables the model to capture multidimensional geometric features in the data, particularly depth
information and local variations in cylindrically symmetric data.

The models are divided into two groups. The first group includes Conv2D, Conv2DCylindrical,
and Conv2DCylindrical+, which, although utilizing PDO convolution to capture gradient infor-
mation in different directions, still rely on standard 2D convolution and are not specifically tai-
lored for cylindrical data or geometry. The second group includes Conv2DCylindrical++ and
Conv2DCylindrical++Bilinear, which utilize the custom cylindrical convolution layer CylindricalP-
DOConv2D to process input images using PDOs and incorporate polar coordinate transformations to
handle periodic data.



5.6.2 Results and Analysis

We first generated the respective Yes and No images for the models in the first group, as well as
a horizontal comparison of the Yes images for the first three models. The figs. 36 to 38 are as follows.

Fig. 36. Conv2d Yes VS No
Fig. 37. Conv2dCylindrical Yes VS
No

Fig. 38. Conv2dCylindrical+ Yes
VS No

From the fig. 39, it is evident that although the differences in STD between the three models are
generally small, the images produced by the Conv2DCylindrical and Conv2DCylindrical+ models are
noticeably smoother than those from the Conv2D model. This is primarily because Conv2DCylindrical
and Conv2DCylindrical+ use more PDOs, including dx, dy, dz, and Lap, in their custom convolutional
layers. These operators allow the models to capture more details and edge information from the
images.

Additionally, these models incorporate more convolutional and upsampling layers, further
enhancing their expressive capability and resulting in smoother predictions. In contrast, the Conv2D
model lacks the dz operator in its custom convolutional layer, and its overall structure is relatively
simpler. This makes it less capable of capturing smooth features in the images, which results in a less
smooth standard deviation map. When comparing Conv2DCylindrical and Conv2DCylindrical+, it
is clear that Conv2DCylindrical+ produces the least oscillations, supporting the earlier hypothesis
that z-direction gradient calculations enhance the model’s ability to handle complex geometries and
three-dimensional spatial data.

However, since none of these three models involve polar coordinate transformations, it remains
difficult to assess whether constraining the phi between −π and π in the original image simulation
code has any meaningful impact. To address this, we conducted additional experiments using the
Conv2DCylindrical++ model, which employs cyclic assignment, and the Conv2DCylindrical++Bilinear
model, which utilizes bilinear polar coordinate transformation. We generated figs. 40 to 42 and table 5
for further observation.

From the figs. 40 to 42, an unexpected observation can be made: the shape of the STD lines
for the Conv2dcylindrical++ and Conv2dcylindrical++Bilinear models are almost identical, with the
only difference being that the STD values for Conv2dcylindrical++Bilinear are consistently lower
than those for Conv2dcylindrical++. This suggests that while Bilinear interpolation reduces the STD



Fig. 39. Conv2d VS Cylindrical VS Cylindrical+

Fig. 40. Cylindrical++ Yes VS No Fig. 41. Cylindrical++Bilinear Yes VS No

values, it does not provide further refinement in terms of performance improvement. Additionally,
from the figs. 40 and 41, we can see that, except for the KBField range between 0.1 and 0.25 where
the Yes STD is greater than No, in other regions Yes either shows a lower STD than No or both are
very close. This indicates that the model has successfully learned the significance of controlling phi
between −π and π , as implemented in the imagecrafter code. It has, to some extent, captured the



Fig. 42. Culindrical VS Cylindrical+ VS Cylindrical++ VS Cylindrical++Bilinear

Table 5: Comparison of STDs for different models

Cylindrical Cylindrical+ Cylindrical++ Cylindrical++B
0 0.0050794464 0.0055381292 0.07409182 0.062486786
5 0.009812146 0.009442591 0.076318786 0.06433553

10 0.011627518 0.011499854 0.07819866 0.06592123
25 0.013687121 0.01321098 0.07871339 0.066458255
35 0.013809831 0.013712202 0.072729975 0.0614118
50 0.016426623 0.01547892 0.073124886 0.061844237
75 0.017728161 0.017730132 0.07642967 0.064850524
90 0.020112518 0.018851042 0.07809214 0.066336796
100 0.019396875 0.02010132 0.07248047 0.061709754
120 0.02144609 0.022256888 0.07560325 0.06452671
140 0.023046046 0.023485519 0.07681223 0.0657614
150 0.024290603 0.024498535 0.075159684 0.064550065

difference between small particle emission ranges and the occurrence of particles on the opposite
side, which is an encouraging result.

However, the STD values for both Conv2dcylindrical++Bilinear and Conv2dcylindrical++
models remain relatively high. Given that the code accurately implements all intended functionalities,
we believe that further optimization and parameter adjustments could lead to versions with lower
STD values. For example, in a prior experiment, reducing the batch size from 32 to 16 led to a loss



reduction to three-quarters of the value in the current version of the paper. Therefore, this approach
holds considerable potential for future improvements.

6 Conclusions and Future Work

In conclusion, after developing nearly 30 models across five major categories, we have obtained
several promising models that have, to some extent, learned to recognize the differences in images
generated with and without constraining the value of phi between −π and π in the imagecrafter code.
For example, models such as the 3D-CNN and CTW-CS-NAH in the first category of CNN, fanshape-
real, fanshaperealBilinear, and CylindricalBilinear in the second category of fanshape, all roll and cat
combinations in the third category, and the Conv2dcylindrical++Bilinear and Conv2dcylindrical++
models in the fourth category. These models have overcome the challenge of consistently having the
’Yes’ curves fall below the ’No’ curves and have, to varying degrees, learned what it means for the
shifted energy to appear on the opposite side.

Among these models, some, despite their strong performance—where ’Yes’ curves are below
’No’ in most cases—exhibit relatively high STD values, such as the Conv2dcylindrical++Bilinear
and Conv2dcylindrical++ models. Given that the technical functionality of the code has been fully
implemented (all code and experimental data are publicly available on GitHub), we believe that
further tuning of parameters and settings, coupled with additional experiments, will ultimately lead to
models with optimal performance and minimal STD values. Additionally, regardless of their ability
to learn the significance of controlling phi, the nn.Conv2d model in the first category exhibits an
extraordinary ability to reduce STD. At zero KBField, its STD is only 0.0022, which is two-fifths that
of the standard CNN, and its loss quickly dropped to 0.00005 after 10 training epochs—an impressive
result.

We hope that our experiments and this paper can serve as a foundation for future related research.
In each experimental category, we systematically developed models with excellent functionality:
some excel in 2D data analysis, others in 3D data analysis, some show outstanding performance on
spherical surfaces, and others specialize in cylindrical data. We would be honored if future researchers
could draw insights from our models and further develop them. Whether it leads to the creation
of more effective models in other domains or the realization of models that fully comprehend the
significance of shifted energy appearing on the opposite side, we would feel privileged.

Finally, our experiments stemmed from one question, but in the process, we generated many of
our own questions:

• Given that in the third category, the images in fanshapereal5,5new circular vs bilinear vs bicubic
show that introducing bilinear and bicubic interpolation significantly reduces STD compared
to simple circular assignment, while also smoothing the images, why does the roll1cat model
using Bilinear perform almost identically to the roll2 model? Additionally, why are the results
for roll1cat using Circular and Bicubic interpolation so similar?

• In the fifth category, why are the STD patterns of Conv2dcylindrical++ and Conv2dcylindrical++Bilinear
models almost identical, with the only difference being the STD values?



We hope that future researchers can resolve these questions, and we extend our deepest gratitude
for their efforts.
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