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Abstract. As the internet continues to evolve, the application of facial recognition 
technology across different sectors ranging from unlocking smartphones to enhancing 
airport security and facilitating financial transactions is on the rise. Consequently, the 
necessity for robust face anti-spoofing (FAS) technology is becoming ever more critical. 
This article presents a new FAS method that enhances the security of face recognition 
systems through the optimization of the diffusion model and neural network structure. The 
diffusion model is used to generate spoof face data similar to the real face, which enriches 
the original dataset and enhances the robustness of the model. Furthermore, the UNet 
network structure is enhanced by incorporating the Attention mechanism and optimizing 
the loss function through a comprehensive consideration of SSIM, Cross-Entropy, and 
MSE. These modifications aim to improve the ability to distinguish between authentic and 
fraudulent faces. Experimental results demonstrate that our proposed approach surpasses 
existing technologies in testing scenarios, showcasing its potential in the field of face anti-
spoofing. 
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1 Introduction 

In the realm of security, the implementation of face anti-spoofing techniques within face 
recognition systems is increasingly capturing the interest of both academic researchers and 
industry professionals. However, the variety of spoofing methods ranging from print assaults 
and replay tactics to mask and lighting challenges continues to complicate the task of identifying 
different types of spoofed faces. Recently, scholars have been striving to develop more 
comprehensive and differentiated features aimed at thwarting face spoofing, including 
techniques like LBP, HOG, and LBP-TOP among others [1-3]. Usually, these features are 
referred to as manual features because they are designed manually. As technology evolves, 
attackers can trick motion and texture analysis by creating 3D masks, printed photos, or videos 
that mimic real human movements. Moreover, although conventional CNNs have achieved 
remarkable success in computer vision, they encounter hurdles when it comes to anti-spoofing, 
particularly regarding their ability to generalize effectively [4]. In recent years, various methods 
have emerged that utilize the estimation of supplementary signals obtained from RGB data to 
reveal intrinsic differentiators between genuine images and their fraudulent duplicates. These 
techniques include depth maps, remote photoplethysmography (rPPG) [5], color textures, and 
distortion analyses, all of which have demonstrated promise in enhancing generalization 
performance [6]. The advent of deep learning has enabled neural networks to autonomously 
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acquire hierarchical features directly from raw pixel data. Architectures like VGG and ResNet 
often prioritize high-level semantic representations while overlooking low-level characteristics 
[7-8]. However, the main network structure used in this paper to differentiate between real and 
fake faces is the UNet network structure with the incorporation of the Attention mechanism. 
Furthermore, for dataset optimization in training models, an initial training is conducted using 
real faces with a diffusion model, and then the augmentation data as a fake face is generated 
with the help of the back-diffusion process. 

2 Literature review 

2.1 Traditional FAS techniques 

The manual feature extraction-based approach relies on artificially designed features that exhibit 
different feature patterns in different types of attacks. There are mainly four methods, as follows: 
By examining the textural characteristics of an image, methods based on texture are capable of 
discerning between authentic and counterfeit faces. Commonly used texture features include 
Local Binary Mode (LBP), Gabor filter, and Directional Gradient Histogram (HOG). These 
methods take advantage of texture differences to detect subtle differences in fake facial images. 
Second, the motion-based approach uses the dynamic changes of the face in the video sequence 
to counter spoof. For instance, the identification of genuine faces from static images or videos 
can be effectively achieved by analyzing subtle movements like blinking and lip motions. 
Another approach involves utilizing 3D facial structures to detect counterfeit faces, where 
variations in the three-dimensional shape of a real face are utilized. By employing 3D sensors 
or stereo vision technology, depth information about the face can be acquired to determine if 
the input image possesses an authentic three-dimensional structure. Last, methods based on 
multispectral reflection. The method based on multispectral reflection distinguishes between 
real and fake faces by the light reflection characteristics of different wavelength bands.  

2.2 Deep learning for FAS techniques 

As deep learning has evolved, neural network-based feature extraction techniques have become 
increasingly popular in combating facial fraud.  

Initially, Yang first introduced the Convolutional Neural Network (CNN) for face anti-spoofing 
detection [9]. This method significantly reduces the error rate and improves the generalization 
ability of features. However, CNNs mainly rely on local receptive fields for feature extraction, 
resulting in their limited ability to capture large-scale feature connections and long-distance 
dependencies. In addition, CNN performs poorly in dealing with complex spatial 
transformations and non-local dependencies. Then, Gu introduced the self-attention mechanism 
and auxiliary MLP convolution to further enhance the ability of global feature extraction [10]. 
Compared with the combination of CNN and MLP, this mechanism has excellent performance 
in flexibly adjusting the weight of the feature map and capturing global information. However, 
there is still room for optimization in the performance of multi-scale feature extraction, 
contextual information fusion, and feature map reconstruction in this literature. In the past few 
years, there has been significant progress in the field of face anti-spoofing detection technology, 
particularly with the utilization of Generative Adversarial Networks (GAN). Wu introduced a 
method based on GAN for generating and discriminating [11]. In the GAN framework, the 



generator creates synthetic images, whereas the discriminator's role is to identify and 
differentiate between authentic and fabricated images. By simultaneously generating counterfeit 
data and training discriminators, this approach can effectively detect intricate patterns in 
fraudulent activities and enhance the precision of facial anti-spoofing detection. Nevertheless, 
GAN models are prone to pattern crashes or instability during training, which requires more 
refined tuning of training strategies.  

Overall, Facial anti-spoofing detection technology has steadily evolved from the conventional 
approach of manual feature extraction to an automated method leveraging deep learning for 
feature identification. All kinds of methods have their advantages and disadvantages. In 
particular, there are still some bottlenecks in the fineness of feature extraction and the diversity 
of datasets. Hence, this study aims to enlarge the current dataset, create additional data through 
the fusion of the diffusion model, and employ an improved UNet-Attention framework to 
enhance the efficiency of detecting face spoofing. 

3 Methods 

In this segment, the writer introduces an innovative approach to facial anti-spoofing, leveraging 
the cutting-edge diffusion model techniques of the latest generation, as shown in Figure 1.  

 
Fig. 1. Flowchart of the scenario in this article. 

3.1 Enhanced data generation based on diffusion models 

This study presents a novel approach to augmenting data by utilizing the Denoising Diffusion 
Probabilistic Model (DDPM) [12]. The objective is to improve the robustness and ability of face 
recognition systems in effectively handling spoofing challenges. Given the diverse and ever-
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evolving nature of spoofing attempts ranging from photo to video attacks, it is crucial to develop 
a training dataset that sufficiently encompasses a broad spectrum of these deceptive methods. 
However, collecting sufficiently diverse real-world data often faces high costs and data scarcity. 
Therefore, the dataset's diversity can be effectively enhanced and the model's resilience to 
intricate deceitful techniques can be strengthened by producing synthetic facial data that closely 
resembles real faces. 

Diffusion model. Typically, a diffusion model operates through two main phases [13]. The first 
phase involves gradually transforming the input data 𝑥! into noise 𝑥", a process that relies 
heavily on manual design techniques. The second phase focuses on reversing this gradual noise 
transformation, ultimately reconstructing the data𝑥!. Essentially, the diffusion model kicks off 
with noise and systematically refines it into progressively clearer samples 𝑥"#$, 𝑥"#%..., until it 
yields the final product 𝑥!. At each time step t, a distinct noise level is associated, and 𝑥" can 
be regarded as a combination of the original signal 𝑥! intertwined with a certain amount of 
noise, such as Gaussian noise. In order to tailor the DDPM model, 𝜃(𝑥" , 𝑡) is employed to 
forecast the noise element present in a corrupted input example 𝑥" .Throughout the training 
phase of these models, every instance is crafted by randomly drawing from the data 
𝑥! ,selecting a specific time point t, and incorporating noise 𝜃, which together produce the 
noise sample 𝑥". Then, optimize the training target by minimizing ‖𝜀 − 𝜀!(𝑥" , 𝑡)‖% [14]. 

Figure 2 demonstrates the concept of progressive diffusion, wherein noise is gradually 
incorporated into the original image. This results in the image progressively shedding its original 
details, ultimately transforming into nothing but Gaussian noise. 

 
Fig. 2. The forward diffusion process of the diffusion model. 

In particular, when you feed a real image 𝑥!~𝑞(𝑥) into the diffusion model, it injects Gaussian 
noise into the image a total of T times, resulting in the transformed image 𝑥$, 𝑥%, . . . , 𝑥&. The 
magnitude of each incremental movement is governed by a set of hyperparameters dictating the 
dispersion of the Gaussian distribution {𝛽" ∈ (0,1)}"'$& . At any given point in time, t, the 
progression solely depends on the state at time t-1, allowing the sequence to be represented as 
follows (equations 1&2): 

 𝑞(𝑥"|𝑥"#1) = 𝑁(𝑥"; 71− 𝛽"𝑥"#1, 𝛽"Ι) (1) 

 𝑞(𝑥1:&|𝑥0) = ∏ 𝑞(𝑥"|𝑥"#1)&
"'1  (2) 

As time progresses, 𝑥" gradually approaches pure noise. Eventually, with 𝑇 →∞, what was 
once an identifiable image becomes indistinguishable from standardized Gaussian noise.  

In the depicted reverse diffusion process in figure 3, the neural network model progressively 
eliminates noise and restores the initial image. 
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Fig. 3. The reverse diffusion process of the diffusion model. 

The goal of the process is to start with pure noise 𝑥& and gradually produce a realistic image. 
The reverse diffusion of each step can be expressed as (3): 

 𝑝)(𝑥"#1|𝑥") = 𝑁(𝑥"#1; 	𝜇)(𝑥" , 𝑡), ∑ (𝑥" , 𝑡)) ) (3) 

where 𝜇) denote the functions for mean and 𝛴) for variance, while 𝜃 signifies the model's 
parameters. The primary objective of reverse diffusion is to decrease the Evidence Lower Bound 
(ELBO) shown as (4) to learn the optimal generation process: 

 𝐿*+,- = 𝛦.[∑ 𝐷/+&
"'1 (𝑞(𝑥"#1|𝑥" , 𝑥0)	|| 𝑝)(𝑥"#1|𝑥"))] (4) 

The KL divergence in this equation acts as a measure to assess the difference between the 
distribution generated by the model and the real data, represented as (5): 

 𝐷/+(𝑞(𝑥"#1|𝑥" , 𝑥0)‖𝑝)(𝑥"#1|𝑥")) =
1
20!
2 ‖𝜇E"(𝑥" , 𝑥0) − 𝜇)(𝑥" , 𝑡)‖2 (5) 

By minimizing this difference, the model gradually approximates the desired generation effect. 

Typically, to simplify optimization, the objective function of DDPM can be refactored to 
directly predict the noise of each step as (6): 

 𝐿123456 = 𝛦",80,9[‖𝜀 − 𝜀0(𝑥" , 𝑡)‖
2] (6) 

where 𝜀 represents the noise added during the forward diffusion process, and 𝜀)(𝑥" , 𝑡) is the 
noise predicted by the neural network. In the backward diffusion method, the algorithm trains 
itself to strip away the noise and progressively restore an image that closely mirrors the actual 
data. 

Leveraging the diffusion model to generate augmented data. The diffusion model data 
augmentation method proposed in this study is as follows: 

First, the original real face dataset should be prepared. The researcher gathers an extensive 
collection of authentic facial images, which serve as the foundational dataset for training the 
generative model. This dataset contains a variety of face images with different angles, lighting, 
expressions, and backgrounds to ensure that it is broadly representative, and the researcher used 
the celeb A dataset for training in this study. Then, using the real face dataset, train a generator 
based on the diffusion model. The training process enables the model to learn how to gradually 
denoise random noise through forward and reverse diffusion mechanisms to generate realistic 
face images. In the training procedure, a single face image is randomly chosen from the dataset 
at each iteration, and incremental Gaussian noise is applied to produce a sequence of noisy 
image samples. Through backpropagation, the model learns how to remove different levels of 
noise and ultimately restores a clear image that closely resembles a real human face. After the 
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training is completed, generate a batch of dummy faces that are highly similar to real faces by 
inputting completely random Gaussian noise into the model and going through the reverse 
diffusion process. The resulting dummy faces are not only visually high-quality, but also reflect 
similar features to those in the original dataset. Finally, the generated dummy face data is added 
to the original dataset to form an extended augmented dataset. By utilizing this method, the 
author can effectively expand the range of our data and improve the diversity of our datasets. 
As a result, we provide more comprehensive and valuable data to strengthen the training of 
future facial anti-spoofing models. 

3.2 Neural network structure design: UNet-Attention 

This research developed a novel neural network architecture, as illustrated in figure 4, which 
combines the UNet and Attention mechanisms. This integration enables the processing of a 
combined input comprising augmented data and raw data generated by the diffusion model, 
thereby enhancing the precision of face anti-spoofing detection. In order to optimize the neural 
network training process, the author has also updated the loss function to regularize and optimize 
the model from multiple perspectives. The following sections of the network are explained in 
detail, the design of the loss function, and the role of the Attention mechanism. 

 
Fig. 4. UNet-Attention network architecture. 

UNet structure analysis. The UNet architecture is known for its comprehensive convolutional 
neural network structure, which includes pathways for both subsampling and upsampled 
information. Its main advantage lies in its ability to preserve spatial resolution details through 
skip connections, leading to improved performance in tasks like image segmentation and feature 
extraction. In our face anti-spoofing task, UNet plays a crucial role in identifying real and fake 
faces by extracting multi-level features from the input image. The subsampled path consists of 
a series of convolutional and pooling layers that effectively capture both fine-grained and overall 
characteristics of the image. Each layer utilizes adaptable kernels during the convolution process, 
leveraging the ReLU activation mechanism to handle complex nonlinear attributes. Additionally, 
the pooling layer reduces the size of the feature map while retaining essential representative 
features through dimensionality reduction operations. 

In the subsampled path, each layer consists of two convolution operations and one pooling 
operation. Multiple convolution kernels are used to extract features, defined as (7): 

 𝐹5 = 𝜎(𝑊5 ∗ 𝐹5#1 + 𝑏5)  (7) 
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where 𝐹5#1 is the input feature map of layer l-1, 𝑊5 is the convolutional kernel weight, 𝑏5 is 
the bias, and 𝜎 is the ReLU activation function. The feature map obtained after the convolution 
operation will be normalized in batches to stabilize the training process. 

By applying a 2×2 pooling operation, the feature map's spatial resolution is reduced by half 
while retaining crucial feature information. This process can be mathematically represented as 
(8).: 

 𝑃5 = 𝑚𝑎𝑥({𝐹5[𝑖, 𝑗]}) (8) 

Here is the pooled feature map, which represents the pixel values of the lth position i and j. The 
path that is subsampled obtains the features of the image at different levels, and as more layers 
are added to the network, it becomes capable of capturing increasingly abstract characteristics. 

The upsampled path restores the high-level semantic features obtained during the subsampled 
process to the spatial resolution of the original image through a deconvolution layer. The 
operation of deconvolution is to perform an inverse operation on the convolution and gradually 
zoom in on the feature map. The deconvolution process can be expressed as (9): 

 𝐹5
′ = 𝜎 Q𝑊5

′ ∗ 𝐹5#1 + 𝑏5
′R (9) 

The features from the subsampled path in UNet are directly transmitted to the corresponding 
layer in the upsampled path through a skip connection. Through this structure, the model can 
use the detailed features extracted earlier when upsampled to avoid information loss. The skip 
connection adeptly integrates the feature map from the encoding phase with its counterpart in 
the decoding phase by means of concatenation. 

Attention mechanism. In the conventional UNet structure, the primary emphasis of the 
convolutional layer lies in extracting local characteristics from the image. Moreover, by 
increasing the size of the convolutional kernel, a greater amount of global information is 
captured by the model. However, this design can lead to the neglect of some important detail 
features when dealing with complex tasks. Therefore, a self-attention mechanism was added to 
each layer of the upsampled path of the UNet architecture to increase the focus on important 
features. The Self-Attention mechanism has the potential to elevate the quality of feature 
representations by determining the relationship between every location on an input feature map 
with all other locations within that map. The formula is as follows (10): 

 𝐴(𝑄,𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 Z:/
"

;<#
[𝑉 (10) 

where Q is the query matrix, K is the key matrix, V is the value matrix, and 𝑑= is the scaling 
factor. The Attention mechanism adjusts the importance weights of the feature map by 
calculating the correlation between each location and other positions. The introduction of the 
Attention module after sampling each layer of the convolution of the path on the UNet ensures 
that the network can focus more on the key regions in the spoof image in the process of 
recovering spatial information. This mechanism is especially important for anti-spoofing tasks, 
because faked features tend to have special patterns only in certain local areas (e.g., light 
anomalies, detail fakes, etc.), and Attention can capture these subtle but crucial differences. 



Design of the loss function. The primary objective of the model's training is to enhance its 
proficiency in differentiating between genuine and counterfeit facial images. The researcher 
designs a composite loss function that combines multiple loss terms, and its formula is as 
follows (11): 

 𝐿>?6@A55 = 𝐿BBCD + 𝛼𝐿E>F1"@GE"2?6 + 𝛽𝐿E@>11#6F"@>4H (11) 

𝐿BBCD:It is used to maintain the perceptual similarity between the generated image and the real 
image, and the Structural Similarity Index (SSIM) is used. The formula is (12): 

 𝐿BBCD = 1− 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 1− I2J$J%KL1MI20$%KL2M
IJ$2KJ%2KL1MI0$2K0%2KL2M

 (12) 

𝐿E>F1"@GE"2?6:Mean square error (MSE) is used to measure the pixel-level difference between 
the generated image and the real image. The formula is (13): 

 𝐿E>F1"@GE"2?6 = 𝑀𝑆𝐸(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2 (13) 

𝐿E@>11#6F"@>4H:Classical classification loss, which is used to supervise classification accuracy. 
The formula is (14): 

 𝐿E@>11#6F"@>4H = −∑ 𝑝2 𝑙𝑜𝑔(1− 𝑝2)1
2'0  (14) 

The design of this comprehensive loss function helps the model to optimize the classification 
accuracy and pixel-level similarity while ensuring perceived similarity. The model's 
generalization capability can be enhanced by receiving diverse informational feedback from 
each loss item. 

UNet with attention. In the inference phase of the final model, a hybrid dataset (consisting of 
augmented data and a raw dataset) passes through the UNet with Attention network as input. 
This network combines UNet and Attention, can fully capture the fine-grained and global 
features in the image, especially the fake faces generated by the diffusion model, whose subtle 
distinctions in the features might not mirror the genuine faces, and the Attention mechanism 
boosts these disparities, aiding the model in more effectively discerning the authentic from the 
forged. 

4 Experiment 

The researcher utilized the Celeb A dataset, which contains over 200,000 celebrity facial images 
with various facial attribute labels such as gender, hairstyle, and glasses. The dataset is divided 
into three subsets: training set, validation set, and test set for different applications including 
face attribute analysis, identity recognition based on facial features and attempts to decect 
deception in face recognition systems. 

During the initial data preprocessing stage, only real human face data was selected to train the 
diffusion model to ensure that the generated augmented data is very similar to real human faces. 
Additionally, each image was adjusted to a size of 128×128 pixels to meet model input 
requirements. All images were normalized within a pixel value range of 0–1 to reduce noise 
impact on model performance. 



In configuring diffusion model parameters, T was set at 1000 steps gradually adding noise and 
performing denoising training. DDIM algorithm was used during sampling process with 50 
backpropagation steps ensuring high-quality fake faces are generated. To further enhance the 
realism of generated data, small noise adjustments were made during each sampling iteration. 

UNet-Attention network was trained using Adam optimizer with an initial learning rate of 1e-4 
and applying learning rate decay strategy by reducing it by a factor of 0.1 every 200 iterations. 
Maximum training rounds were set at 300 while batch size of 32 optimized GPU performance 
and prevented overfitting. 

Classification accuracy, Structural Similarity Index (SSIM), and Normalized Mean Square Error 
(NMSE) were chosen as evaluation metrics for comprehensive assessment of model 
performance. In experimental process, the performance of each model was tested on test sets 
recording their accuracy and similarity in recognizing real and fake faces. 

5 Results 

This study compares the proposed Anti-diffusion Net with three commonly used deep learning 
models (CNN, DNN, GAN) in terms of their performance on real and fake faces. The evaluation 
metrics employed include classification accuracy, structural similarity index (SSIM), and 
normalized mean square error (NMSE). Table 1 presents the specific results obtained for each 
model.  

Based on the findings, it can be concluded that the proposed Anti-diffusion Net outperforms 
other models in various performance indicators. Firstly, the accuracy of Anti-diffusion Net 
reached 95% in detecting real faces, which was improved by 3%, 2% and 4%, respectively, 
compared to CNN, DNN and GAN. The model also achieved a detection accuracy of 90% for 
fake faces, exceeding CNN, DNN, and GAN by 5%, 2%, and 3%, respectively.  

Table 1. Performance Metrics for Face Detection Methods. 

Method Accuracy 
 (Real Face) 

Accuracy 
(Spoofing Face) SSIM NMSE 

Anti-diffusion Net (Proposed) 95% 90% 0.98 0.02 
CNN 92% 85% 0.95 0.05 
DNN 93% 88% 0.96 0.04 
GAN 91% 87% 0.94 0.06 

 

In addition to accuracy, Anti-diffusion Net also performs well in image quality evaluation 
indicators. The SSIM value was 0.98, which was higher than that of CNN (0.95), DNN (0.96) 
and GAN (0.94), indicating that the proposed model had more advantages in image similarity 
preservation. At the same time, NMSE value was 0.02, which was significantly lower than those 
of CNN (0.05), DNN (0.04), and GAN (0.06), indicating that Anti-diffusion Net has a lower 
error rate and higher reconstruction accuracy in terms of reconstruction error. 

In summary, the proposed Anti-diffusion Net not only has higher accuracy in detecting real and 
fake faces but also performs well in maintaining image quality while controlling reconstruction 



errors. This implies that this approach has potential for better distinguishing between authentic 
facial images from counterfeit ones, making it well-suited for practical solutions within facial 
anti-spoofing field. 

6 Conclusion 

The author introduces an innovative anti-spoofing technique for facial recognition that leverages 
a diffusion model combined with UNet-Attention enhancements. Through the diffusion model's 
ability to craft convincing fake faces that mimic genuine ones during the reverse diffusion phase, 
the diversity of the initial dataset is bolstered, thereby enriching the training material even 
further. The augmented data generated helps the model better capture complex patterns in fraud 
attacks compared to existing methods. Subsequently, a UNet network structure combined with 
attention mechanism was designed, which could extract multi-scale features more finely and 
effectively focus on important regions in the image. The findings show that the proposed 
methods are superior to the existing methods after testing. The findings underscore the scheme's 
viability in the realm of facial anti-spoofing, underscoring the necessity for bolstering the 
security and dependability of facial recognition tech. Despite the considerable advancements 
achieved in this research, there are lingering limitations to address. Firstly, despite the enhanced 
diversity of training data achieved through the diffusion model's generation of counterfeit 
images, there remains scope for enhancing the quality and genuineness of these fabricated 
images to more accurately replicate intricate real-world instances of fraudulent attacks. 
Secondly, existing celeb A datasets have certain limitations in the diversity and extensiveness 
of real attack types. Future studies should consider incorporating a wider range of datasets from 
various regions and devices in real-life situations to enhance the model's ability to adapt to 
different environments. 

Future research directions can include the following aspects. First, in terms of datasets, it is 
necessary to further expand the datasets used for training and evaluation, especially cross-device, 
cross-cultural, and multimodal data. Secondly, the combination of multi-modal data, such as 
infrared and depth information, can further enhance the fraud prevention ability and robustness 
of the model in different environments. 
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