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Abstract. This paper investigates wireless charging systems for drones, focusing on key 
issues such as improving charging efficiency, enhancing misalignment tolerance, 
lightweight design, and multi-parameter optimization. First, the design and optimization 
of the resonant compensation network were conducted to improve the charging efficiency 
of the system. Second, the control system for wireless charging was optimized to enhance 
misalignment tolerance in complex charging environments. Finally, a multi-objective 
optimization of the magnetic coupling mechanism parameters in the wireless charging 
system was performed using the second-generation Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and Latin Hypercube Sampling (LHS), aiming to enhance the 
system's overall lightweight and anti-misalignment performance. Experimental results 
show that the proposed optimization method significantly improves charging performance 
and provides an effective design strategy for parameter optimization in wireless drone 
charging systems. 

Keywords: Drone, Wireless charging, Charging efficiency, Lightweight, Misalignment 
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1 Introduction 

1.1 Research Background 

In recent years, with the rapid development of drone technology, drones have gained significant 
importance in areas such as agricultural monitoring, delivery services, and surveillance due to 
their simple structure, small size, low cost, and operational flexibility [1]. However, limited 
battery life remains a key challenge, restricting drone performance during extended tasks. To 
address this issue, wireless charging technology has emerged as a crucial solution to extend the 
operational time of drones. Wireless charging enables energy transfer from ground stations to 
aerial drones through electromagnetic induction or radiation, allowing for remote, contactless 
charging and increasing drone efficiency and operational duration. 

Despite the promising potential of drone wireless charging technology, several challenges 
remain in practical applications. First, charging efficiency is a critical factor for system 
performance. Existing wireless charging systems present opportunities for improvement in the 
design of magnetic coupling mechanisms and circuit efficiency. Second, with the increasing 
diversity of drone application scenarios, lightweight design becomes essential. Reducing system 
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weight without compromising charging performance is crucial for extending drone flight time 
and flexibility. Additionally, misalignment during flight due to drone movement can impact 
charging efficiency, necessitating enhanced misalignment tolerance in the system. 

1.2 Literature Review 

In the field of wireless charging technology, existing research has mainly focused on improving 
charging efficiency, enhancing misalignment tolerance, and lightweight design. Wei Xiaozhao 
[2] conducted an in-depth study on the LCC-LCC structure of wireless charging systems for 
electric vehicles and proposed methods to optimize the magnetic coupling mechanism and 
improve the compensation network to enhance overall system efficiency. Dai Womeng et al. [3] 
investigated the offset compensation method in LCC-S type wireless power transmission 
systems, demonstrating that this method can effectively enhance the system's misalignment 
tolerance, particularly in application scenarios with significant misalignment and load variations. 
Additionally, Jiang Jinhai [4] proposed a dynamic wireless power supply technology based on 
bipolar primary rails, which improves the stability of the system in complex environments by 
optimizing the coupling and transmission path, providing technical support for the dynamic 
adaptability of future wireless charging systems. 

From the perspective of misalignment tolerance, Yan Hai et al. [5] proposed a magnetic resonant 
coupling wireless power transfer technology based on PP compensation structure. By 
optimizing the design of the magnetic coupling mechanism and compensation topology, this 
approach significantly improves system stability and efficiency, especially under various load 
conditions. Chen Deqing et al. [6] conducted a detailed analysis of energy losses in wireless 
charging systems and optimized magnet structures for different application scenarios, enabling 
the system to increase transmission efficiency while reducing energy losses, resulting in a more 
efficient wireless charging solution. 

In summary, significant progress has been made in existing literature to improve the efficiency 
and stability of wireless charging systems. However, there is still substantial room for 
improvement in the field of multi-objective balanced optimization. Future research can build on 
current technologies, integrating advanced intelligent control strategies and optimization 
algorithms to achieve more efficient, stable, and adaptable wireless charging systems. This will 
not only meet the demands of existing applications but also provide more reliable technical 
support for emerging application scenarios, thereby promoting the widespread application of 
wireless charging technology across various fields. 

This study focuses on addressing three key technological issues in drone wireless charging 
systems: improving charging efficiency, lightweight design, and enhancing misalignment 
tolerance. By tackling these challenges, this paper aims to improve the overall performance of 
drone wireless charging systems and provide efficient and reliable energy solutions for broader 
drone applications. Therefore, in-depth analysis and resolution of key issues in wireless 
charging systems, and improvement of wireless charging efficiency for drones, will be the key 
to promoting their widespread application in the industrial field. 



2 Optimization of Charging Efficiency in Drone Wireless Charging 
Systems 

2.1 Design and Optimization of Resonant Compensation Networks Wireless Charging 
System 

Circuit Structure and Working Principle of Wireless Charging Systems. The circuit 
structure of a wireless charging system consists of several key components: a high-frequency 
inverter circuit, a magnetic coupling mechanism with a resonant compensation network, and a 
secondary energy conversion circuit [7]. The specific structure is shown in Figure 1. 

 
Fig. 1. Wireless Charging System Circuit Structure 

(1) High-Frequency Inversion Section: Comprising rectification and high-frequency inversion, 
it converts AC mains power into DC and then into high-frequency AC through an inverter. This 
high-frequency AC drives the transmitting coil, generating a magnetic field for energy 
transmission. 

(2) Resonant Compensation Network: By introducing specific inductances and capacitances at 
the transmitting and receiving ends, this network enables the system to achieve resonance at a 
certain frequency, reducing impedance and reactive power. 

(3) Magnetic Coupling Mechanism: Consisting of transmitting and receiving coils, and their 
associated resonant compensation networks, the transmitting coil generates a high-frequency 
magnetic field that wirelessly transfers energy to the receiving coil. 

(4) Secondary Energy Conversion Section: Converts the received high-frequency AC into stable 
DC power for use by the drone. 

Analysis of Resonant Compensation Network Types. In wireless charging systems, variations 
in mutual inductance between the primary and secondary coils may occur due to distance and 
alignment issues. Resonant topologies use specific inductance and capacitance to maintain 
resonance, minimizing impedance and maximizing energy transfer efficiency at the resonant 
frequency. 

Compensation networks are generally classified into S-S, S-P, P-P, and P-S types, where "S" 
refers to series and "P" to parallel configurations [8]. More complex hybrid compensation 
networks, such as LCC-LCC [2] and LCC-S [3], also exist. The P-P type network can achieve 



efficient energy transfer, particularly under variable load conditions, and is relatively simple to 
design, making it suitable for lightweight, integrated drone systems. Therefore, this paper 
focuses on the design and control optimization of the P-P type compensation network. 

2.2 Control Strategy for the P-P Resonant Compensation Network 

Introduction. Drones typically use lithium batteries as energy storage devices. While the P-P 
network can theoretically provide constant current output, variations in load conditions and coil 
misalignment can disrupt the resonance state and output current [5]. To address this, suitable 
control strategies are needed to stabilize output current. Common control methods include 
frequency modulation, phase shift control, and DC-DC control [6]. Given the need for 
lightweight design, this study selects a DC-DC control system in the secondary circuit to adjust 
the output directly. 

Principle and Modeling of Power Converters. The P-P network's high voltage gain requires 
the use of a Buck converter to step down voltage and achieve stable control. The Buck 
converter's PWM-controlled circuit is shown in Figure 2. 

 
Fig. 2. PWM-Controlled Buck Circuit 

In the Figure 2, Sw represents the power MOSFET, D is the freewheeling diode, and L and C 
represent the energy storage inductor and filter capacitor, respectively. By switching Sw, input 
voltage is converted into a rectangular waveform, and the LC filter extracts a stable DC voltage 
output (Vo). The average state equation for the system in one period (T) is given by the 
following equations: 
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where D is the duty cycle of the PWM control signal. 

The transfer function of the Buck converter, including inductance current and output voltage: 
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Control Strategy for Power Converters. Buck converters are typically controlled using one 
of three methods: Pulse Frequency Modulation (PFM), Pulse Width Modulation (PWM), or 
PWM/PFM hybrid control. This study selects the PWM method, and within PWM, three sub-
methods are considered[4]: 

(1) Voltage Mode Control 

(2) Peak Current Mode Control 

(3) Average Current Mode Control 

Among these, average current control provides faster transient response and higher stability, 
with simpler circuitry and automatic current-sharing capabilities, making it the most suitable for 
this study. 

Converter Design Based on Average Current Mode Control. In the previous section, the 
selection of the converter and the control strategy was preliminarily determined, with the choice 
to use average current control. To achieve control of both current and voltage, average current 
control includes two closed-loop control loops: the inner loop compensates for current, while 
the outer loop compensates for voltage. 

For the current inner loop compensation, according to equation (4), the transfer function of the 
inductor current is obtained: 
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The PI compensator controls the current inner loop, and its compensation function is: 
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To ensure system stability, the phase margin after compensation is set to 60°, and the following 
equation is derived: 
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ω2—crossover frequency (in PI control, the crossover frequency is generally selected as 1/10 to 
1/5 of the switching frequency). By solving, we get: 
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Based on the following experimental parameters, the Bode plots can be obtained: 



𝑉%' = 35𝑉	 , 𝑉3 = 16𝑉	 , 𝐿 = 40µH  , 𝐼3 = 16𝑉	 , 𝐶 = 100nF	 , 𝑓) = 140𝑘𝐻𝑧	 , 𝑅 =
7.5𝛺	, 	𝜔4 = 𝑓)/10 

 
Fig. 3. Bode Plot of Current Inner Loop Before and After Compensation 

By calculating	G+ = G"(s) ⋅ G"-(s),and comparing the Bode plots before and after compensation, 
the compensation effect of the inner loop compensation circuit can be evaluated. 

 
Fig. 4. Double Closed-loop PI Control Block Diagram 

For the voltage outer loop compensation, based on the previous discussion, the compensated 
transfer function of i5(s) with respect to e"(s) is G+(s): 
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The compensated transfer function of	i5(s) with respect to i789(s) is G((s): 
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The compensated transfer function ofv$(s) with respect to i789(s) is G:(s): 
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After PI compensation, the compensation function of the outer loop voltage is: 

𝐺,(𝑠) = 𝐾,. +𝐾,"/𝑠 (11) 

The open-loop transfer function is: 

𝐺;(𝑠) = 𝐺,(𝑠) ⋅ 𝐺:(𝑠) =
𝐾,.𝑠 + 𝐾,"

𝑠 ⋅
𝑅

1 + 𝑅𝐶𝑠 ⋅
𝐺"(𝑠) ⋅ 𝐺"-(𝑠)

1 + 𝐺"(𝑠) ⋅ 𝐺"-(𝑠)
(12) 

To ensure system stability, the phase margin after compensation is set to 60°, and the following 
equation is obtained: 
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By solving equations (12), (13), and (14) simultaneously, we get: 
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Using the same parameters, the following Bode plots can be obtained. 

 
Fig. 5. Bode Plot of Voltage Outer Loop Before and After Compensation 



By comparing the Bode plots of the open-loop transfer functions G:(s) and G;(s) before and 
after compensation, the compensation effect of the inner loop compensation circuit can be 
evaluated. 

By integrating the above two compensation circuits, the rationality of the inner and outer loop 
compensator design can be verified based on the selected converter parameters. 

3 Multi-parameter Optimization of the Drone Wireless Charging System 

3.1 Drone Parameter Optimization Problem 

Overview of Multi-objective Optimization. In the optimization process of wireless charging 
systems, there are various evaluation criteria, such as efficiency, output power, the mutual 
inductance range of the magnetic coupling mechanism, and weight. Optimizing one parameter 
may affect the performance of others, for example, increasing output power may lead to a higher 
weight. Therefore, it is not advisable to optimize just a single criterion. 

To address this issue, multi-objective optimization algorithms can be employed. Unlike single-
objective optimization, which typically results in a single solution, multi-objective optimization 
provides a set of solutions. These solutions are known as Pareto optimal solutions, and the set 
they form is called the Pareto front (PF). However, solutions in the Pareto front cannot be simply 
compared by a superior-inferior relationship. The core goal of multi-objective optimization is 
to find the Pareto optimal solution set to achieve parameter optimization. 

Evaluation Criteria for Multi-objective Optimization Algorithms. Before discussing the 
evaluation criteria, it’s important to understand the following terms [9]: 

1. Pareto Dominance:   

In multi-objective optimization, if one solution performs better than another on all objectives, it 
is said to "dominate" the other solution. 

2. Pareto Optimal Solution:   

A Pareto optimal solution is one that is not dominated by any other solution. This means that no 
other solution can improve one objective without worsening at least one other objective. In other 
words, a Pareto optimal solution represents the best trade-offs among multiple objectives. 

3. Pareto Optimal Solution Set:   

This is the collection of all Pareto optimal solutions, and none of them dominates another. Each 
solution represents the best balance for different objectives. 

4. Pareto Front:   

The Pareto optimal solution set mapped to the objective space forms the boundary called the 
Pareto front, which typically represents the limit of all "best" solutions in a multi-objective 
optimization scenario. 

The core goal of multi-objective optimization algorithms is to find the Pareto optimal solution 
set and the Pareto front. The evaluation of multi-objective optimization results typically includes 



two aspects: how close the solution set is to the Pareto front and whether the individuals in the 
set are evenly distributed. This paper adopts the Inverted Generational Distance (IGD) as an 
evaluation metric [10], which calculates the average shortest distance between each solution and 
a reference set uniformly distributed on the Pareto front. A smaller average value indicates better 
convergence and distribution, as shown in equation (15): 
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Where N is the number of individuals in the Pareto solution set found by the algorithm, v is 
an individual, PF∗  is an individual in the reference set, and d  is the Euclidean distance 
between them. 

3.2 Selection of Multi-objective Algorithms 

The CEC test set is commonly used to evaluate and compare the performance of different 
optimization algorithms, especially in multi-objective and global optimization problems. This 
paper uses test functions from the CEC2021 test set, selecting seven functions. The goal of 
optimization for all functions is to minimize the value of each sub-function, and their Pareto 
fronts exhibit different characteristics (e.g. ZDT2, ZDT6, Kita, and DTLZ functions have 
convex Pareto fronts; ZDT1, ZDT4 have non-convex fronts, and the ZDT3 front is a 
discontinuous line segment). The ZDT5 function, which uses binary coding and has limited 
variable ranges, is excluded. Each algorithm performs 50 repeated experiments on each function, 
comparing the best, worst, and average IGD. The smaller the IGD, the stronger the optimization 
capability of the algorithm. 

Table 1. Numerical Experiment Results of Various Multi-Objective Optimization Algorithms 

    F1 F2 F3 F4 F5 F6 F7 

NSGA-II[11] 

BEST 0.82633 0.65612 1.268859 0.73046 0.55585 0.54255 0.750704 

WORST 1.84847 1.96987 11.84169 12.43558 3.135424 1.16033 1.614683 

AVG 1.12385 1.11268 2.961836 1.30637 0.77952 0.80898 1.070159 

MOPSO 

[12] 

BEST 1.234886 1.099569 1.31795 1.20977 1.125339 0.809491 0.70235 

WORST 2.270709 1.881339 4.28946 2.532768 2.41219 1.436588 1.31522 

AVG 1.502437 1.378716 1.77601 1.525051 1.500034 1.11185 1.0583 

BPSO1 

[13] 

BEST 30.62874 24.06794 22.89918 6.355248 56.59997 7.414222 4.58184 

WORST 647.7584 942.3512 980.0889 168.7672 63.77148 163.0044 79.08461 

AVG 87.78781 287.1787 641.2318 69.34512 60.25904 67.37144 74.05153 

BPSO2 

BEST 34.51287 34.62691 18.76288 4.282093 55.47379 14.92747 2.154516 

WORST 962.1836 942.3512 980.5302 63.89543 64.27901 163.0044 78.26657 

AVG 289.1266 476.7457 738.1243 17.26492 59.50034 84.67858 55.20632 



DE1[14] 

BEST 63.90577 69.17557 109.9627 67.28569 55.82224 50.15055 72.6971 

WORST 73.61178 78.54924 119.5418 74.56483 64.37751 60.57395 77.6658 

AVG 69.54472 74.21825 114.5514 71.11977 60.03732 56.24749 75.35775 

DE2 

BEST 37.19271 68.63122 110.6084 34.44157 54.64699 52.64059 38.31232 

WORST 38.00001 78.47911 118.4664 42.32861 64.96864 62.47802 43.23736 

AVG 37.90596 73.14763 114.7791 38.16626 60.13326 57.2761 40.71459 

 

The results show that NSGA-II performs best in terms of average optimization capability for 
ZDT1, ZDT2, ZDT4, ZDT6, and Kita functions. Therefore, NSGA-II is selected as the multi-
parameter optimization algorithm for the drone. 

4 Parameter Optimization of Lightweight Magnetic Coupling Mechanism 
Based on NSGA-II 

4.1 NSGA-II and Latin Hypercube Sampling (LHS) 

NSGA-II Algorithm. The Genetic Algorithm (GA) is an evolutionary algorithm that simulates 
the natural selection process, where individuals that better adapt to their environment are 
selected, and their offspring inherit genes while undergoing crossover and mutation. Through 
generations of selection, the optimal solution is obtained. The second-generation Non-
dominated Sorting Genetic Algorithm (NSGA-II) is an improvement of GA that introduces the 
concept of dominance and uses dominance relationships to determine the quality of 
individuals[15]. Dominant individuals are more likely to pass on their traits. NSGA-II also 
introduces a crowding strategy, which refers to the largest rectangular space between one 
individual and others. Higher crowding indicates greater individual diversity. This strategy 
ensures the diversity of solutions. 

Latin Hypercube Sampling (LHS). At the start of the genetic process, an initial population is 
needed. In random sampling, parameter values are selected arbitrarily, which may lead to dense 
sampling in some areas and sparse sampling in others. LHS divides each parameter range into 
multiple equal intervals, ensuring that each interval contains at least one sample point. LHS 
ensures uniform distribution of sampling points across dimensions, enhancing the diversity of 
parameter combinations. 



4.2 Parameter Optimization Method for Lightweight Magnetic Coupling Mechanisms 

Parameter Selection. The racetrack-shaped coil coupling mechanism consists of a racetrack 
transmitter and a square receiver. Due to its large mutual inductance and strong anti-
misalignment capability, it is often used in wireless power transfer systems. The key parameters 
include inner coil size Ln, the number of turns for the inner and outer layers of the transmitter 
N1, N2, receiver turns NR, and transmission distance H. When evaluating the anti-misalignment 
capability, the radius of the incircle R, which forms the boundary where the mutual inductance 
drops to 50% of its aligned value, is used as the evaluation metric. Therefore, R is set as the 
optimization target. To balance lightweight design and anti-misalignment performance, smaller 
Ln and NR, and larger R and H are required. 

Optimization Process. First, constraints are imposed on the parameters Ln (55-95mm), N1 (1-
20), N2 (1-20), NR (1-20), and H (50-150mm) and Latin Hypercube Sampling is used to 
generate the initial population within these constraints. Then, each individual in the population 
undergoes simulation analysis to obtain R and calculate fitness. Fast non-dominated sorting is 
performed, and if convergence conditions are not met, the individuals are selected, and 
crossover and mutation are applied to generate offspring. The offspring and parents are 
combined, and the process is repeated. After multiple cycles, the proportion of first-level 
individuals—those with the strongest dominance—stabilizes. The solution set formed by these 
individuals is mapped into space, producing the Pareto front. Solutions at the extremes of the 
Pareto front, which perform well in some parameters but poorly in others, should be discarded 
to ensure a comprehensive balance of parameter performance. 

 
Fig. 6. optimization flowchart. 

After the algorithm converges, the individuals at both ends of the Pareto front in the first layer 
are discarded, followed by further screening. Finally, the transmission distance of 50 mm is 



selected, with the inner coil size of 65 mm, and the number of turns for the outer and inner coils 
being 19 and 10, respectively, while the receiving end has 18 turns. The relationship between 
the total mutual inductance and the offset distance is shown in the figure, where it can be 
observed that these parameters improve the anti-offset capability within a certain range of 
conditions. 

 
Fig. 7. Graph of Total Mutual Inductance vs. Offset Distance 

The NSGA-II algorithm not only balances anti-misalignment capability and lightweight design 
but can also be applied to parameter optimization in other areas, such as compensation network 
parameters, making NSGA-II an effective optimization method in future research. 

5 Conclusion 

This paper addresses key issues in drone wireless charging technology, proposing several 
solutions and conducting in-depth analysis and optimization. Regarding charging efficiency, the 
resonance compensation network was optimized to improve energy transmission efficiency. For 
anti-misalignment capability, the coupling mechanism and compensation topology were 
optimized, enhancing system stability. Moreover, multi-objective optimization algorithms were 
used to achieve a balanced improvement in all performance metrics of the drone wireless 
charging system. With further technological advancements, drone wireless charging systems 
will have broader applications, providing more reliable energy support for long-term, stable 
drone operations. 

References 

[1] Wu, Shuai, Cai, Chunwei, Chen, Yi, et al. Research Progress and Development Trends of Wireless 
Charging Technology for Multi-Rotor Drones. Journal of Electrical Engineering, 2022, 37(03): 
555-565. 

[2] Wei Xiaozhao. Research on Several Issues of Wireless Charging for Electric Vehicles with LCC-
LCC Structure [D]. Shandong University, 2021. 



[3] Dai Womeng, Li Zhizhong, Zhang Haonan, Li Jiefan. Offset Compensation Method Based on 
LCC-S Type WPT System [J]. Power Electronics Technology, 2023, 57 (08): 82-85. 

[4] Jiang Jinhai. Research on Dynamic Wireless Power Supply Technology Using Bipolar Primary 
Rails [D]. Harbin Institute of Technology, 2019. 

[5] Yan Hai, Mao Xingkui, Zhou Zhiwei. Research on Magnetic Resonant Coupling Wireless Power 
Transfer Technology Based on PP Compensation Structure [J]. Electrical Appliances and Energy 
Efficiency Management Technology, 2019, (17): 15-20. 

[6] Chen Deqing, Wang Lifang, Liao Chenglin. Loss Analysis and Magnet Structure Optimization of 
Wireless Charging Systems [J]. Transactions of China Electrotechnical Society, 2015, 1(9): 2-5. 

[7]  Zhang, Peng. Design of a High Power Density Modular Wireless Charging System for Drones. 
Harbin Institute of Technology, 2021. 

[8] Sun Xuege. Analysis and Design of a Strong Misalignment Tolerance and Lightweight Coupling 
Mechanism for UAV Wireless Charging Systems [D]. Chongqing University, 2021. 

[9] Liu Wei, Zheng Huanqi, Zhou Yucheng. Research on Multi-Objective Optimization Control 
Strategy for Fresh Air Systems Based on Improved NSGA-II [J]. Modern Electronics Technique, 
2024, 47 (15): 169-177. 

[10]  Liu, Hao. Research on the Performance Improvement of Magnetic Coupling Mechanism in 
Wireless Charging Systems for Rotor Drones. Northeast Forestry University, 2023. 

[11] Jia Huihui. Research on Software Test Case Selection Based on Improved NSGA2 Algorithm [D]. 
Anhui University, 2023. 

[12] Yang Wen, Ye Shuai, Yao Qishui, Yu Jianghong, Hu Meijuan. High-Speed Ball Bearing 
Optimization Design Method Based on Multi-Objective Particle Swarm-Genetic Hybrid 
Algorithm [J]. Electromechanical Engineering, 1-11. 

[13] Chen Jian, Huang Zhi, Xu Tingliang, Sun Taihua, Li Xueyuan. Bearing Fault Diagnosis Based on 
Improved Binary Particle Swarm Algorithm Optimized DBN [J]. Modular Machine Tool & 
Automatic Manufacturing Technique, 2024, (01): 168-173. 

[14] Zhou Li, He Rongyu, Li Hao, Tang Hui, Yang Liuxiangzi, Xia Yule. Design of Robotic Arm 
Trajectory Planning Based on Improved DE Algorithm [J]. Automation Technology and 
Applications, 2024, 43 (09): 12-15+41. 

[15] Ma, Shuo. Research on Multi-Objective Vehicle Routing Problem Based on Non-Dominated 
Sorting Genetic Algorithm. Dalian Maritime University, 2019. 


