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Abstract. Vascular ageing is a crucial metric of cardiovascular system health. Numerous 
studies have explored predicting vascular ageing using Photoplethysmography (PPG) 
signals and employing deep learning techniques. Nevertheless, these studies exhibit 
limitations such as reliance on human-involved processing, susceptibility to signal 
corruption, and dependence on signal amplitude. In this study, we propose a novel 
approach for detecting vascular ageing with PPG signals. The proposed algorithm 
combines visibility graphs with deep learning, offering a robust estimation with affine-
invariant and amplitude-independent characteristics. We tested our method on multiclass 
classification, binary classification, and age regression. Our model has demonstrated 
superior performance compared to other well-established baselines.  
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1 Introduction 

Vascular ageing is an important biomarker reflecting the overall health of the human 
cardiovascular system, characterized by structural and functional changes in blood vessels. 
These changes are central to the development of a wide range of age-related cardiovascular 
diseases, such as hypertension, atherosclerosis, and heart failure. 

Meanwhile, with the rapid development of portable sensors, Photoplethysmography (PPG) 
sensors have been widely integrated into devices such as smartwatches to monitor 
cardiovascular health by measuring blood volume changes in the microvascular bed of tissue. 
PPG is a photo-optical, non-invasive technique for measuring hemodynamics and has become 
a more frequently used diagnostic tool for cardiovascular diseases [1]. PPG utilizes light emitted 
through an LED in the green optical spectrum to measure tissue volume changes beneath the 
skin's microvasculature. The light intensity reflected from or transmitted through the skin is 
detected by the photodetector, typically a photodiode or image sensor, resulting in the PPG 
waveform, which is crucial for diagnosis [1]. Specifically, alterations in the morphology of the 
PPG waveform, along with certain features, have been demonstrated to reflect the arterial ageing 
process and the increase in arterial stiffness, enabling assessment of the patient's vascular health 
condition in the future [2]. Consequently, pulse waveform changes occur as arteries lose 
elasticity with age, such as a reduction in the amplitude of peripheral waves and increased 
stiffness in the upstrokes of the primary pulse [2]. 

Previous methods for the vascular ageing assessment using PPG data include manually defining 
mathematical characteristics of the waveform after applying signal processing on the raw 
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waveform before feeding it to the machine learning classification or regression models. 
Common features include waveform amplitudes, the proportion between the peaks and valleys, 
timing characteristics, and contour characteristics of the waveform and its derivative, which are 
intended to capture the ageing effects of the waveform [2][3][4]. For example, Pilt et al. used 
signal processing to manually select 12 features in the second derivative PPG waveform related 
to wave amplitudes and contour points.[3] Implementing multiple linear regression with these 
parameters yielded an R2 variance of 0.78-0.87 for estimating arterial stiffness indices relative 
to chronological age. 

Thus, due to its convenience and importance, it is natural to bring up the idea of diagnosing 
vascular ageing using PPG signals. Among them, deep learning approaches have attracted much 
attention due to the rapid progression of deep learning algorithms. Convolutional neural 
networks (CNNs), for example, are of relatively recent development and use deep learning, 
hence enabling direct extraction of robust hierarchical representations from the raw sensor data 
without much need for feature extraction [5]. The learned filters and accumulated feature maps 
enable CNNs to preserve the key features connected to the target output at different scales and 
locations in the input signal. 

However, these algorithms share different limits, such as heavy reliance on human-crafted 
features, amplitude dependence, and sensitivity to affine transformation. This work proposes a 
novel approach for detecting vascular ageing with PPG signals. The proposed algorithm 
combines visibility graphs with deep learning, providing a robust estimation with affine-
invariant and amplitude-independent characteristics. 

2 Related work 

2.1 Early Studies Using Manual Feature Extraction 

Yousef et al. were among the first authors to investigate the relationship between study variables 
in a study involving 60 young and elderly subjects [2]. The researchers defined and extracted 
ten time-domain and amplitude features from the PPG waveform, including the ratios of the 
highest peaks and deepest troughs. Logistic regression analysis of the manually extracted 
features yielded R2 values ranging from 0.71 to 0.79 for predicting arterial compliance, 
indicating the features that captured age-related changes. Pilt et al. conducted pulse waveform 
analysis on 65 subjects aged 18 to 75 years [3]. Twelve waveform features were identified from 
the second derivative of the PPG waveform (SDPPG), including contour points and wave 
amplitude. By using manually defined features for linear regression, they achieved R2 values in 
the range of 0.78 to 0.87 for estimating arterial stiffness indices [6]. Similar research was carried 
out by Ahn [4] with 111 participants aged 20-39 years and 60-79 years. Fifteen time and 
amplitude features were manually extracted from the PPG waveform and its first derivative. 
Correlation analysis of the calculated “ageing index” with chronological age ranged from 0.69 
to 0.74 [7]. 

2.2 Algorithm Development for Feature Extraction 

Another well-known study by Pilt et al. marked a significant advancement by introducing a new 
method to derive quantitative characteristics of plethysmographic waveforms from PPG for 



 

 

estimating ASI values [3]. The researchers involved 65 young and elderly male participants 
aged between 18 and 75 years with no history of cardiovascular diseases. Blood samples were 
collected through pulsed oximetry from the left index finger of the subjects in a seated position 
using the pulse oximeter system commonly available in the market. In this study, a new subject-
specific algorithm was developed and utilized to extract multiple parameters that characterize 
discriminative information from the SDPPG, which represents the second derivative of the raw 
PPG waveform. This process involved employing algorithms to derive the SDPPG traces from 
the raw PPG signals to enhance the clearly identifiable contour variations that are more 
prominent in the derived waveform compared to the primary derivative of the waveform alone. 
In total, 12 features, including amplitudes and the precise positions of significant points within 
the SDPPG waveform, were obtained using signal processing methods to identify these features. 

Linear regression models were then developed using the 12 manually extracted SDPPG features 
as predictor variables and the paired arterial stiffness indices obtained from the brachial-ankle 
PWV as dependent variables. The extracted features exhibited high R2 values in the range of 
0.78-0.87, indicating their strong potential to predict arterial stiffness accurately in relation to 
chronological age. The developed preprocessing algorithm was considered superior in its ability 
to facilitate the extraction of parameters sensitive to vascular ageing from PPG signals by 
providing numerical descriptions of waveform features. This established methodology set a 
reference point for further related research investigations. 

2.3 Computation of an “Aging Index” 

Tang et al. introduced a vascular ageing index based on the PPG signals of 100 subjects aged 
20 to 80 years. Initially, the PPG signal and its derivative were analyzed, yielding twelve time 
and frequency domain features [8]. An ageing score was derived from these features using a 
machine learning model, showing a negative correlation with actual age and a reliability of 0.89. 
Srinivasan et al. examined PPG signals from 120 individuals categorized as young (aged 18-30 
years) and older (aged 60-80 years) [9]. They developed a deep learning model directly on the 
raw PPG signal to classify subjects as young or old, achieving an accuracy of 85%. Shin et al. 
gathered PPG signals from 90 participants aged 25 to 75 years [10]. They extracted a total of 20 
time and frequency domain features and averaged them to compute an ageing score using a 
support vector machine. This approach showed a strong association with chronological age, 
with a correlation coefficient of 0.88. Charlton et al. conducted a study on 86 healthy subjects 
aged 20 to 70 years, analyzing recorded PPG signals [11]. They nonlinearly combined the 
twelve time and frequency domain features into a vascular ageing biomarker, which exhibited 
a positive correlation with age (r = 0.92, significance level = 0.000). 

2.4 Employment of Manual Feature Extraction 

It is worth pointing out that in the case of the works reviewed in this paper by Yousef et al., Pilt 
et al., and Ahn regarding the PPG-based vascular ageing prediction, it originated from the 
manual identification of predetermined quantitative parameters of the raw signal [2][3][4]. This 
preprocessing was intended to capture the ageing effect changes in a minimum yet effective 
dimensionality of features. In all the investigations, the number of extracted features was within 
ten to fifteen based on the PPG waveform’s time, frequency, and amplitude characteristics and 
its extension. Extracted features often used included ratios of pulse points, peak amplitudes, 
timing values, and the relative position of contours on the waveforms. Although this approach 



 

 

worked well, it became apparent that several issues arose in machine learning related to 
scalability, complexity of features, and the kinds of discriminative information that can be 
extracted from raw data in a preprocessing stage in a feasible manner. Equally, the labor-
intensive approach to sample analysis also limited rigorous validation and clinical translation 
capacity. 

2.5 Potential for Deep Learning Approaches 

Advanced deep-learning methods like CNNs alleviate the need to perform feature extraction on 
PPG signals using manual preprocessing. Without the need for manually extracting features, 
CNNs perform feature extraction through raw signal waveforms and learn hierarchal 
representations that best suit the particular prediction task at hand. This systematic analysis 
utilizes several layers: convolution, activation, and pooling. Convolutional filters that are run 
across the input at multiple resolutions pull implicit local features, activation and pooling down 
samples’ spatial and temporal dimensions for salient embedded characteristics. Fully connected 
layers are the subsequent layers, allowing for classification or regression modelling based on 
aggregated convolutional features. 

CNNs learn their weights and architectures through backpropagation and gradient descent 
training algorithms, thus creating end-to-end learning hierarchies of enhancing abstract 
representations directly from raw input data [12]. This avoids the limitations of heuristically 
selecting features for use in a model by using significantly more discriminative information that 
is spread out across the whole input signal. In the case of vascular ageing analysis, CNNs can 
potentially obtain reliable latent PPG-derived indices associated with slow waveform variations 
superior to hand-crafted features. Previous studies showed that CNN-based models had better 
results compared to standard machine learning on the raw medical time series [13]. Future 
application of CNNs to raw multichannel PPG may improve vascular status assessment based 
on DFL without an exhaustive preprocessing framework. 

3 Methods 

3.1 Graphs 

Graphs are robust mathematical concepts that represent intricate relationships between entries 
in diverse domains. Consisting of vertices and edges, graphs can depict relationships between 
vertices (such as dependencies) by connecting them with edges. Graphs find applications in 
various fields, including finance, social networks, and biological systems. Henceforth, we will 
denote the graph as G = (V, E), where 𝑉 stands for vertices and 𝐸 stands for edges. Figure 1 
illustrates an example graph with vertices and edges. 



 

 

 
Fig. 1. A graph with vertices and edges. 

Adjacency matrices encapsulate all the connection information of the corresponding graphs. For 
a graph of 𝑁 vertices, the corresponding adjacency matrix 𝐴 is of shape 𝑁 ×𝑁. If two vertices 
𝑣! and 𝑣" are connected, then 𝐴!," = 𝑤!," where 𝑤!," is the corresponding edge weight between 
vertices 𝑣! and 𝑣". For this work, all graphs will be unweighted and bidirectional, which means 
all edge weights will be one or zero, and the adjacency matrix will be symmetric over its 
diagonal line. 

3.2 From PPG Signals to Graphs 

PPG is famous for its convenience and non-invasiveness. However, it suffers badly from the 
vulnerability of light sensors, leading to corruptions like baseline wandering. Also, the 
magnitudes of the PPG signals are highly sensitive to factors that do not reflect cardiovascular 
health, such as skin thickness and skin tones, increasing the difficulty of extracting 
cardiovascular-related information. Although common approaches like min-max normalization 
could rearrange the signal magnitudes, the signal morphology is inevitably changed. Thus, it is 
necessary to develop a method to process the PPG signals, which shows benefits including: 

• No need for manual feature extraction. 
• Amplitude invariant. 
• Show robustness to corruption. 

Thus, we introduce a visibility graph to transform 1D time series signals into graphs. The 
visibility graphs encode structural information from the time series signals and discard the 
amplitude-related information. Given a time series signal 𝑦 , each signal point 𝑦!  is now 
converted into a vertex. Two vertices will be connected if a line connecting two signal points 
will no intersect with a third signal point. In other words, one signal point will see another one 
without being blocked by a third signal point, corresponding to the visibility term. More 
formally, two vertices (signal samples), 𝑦$ and 𝑦%, are connected by an edge if 

 𝑦& < 𝑦% + (𝑦$ − 𝑦%)
'!('"
'!('#

 (1) 

for any other signal sample 𝑦&, where 𝑡$, 𝑡% and 𝑡& are the time indices corresponding to the 
signal samples 𝑦$, 𝑦% and 𝑦&. It has been proven that the visibility graph can encode structural 
information [14][15], including: 

• Periodic time series are converted into regular graphs, where the degree distribution 
correlates with the signal’s periodicity. 

• Random time series will be converted into graphs that resemble exponential random graphs. 



 

 

• Fractal series are converted into scale-free networks, showcasing the algorithm’s 
effectiveness in maintaining intricate statistical features like self-similarity and scale 
invariance within the graph structure. The method also successfully identifies the hub 
repulsion phenomenon typical of fractal networks, allowing for a clear distinction between 
scale-free visibility graphs that demonstrate the small-world effect and those that preserve 
scale invariance. 

Thus, time series PPG signals can now be transformed into visibility graphs, which are 
amplitude-independent but preserve structural information. In this way, we can also extract 
import geometry information such as time delay, stiffness index, dicrotic notch, etc. 

3.3 Convolutional Neural Networks and Graph Convolutional Neural Networks 

Convolutional Neural Network (CNN) is a type of neural network that specifically works with 
regular-structure data, such as images and 1D signals. CNNs use a series of convolutional layers 
to automatically learn hierarchies of spatial features. The extracted features are further processed 
for future tasks. CNNs are naturally suitable to work on 1D PPG signals for vascular ageing 
detection due to the regular structure of PPG time series. 

However, CNNs do not work on irregular data domains such as graphs. For graphs, each vertex 
has a non-fixed number of neighbours (connected nodes), leading to a dynamic kernel size. Thus, 
graph convolution has been introduced to compensate for this inadequacy. 

Graph convolution adapts the idea of convolution to the graph domain by aggregating 
information from a vertex’s neighbours based on graph’s connectivity. This resembles the 
convolution ideas in CNNs to aggregate local spatial features for further actions, including but 
not limited to classification, regression, generation, etc. Typical graph convolutional neural 
networks include GCN, GraphSAGE, GAT, etc. In this work, we will utilize ChebyConv 
networks, which will be further introduced in the chapter afterwards. 

3.4 Chebyshev Convolution (ChebyConv) 

The Chebyshev Convolution (ChebyConv) is a graph convolutional layer designed to improve 
the efficiency of spectral graph convolutional networks (GCNs) by leveraging the properties of 
Chebyshev polynomials. Spectral GCNs traditionally define convolution operations in the 
spectral domain by applying filters to the eigenvalues of the graph Laplacian matrix, 𝐋 = 𝐃−
𝐀 , where 𝐀  is the adjacency matrix of the graph and 𝐃  is the degree matrix. However, 
computing the eigendecomposition of the Laplacian, which requires 𝒪(𝑁))  operations, is 
computationally expensive for large graphs, where 𝑁 is the number of nodes. 

To address this, ChebyConv approximates the spectral filter 𝑔*(𝐋) using a truncated expansion 
in terms of Chebyshev polynomials 𝑇+(𝐋6 ) up to order 𝐾, where 𝐋6 = ,

-max
𝐋 − 𝐈 is the scaled and 

normalized Laplacian, and 𝜆max  is the largest eigenvalue of 𝐋 . The spectral filter can be 
expressed as: 

 𝑔*(𝐋) ≈ ∑ 𝜃+.
+/0 𝑇+(𝐋6 ), (2) 

where 𝜃+ are the trainable parameters of the model. 

The Chebyshev polynomials are defined recursively as: 



 

 

 𝑇0(𝐋6 ) = 𝐈, 𝑇1(𝐋6 ) = 𝐋6 , 𝑇+(𝐋6 ) = 2𝐋6 𝑇+(1(𝐋6 ) − 𝑇+(,(𝐋6 ) for𝑘 ≥ 2. (3) 

Thus, the convolution operation on the node feature matrix 𝐗 ∈ ℝ2×4, where 𝐹 is the number 
of input features per node, is given by: 

 𝐙 = ∑ 𝜃+.
+/0 𝑇+(𝐋6 )𝐗, (4) 

where 𝐙 ∈ ℝ2×45 is the output feature matrix with 𝐹′ output features per node. 

This approach reduces the computational complexity from 𝒪(𝑁)) for the eigendecomposition 
to 𝒪(𝐾|𝐸|) for the Chebyshev polynomial expansion, where |𝐸| is the number of edges in the 
graph and 𝐾 is typically much smaller than 𝑁. The ChebyConv layer efficiently captures multi-
hop information within the graph structure while remaining computationally scalable by 
restricting the filter to be localised. This makes ChebyConv particularly suitable for large-scale 
graph learning tasks, where balancing computational efficiency and expressive power is crucial. 

3.5 VasVG 

Now we introduce the proposed model VasVG. The VasVG contains four ChebBlock modules 
and final classification layers. We will now denote a graph as 𝐺 and its node feature as 𝐹 ∈
ℝ6×7, where 𝑛 is the number of nodes and 𝑑 is the dimension of the feature. 

ChebBlock. Each ChebBlock module consists of three ChebyConv layers stacked together, 
namely 𝑓1, 𝑓, and 𝑓). The input graph node feature 𝐹 is processed as: 

 𝐹′ = 𝜎O𝑓) P𝐺, 𝜎 Q𝑓, R𝐺, 𝜎S𝑓1(𝐺, 𝐹)TUVWX (5) 

where 𝐹′ ∈ ℝ6×7$. 𝑑8 represents the feature dimension after the third ChebyConv layer. Then, 
three graph global pooling layers, namely max pooling, sum pooling and average pooling, are 
further applied to give three graph embeddings of dimension 1 × 𝑑8, and they are concatenated 
to form the final embedding of dimension 1 × 3𝑑8. The final embedding of the four ChebyConv 
layers is concatenated together to form the final graph embedding 𝐹9!6$: ∈ ℝ1×1,7$. 

Classification Layer. The 𝐹9!6$: graph embedding will be fed to an MLP with the output size of 
the final number of classes. 

4 Experiment 

4.1 Vascular Ageing Prediction 

For the first experiment, we aim to predict vascular ageing through PPG signals and visibility 
graphs.  

4.2 Data prerparation 

In this study, we utilized the Real-World PPG dataset, comprising PPG signals from 35 subjects 
captured using an IoT sensor. The subjects' ages range from 10 to 75 years old. We structured 
our investigation into three tasks: binary classification, multiclass classification, and age 



 

 

regression. For binary classification, we categorized the subjects into two age groups: under 30 
years old and 30 years old and above, aiming to predict these distinctions. Additionally, we 
segmented the subjects into four age brackets: 0-20, 20-30, 30-40, and 40+, conducting a four-
class classification task. Finally, we evaluated our model's performance on a regression task to 
predict the ages of the subjects. 

No preprocessing was conducted as visibility graphs are amplitude-invariant and exhibit 
robustness to noise. The PPG signals were segmented into individual pulses, and corresponding 
visibility graphs were constructed. White noise was introduced as node features. The resulting 
graph, combined with the node features, was input into the VasVG model to generate the final 
predictions. 

4.3 Preprocessing 

Preprocessing transforms the signal’s raw form into forms the algorithm can directly work on 
[16]. The signal is first detrended using the moving average method. Afterwards, the Hilbert 
transform is performed to demodulate the input signal. Furthermore, the demodulated signal is 
divided by the extracted envelope and normalized. 

In contrast to this cumbersome preprocessing pipeline, VasVG requires no preprocessing. The 
FindPeaks function in Matlab is applied to extract pulses, and no further action is taken before 
feeding the data into the VasVG model. 

4.4 Results 

Here, we introduce the performance of our proposed VasVG model on binary classification, 
multiclass classification and age regression. We compare the results with the baseline models 
proposed by Dall’Olio et al. [16] and Chiarelli et al. [17]. 

Table 1. The performance of our proposed VasVG mode and the baseline model proposed by Dall’Olio et 
al. on Binary classification 

Method Accuracy: Four Classes 
VasVG 94.3% 

Dall’Olio et al.[16] 93.5% 

Table 2. The performance of our proposed VasVG mode and the baseline model proposed by Dall’Olio 
et al. on multiclass classification 

Method Accuracy: Four Classes 
VasVG 89.35% 

Dall’Olio et al.[16] 87.14% 

Table 3. The performance of our proposed VasVG mode and the baseline model proposed by Chiarelli et 
al. on age regression. 

Method Accuracy: Four Classes 
VasVG 2.85% 

Chiarelli et al.[17] 3.5% 



 

 

Our model achieves better performance in terms of vascular ageing prediction, outperforming 
the well-established previous baseline in both binary and multiclass classification, as shown in 
Table 3. We have also demonstrated superior performance in the age regression tasks. Moreover, 
our model exhibits the advantage of faster training speed. We employed an early-stopping 
training method, where the training process halts if the training loss fails to decrease for five 
consecutive epochs. Our model has shown significantly faster convergence speed. 

5 Conclusion 

In summary, our proposed VasVG model significantly advances the use of PPG signals in 
predicting vascular ageing, surpassing established baseline models while reducing training time. 
The combination of visibility graphs with deep learning enhances accuracy and eliminates 
complex pre-processing steps, rendering the method more efficient and robust. However, the 
study has limitations, including the potential for overfitting to diverse datasets and the necessity 
for extensive validation across different populations. Future work will address these limitations 
through the integration of larger, more diverse datasets and by exploring the model's 
applicability in real-world clinical settings to further validate its effectiveness in predicting 
vascular health. 
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