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Abstract. Image retrieval is an important task in vision, and for a long time, the research has
focused on traditional algorithms or DL methods, but neglected the better measurement of fea-
ture extraction brought by the combination of the two, based on this, we propose UltraGlobal,
an Image retrieval method that uses DL method to extract features and encoding traditional al-
gorithms, and our main contributions are: 1) the introduction of PANet in the feature extraction
stage; 2) adopt long Global descriptors and improve GeM pooling; 3) NetVLAD(VLAD) was
introduced as an encoding layer; Experimental results demonstrate that UltraGlobal significantly
outperforms existing methods on standard benchmarks, showcasing exceptional scalability and
precision. This approach offers a more efficient and accurate solution for image retrieval systems.
Code: https://github.com/Lennox-Dai/UltraGlobal.
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1 Introduction

Image retrieval systems are crucial for various applications, such as digital asset manage-
ment and visual search engines. These systems aim to identify and retrieve images from extensive
databases that are similar to a given query image. The retrieval process is typically divided into two
key stages. Initially, a fast and efficient method sorts the database images based on their estimated
high-level similarity to the query. This stage is essential for narrowing down the vast pool of po-
tential matches to a manageable subset. Subsequently, in the reranking stage, the top candidates
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undergo a more detailed and computationally intensive matching process against the query image,
refining the initial results to produce a more accurate ranked list [1, 2, 3, 4].

In contemporary implementations, the initial stage frequently employs deep learning-based
global features. These methods have gained significant traction in recent years due to their robustness
and efficiency [5, 6, 7, 8]. On the other hand, the reranking stage often relies on geometric matching
of local image features [1, 2, 9, 10]. This technique provides valuable information about the spatial
consistency between the query and the database images, enhancing the accuracy of the retrieval
results.

Recent trends in image retrieval research have focused on utilizing advanced matching pro-
cesses during the reranking stage. Techniques such as transformers [11] and 4D correlation networks
[12] have demonstrated remarkable improvements in retrieval quality. However, these sophisticated
methods come with significant drawbacks, including increased reranking latency (several seconds
per query) and substantial memory requirements (over IMB per database image). These limitations
pose significant challenges when scaling to large repositories.

Our research directly addresses these limitations by introducing a novel method that relies en-
tirely on global image features for both retrieval stages. Additionally, we revisit pooling techniques,
proposing new modules to enhance global feature extraction. Our method, UltraGlobal, is illus-
trated in fig. 1 and brings the following innovations to the field of image retrieval:

* Enhanced Feature Extraction with PANet. We have incorporated PANet to extract com-
prehensive global features, significantly improving feature representation and capturing more
detailed information about the images.

* Multiple Improvements to GeMP Modules. We propose several enhancements to the GeMP
(Generalized Mean Pooling) module, enabling the extraction of multiple, richer features.
These improvements allow the system to capture a wider variety of image characteristics,
leading to better retrieval performance.

¢ Advanced Encoding Techniques with VLAD. We further refine the feature extraction pro-
cess by integrating advanced encoding methods such as VLAD. This step improves the sys-
tem’s ability to recognize subtle differences in images, thereby significantly enhancing overall
retrieval accuracy [1, 5].

UltraGlobal represents a groundbreaking approach to image retrieval that relies solely on
global features throughout the process. This eliminates the need for costly reranking based on local
features, significantly improving scalability and efficiency. Experimental results on standard bench-
marks highlight the effectiveness of the proposed method, setting new state-of-the-art performance
levels and demonstrating substantial improvements over previous approaches [13].

In summary, the unique contribution of UltraGlobal lies in its innovative use of global features,
advanced pooling techniques, and sophisticated encoding methods. These advancements collectively
lead to a more efficient, scalable, and accurate image retrieval system, addressing key limitations of
current state-of-the-art methods.
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Fig. 1. Overview of UltraGlobal

2 Related Work

2.1 Feature Extraction

SIFT (Scale-Invariant Feature Transform) [14] is a classic feature extraction algorithm identi-
fying key points invariant to scale and rotation, robust against illumination and noise changes. It is
widely used in tasks like object recognition, image stitching, and 3D modeling. CVNet [15] is a deep
learning-based convolutional neural network that extracts high-level image features, outperforming
traditional methods like SIFT in recognition and retrieval tasks. It leverages large datasets for robust,
generalizable feature representations. Tokens [16] represent images as sequences of tokens, akin to
words in NLP, allowing the use of transformers. This approach captures long-range dependencies
and contextual information, improving image retrieval accuracy. Superglobal [17] combines local
feature extraction like SIFT with the global representation capabilities of CNNs. This hybrid ap-
proach captures fine details and overall context, enhancing robustness and performance in varied
scenarios.



2.2

Encoding

Encoding Following the extraction of image features, the incorporation of an encoding step can

significantly enhance the efficiency and accuracy of image retrieval systems. Currently, prevalent
encoding methods include:

2.3

Bag of Visual Words (BoVW). a classical feature aggregation technique that quantifies lo-
cal features in images and maps them to a visual vocabulary, thereby creating a histogram
descriptor.[18, 19]

Fisher Vector (FV). represents a robust feature encoding approach that combines Gaussian
Mixture Models (GMM) with Fisher Information Matrices. It generates global descriptors by
statistically analyzing the distribution of local features.[20, 21]

VLAD (Vector of Locally Aggregated Descriptors). a feature encoding method that aggre-
gates local features into a compact global image descriptor. It clusters feature descriptors,
calculates the residuals relative to the cluster centers, and accumulates these residual vectors
to produce the final descriptor. VLAD exhibits exceptional performance in image retrieval
tasks, efficiently representing image features.[22]

NetVLAD. a neural network-based feature aggregation method, leverages the advantages of
VLAD and deep learning. It produces high-quality global descriptors through end-to-end
training.[5]

R-MAC (Regional Maximum Activations of Convolutions). extracts features from multi-
ple regions of an image and applies maximum pooling to generate a global descriptor. This
method effectively captures details and spatial information within images.[23]

Cross-dimensional Weighting (CroW). enhances the discriminative power of feature repre-
sentations by weighting each dimension of the feature map. It is particularly suited for features
extracted by deep convolutional neural networks (CNNs).[24]

DEFL (Deep Local Feature Learning). combines local and global features through end-to-
end learning to produce robust image descriptors.[25]

Reranking

Reranking is the process of refining the initial search results in image retrieval by applying a

more detailed matching process to the top-ranked images from the initial retrieval. This typically
improves the accuracy and relevance of the final ranked list.

Geometric Verification (GV) [19, 26] was once regarded as the most effective reranking method,

leveraging the geometric relationships within images for precise matching. However, with the rapid
advancements in deep learning technologies, researchers have increasingly adopted more complex
and parameter-rich models for reranking. These models include transformers [27] and 4D convo-
lutional neural networks (4D CNNs) [28, 29] with deeply stacked 4D convolution layers. These



advanced models have demonstrated exceptional performance in handling complex visual tasks, sig-
nificantly improving accuracy and making the reranking process more reliable and precise.

Another important research direction involves the use of lightweight convolutional neural net-
work (CNN) models to extract global features, replacing heavier models. This approach aims to
enhance the model’s inference capability and response speed while maintaining high accuracy. For
example, SuperGlobal [17] is a lightweight model that, through architectural and algorithmic op-
timization, significantly improves inference efficiency while ensuring high precision. This method
offers notable advantages in resource-constrained environments and excels in real-time applications,
providing faster response and processing for visual tasks.

3 Proposed Methods

3.1 Enhanced Feature Extraction with PANet

Through data attribution analysis, we discovered that despite methods like SuperGlobal using
global feature descriptors to extract global image information, the attention weights are still concen-
trated on certain local regions. Additionally, we found that during the inference phase, the model
does not require retraining, meaning that the feature tensors for each image in the database remain
stable and unchanged. Consequently, the impact of model complexity on speed can be considered
negligible in practical use, as it only affects the feature extraction speed of query images.

Therefore, we propose to increase model complexity by incorporating PANet between the in-
put image and ResNet to enhance the global receptive field, at the cost of sacrificing some feature
extraction speed. The specific model architecture is illustrated in fig. 2.

Fig. 2. Enhanced Feature Extraction with PANet

3.2 Multiple Improvements to GeMP Modules

To enhance the feature representation capability of the model, we introduce the Non-Local
Block module. This module captures long-range dependencies, helping to enhance global feature



representation and thus improve the overall performance of the model. The method was proposed in
[30]. The core idea is to enhance feature representation by computing non-local responses between
input features. We build a module based on this idea to improve the performance of our model. Here
is the structure and principle:

Feature Transformation. The input feature X undergoes three different convolutional trans-
formations to obtain feature maps G, ®, and &:

G=WX, (1)
0 = WX, (2)
D = WX 3)

Convolutional layers are used here to learn spatial hierarchies of features from the input images,
capturing local patterns effectively. Batch normalization layers are applied after these transforma-
tions to stabilize and accelerate the training process by normalizing the inputs of each layer, reducing
internal covariate shift.

Similarity Calculation. Calculate the similarity matrix f between the feature maps ® and &:

fij=0(X:)"o(X;) 4)

This matrix makes sense because it captures the pairwise similarities between features, essential
for understanding the relationships and dependencies within the data. We ensure that the values are
scaled between 0 and 1, representing probabilities that sum to 1, which aids in interpreting the
strength of the relationships. We do this by normalizing this similarity matrix using softmax:

exp(fij)
Y j €XP (fij)

Feature Enhancement. Multiply the normalized similarity matrix fg;y c with the feature map
G to obtain the enhanced feature Y:

Jaivc(iy j) = )

Y = faiv.cG (6)

This step refines the features by emphasizing the important relationships captured in the simi-
larity matrix.

Feature Reconstruction. Combine the enhanced feature Y with the original input X through a
convolutional layer and batch normalization layer to obtain the final output Z:

Z=BN(W.Y +X) 7)

The convolutional layer integrates the enhanced features with the original ones, while the batch
normalization layer ensures that the output is normalized, facilitating stable and efficient training.



3.3 Integration with GeM+ Module

To enhance the feature aggregation effect, we integrate the Non-Local Block into the GeM+
module. The workflow of the integrated GeM+ module is detailed as follows: Initially, the input
feature undergoes enhancement via the Non-Local Block, which refines the feature representation.
Subsequently, the enhanced features are clamped and exponentiated to facilitate effective aggrega-
tion. This is followed by global average pooling to aggregate the features. The aggregated feature is
produced as the output of the module.

Compared to the original method without Non-Local Block, we introduce Non-Local Block
to provide rich feature transformations through multiple convolutional and non-linear operations.
Non-Local Block addresses this by computing non-local response. It is able to capture long-range
dependencies and enhance the global context understanding, thus retaining more details and improv-
ing feature aggregation.

3.4 Advanced Encoding Techniques with VLAD

In this study, we improve the feature representation of the SuperGlobal model by incorporating
VLAD (Vector of Locally Aggregated Descriptors) encoding. This approach leverages the advan-
tages of both global and local features, aiming to boost the accuracy and robustness of the image
retrieval system. It serves as an efficient feature aggregation technique, which converts local descrip-
tors into a fixed-length global feature vector. The process of VLAD encoding involves the following
steps:

* Cluster Center Initialization. First, a set of cluster centers {c;,c3,...,ck } is predefined from
the training data, where c; represents the k-th cluster center, and K is the number of cluster
centers.

¢ Computing Soft Assignment. For each input feature vector x;, the similarity to all cluster
centers is computed. This similarity is then transformed into soft assignment weights o
using the softmax function, representing the probability that the feature vector x; belongs to
cluster center c;. The formula for calculating the soft assignment weights is:

o = el —alP)
.
£ exp(— i — ;)

®)

where ||x; — ¢, || represents the Euclidean distance between the feature vector x; and the cluster
center cy.

* Aggregating Features. All weighted residuals are summed to obtain the aggregated feature
vector vy for each cluster center:

Ve = Zh’k = Z Ok (xi — ) )

Then, all aggregated feature vectors vy are concatenated to form the fixed-length VLAD fea-
ture vector:
v=[vi,v2,...,Vk] (10)



* Normalization. To improve the stability and comparability of the feature vector, the aggre-
gated feature vector is L2-normalized:
v

ﬁzw an

We believe that integrating VLAD encoding enhances feature representation by considering
residuals between local features and cluster centers, improving discriminative power. This combina-
tion of global and local information significantly boosts retrieval accuracy, especially for fine-grained
distinctions, while maintaining scalability and efficiency suitable for large-scale tasks.

4 Experiments

4.1 Experimental Setup

We conducted an evaluation of our model on the ROxford5k and RParis6k datasets [2]. During
the fine-tuning stage, we optimized a combination of ResNet50 and PANet on the GLDv2 dataset
[31], where the fine-tuning task was formulated as a standard multi-class classification problem. In
the inference stage, we performed image retrieval on query images, which involved searching for
images in an existing database that exhibit the highest feature similarity to the query image.

To assess the effectiveness of the proposed method, we selected several common baseline mod-
els for comparison, including DELG [8], DOLG [32], CVNet [15], and SuperGlobal [17], which use
only global feature retrieval, as well as CVNet and SuperGlobal, which use both global feature
retrieval and reranking. We compared models with different network depths to provide a compre-
hensive evaluation.

For a thorough assessment of our model’s performance in image retrieval, we employed the
average precision(AP) metric to evaluate the improvements in retrieval effectiveness. Recognizing
that using only average precision may not provide a complete measure of model performance, we
further visualized the median of the accuracy of the top-ranked images of the queries, offering ad-
ditional insights into the model’s robustness and ensuring the comprehensiveness of the evaluation.
Our experimental results are presented below.

To validate the robustness and stability of our model, we extracted the feature extraction com-
ponent and trained it alongside the original ResNet on a toxic dataset, where “toxic” refers to data
that is deliberately designed to significantly degrade the model’s performance. The results show
that the feature extraction component with the added PANet module better preserved the model’s
capability compared to the original network.

4.2 Results

4.2.1 Performance Inprovement

Comparing the AP values of our method and some previous methods on ROxford & RParis
datasets with different difficulty levels as section 4.2.1, we can see that the effect is improved on
datasets with different difficulty levels.



Applying reranking methods demonstrates the best performance improvement compared to
methods without the reranking stage, particularly on the ROxford5k-Hard dataset, where the RN50-
SuperGlobal method achieved at most over a 10% increase in AP. Furthermore, our approach con-
sistently shows the highest average improvement across different datasets, which underscores the
effectiveness of the gempNonLocalBlock module in enhancing performance for this task.

Table 1: Performance comparison of various methods on different datasets and difficulty levels. All reranking
methods rerank top 400.

Method Medium Hard
ROxf RPar ROxf RPar

Global feature retrieval

RN50-DELG [8] 73.6 857 510 715
RN101-DELG [8] 763 86.6 556 724
RN50-DOLG [32] 80.5 89.8 588 77.7
RN101-DOLG [32] 81,5 910 61.1 803
RN50-CVNet [15] 81.0 888 62.1 765
RN101-CVNet [15] 802 903 63.1 79.1
RN50-SuperGlobal [17] 839 90,5 67.7 803
RN101-SuperGlobal [17] 853 921 721 835
Global feature retrieval + Local feature reranking

RN50-CVNet 879 905 756 80.2
RN101-CVNet 872 912 759 81.1
SuperGlobal feature retrieval and reranking

RN50-SuperGlobal 88.8 920 771 844
RN101-SuperGlobal 90.9 933 802 86.7

RN101-SuperGlobal-gempNonLocalBlock [ours] 914 934 81.0 87.0

In order to understand the effect and robustness of different methods, we made a distribution
chart of queries with different AP values fig. 3. The horizontal axis represents the interval of the AP
value of the query, and the vertical axis represents the number of queries with AP value in a certain
interval. The lower the left side of the line, the higher the right side, the better the effect. The larger
peak value of the broken line indicates the more concentrated AP value of the query and the better
robustness. It can be seen that the effect and robustness of our method are good, and there are some
improvements over the previous method. It can also be seen that reranking significantly enhances
the effect and robustness of the method. There is an obvious multi-peak phenomenon in the polyline
before reranking, that is, the extremal of the queried quantity appears in multiple AP value intervals,
the polyline is scattered, and the upward trend is not as obvious as that after reranking.
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To see the effect of different top results per query for the pre-improved SuperGlobal and the
improved UltraGlobal, we made boxplots of precision for the top several results for all queries for
both methods fig. 4. The horizontal axis represents the number of selected top results, and the vertical
axis represents the AP of these selected results. The AP of all queries is summarized into a box. The
upper and lower edges of the box indicates the two quartiles, respectively. And the median line of the
box indicates the median. As can be seen, the quartiles are essentially the same for both, indicating
that better and worse queries have essentially the same effect under both methods. However, in the
top21 to top65 range, the median of our method is higher, which indicates that our method can give
better results for general queries.

4.2.2 Robust Testing & Ablation Study of PANet

On the other hand, thanks to the use of PANet, UltraGlobal has improved the model’s stability
to a certain extent. As shown in table 2 & table 3, we fine-tuned the original model on a small toxic
dataset, and it can be observed that UltraGlobal’s performance falls between the original ResNet and
the Toxic ResNet. The architecture with PANet achieved an average score that was 7.5% higher than
the version without PANet integration.

Table 2: Comparison of toxic models (based on mAP metrics).

Model With PANet ResNet Depth mAP(E) mAP(M) mAP(H)
Base Model50 False 50 1.74 2.47 1.08
Base Model101 False 50 1.75 3.12 2.38
Toxic Model50 False 50 1.59 2.37 1.06
PANet Toxic Model50 True 50 1.81 2.44 0.99
PANet Toxic Model101 True 101 1.74 2.52 1.14

Table 3: Comparison of toxic models (based on MPR metrics).

Model MPR(E) MPR(M) MPR(H)

Base Model50 [2.942.942.94] [2.863.433.43] [0.000.570.71]
Base Model101 [2.944.413.82] [4.295.145.00] [1.432.002.57]
Toxic Model50 [4.412942.65] [4.293.143.14] [0.000.29 0.81]

PANet Toxic Model50  [8.824.12 3.53] [10.00 4.57 4.14] [1.43 0.57 0.86]
PANet Toxic Model101 [2.94 3.53 3.68] [2.863.714.71] [0.00 0.36 1.50]

The experimental findings indicate that the integration of PANet results in enhanced stability
and improvements in the mAP and MPR metrics in certain scenarios. After model contamination,



both mAP and MPR were significantly affected across tasks of varying difficulty; however, the
addition of our PANet network effectively alleviated these issues. This demonstrates that our PANet
network is capable of robustly extracting image features, even in complex tasks, showcasing its
strong robustness and generalization ability.

We also conducted ablation studies on the toxic model to evaluate the impact of each com-
ponent on overall model performance when PANet is either included or excluded. We choose the
ResNet with a depth of 50 for these experiments. The results, as shown in the table 4 & table 5,
indicate that using PANet for feature extraction yields superior performance compared to its absence
when all other components are excluded, with the advantages becoming even more pronounced upon
the inclusion of additional components.

Table 4: Comparison of the activation of different components (based on mAP metrics).

With PANet ResNet Depth Activate Component mAP(E) mAP(M) mAP(H)

True 50 nan 1.70 2.46 1.09
True 50 gemp 1.94 3.21 2.37
True 50 sgem 1.69 3.13 241
True 50 regm 1.74 2.43 0.99
True 50 relup 1.88 2.57 1.11
True 50 rerank 1.73 2.40 0.99
False 50 nan 1.64 2.38 1.05
False 50 gemp 1.93 2.64 1.12
False 50 sgem 1.67 2.42 1.04
False 50 regm 1.55 2.99 2.37
False 50 relup 1.73 2.59 1.31
False 50 rerank 1.79 3.15 2.37

Table 5: Comparison of the activation of different components (based on MPR metrics).

With PANet  ResNet Depth  Activate Component MPR(E) MPR(M) MPR(H)
True 50 nan [5.88 3.24 3.68] [7.14 4.00 4.29] [1.43 1.14 1.14]
True 50 gemp [8.82 4.41 2.65] [10.00 5.14 4.00]  [1.432.002.71]
True 50 sgem [2.94 2.65 2.50] [4.29 4.00 3.86] [1.432.57 2.86]
True 50 regm [2.94 4.12 3.53] [4.29 5.43 4.43] [1.43 1.43 1.00]
True 50 relup [10.293.824.41]  [10.004.575.14]  [0.00 1.14 1.14]
True 50 rerank [5.885.29 4.41] [7.14 6.00 5.14] [1.430.86 0.86]
False 50 nan [4.413.82 3.24] [4.29 457 3.71] [0.00 0.86 0.67]
False 50 gemp [5.885.59 4.71] [5.71 6.29 5.43] [0.00 0.86 1.00]
False 50 sgem [4.41 3.53 3.82] [4.29 457 4.71] [0.00 1.14 1.00]
False 50 regm [1.47 2.06 2.94] [2.86 2.57 3.57] [1.431.71 2.00]
False 50 relup [2.94 4.41 4.41] [2.86 4.86 5.00] [0.00 1.29 1.29]
False 50 rerank [5.88 3.823.97] [7.14 4.86 5.00] [1.432.29 2.43]

Specifically, when gemp is enabled, the model demonstrates significant improvements across
all categories, particularly with PANet, achieving mAP(M) and mAP(H) values of 3.21 and 2.37, re-



spectively. This suggests that gemp plays a beneficial role in enhancing performance. In the absence
of PANet, both mAP and MPR are relatively satisfactory but exhibit slightly reduced effectiveness
compared to configurations that include PANet.

The activation of sgem also led to improvements in both mAP and MPR metrics, with PANet
markedly enhancing the model’s feature extraction capabilities. Conversely, when rgem is enabled,
the PAN structure yields good performance in mAP(E), although mAP(M) and mAP(H) values are
lower. The MPR metrics in this case also displayed moderate performance. Notably, without PANet,
regm outperformed expectations on Medium and Hard tasks, achieving mAP(M) and mAP(H) val-
ues of 2.99 and 2.37, respectively. This finding suggests that, in certain contexts, regm may exhibit
superior performance in the absence of the PAN structure. Similarly, the rerank component demon-
strated analogous performance patterns in Medium and Hard tasks.

When relup is activated within the PANet structure, it consistently performed well across all
categories, showing significant improvements in mAP(E) and mAP(H). Its MPR metrics also indi-
cated strong ranking performance in Easy and Medium tasks. Even without PANet, relup maintained
a commendable level of performance, underscoring its stability as an activation component.

In summary, our comparisons reveal that the activation of gemp significantly enhances model
capabilities, exhibiting superior performance irrespective of the presence of PANet. When consider-
ing both sgem and relup, the former shows superior performance within the PANet structure, while
the latter demonstrates a more pronounced impact on model capability when PANet is not included.
In addition, rgem appears to be better suited for models without PANet, and rerank can be selectively
employed in specific task scenarios, leading to notable improvements in overall model performance.

5 Future Research Directions

5.1 Exploration of Model Lightweighting

While UltraGlobal effectively balances feature extraction quality and inference speed, an im-
portant future research direction involves further exploration of lightweight models to reduce com-
putational overhead, thereby optimizing the system for image retrieval. Although the current model
complexity impacts the feature extraction speed for query images, techniques such as model prun-
ing and quantization could significantly reduce memory usage and computational demands without
sacrificing accuracy. This would not only improve the system’s response time but also enhance its
applicability in resource-constrained environments. Optimizing UltraGlobal for calculation speed
and memory usage holds great potential for expanding its use in real-time scenarios, particularly on
mobile and embedded systems.

5.2 Enhancing Global Feature Extraction Methods

UltraGlobal relies predominantly on global feature extraction and encoding, and future research
could improve the discriminative power of global descriptors by integrating more advanced atten-
tion mechanisms. For example, adding intermedia layers to the network architecture can improve
the model’s reasoning ability, which may improve the model’s ability to find similar images; com-
prehensively consider local features and global features and integrate them to find features in more



receptive fields; introduce a U-net-like architecture, which can not only solve the overfitting prob-
lem, but also allow more pretrain models to be applied. These methods may be useful to improve
the performance of the model to a certain extent, leaving room for future work.

5.3 Generalization to Diverse Scenarios and Datasets

While UltraGlobal demonstrates excellent performance across several benchmark datasets, fur-
ther validation of its generalization capabilities in diverse scenarios and datasets is necessary. Fu-
ture research could explore training and evaluation on larger and more visually diverse datasets to
assess the model’s adaptability and robustness in real-world applications. Introducing more var-
ied data scenarios, such as low-light conditions, complex backgrounds, and different image styles,
could enhance UltraGlobal’s performance in diverse environments. Additionally, exploring self-
supervised or unsupervised learning methods to fine-tune the model could reduce dependence on
labeled datasets, thereby extending its applicability to domains where labeled data is scarce. This
would significantly enhance UltraGlobal’s practical utility, enabling efficient and accurate image
retrieval in a broader range of real-world contexts.

6 Conclusion

In this paper, we presented UltraGlobal, an enhanced image retrieval method that addresses the
key limitations of both traditional local-feature-based and deep learning approaches. By leveraging
advanced techniques such as PANet for feature extraction, multiple improvements to GeMP pooling
modules, and integrating VLAD encoding, UltraGlobal demonstrates superior scalability, efficiency,
and precision. The method achieves state-of-the-art performance across standard benchmarks, sig-
nificantly improving both global feature retrieval and reranking processes. Our experimental results
on the ROxford and RParis datasets show that UltraGlobal outperforms existing methods, especially
in challenging retrieval scenarios, demonstrating its robustness and effectiveness.

Looking ahead, the flexibility and robustness of UltraGlobal suggest promising potential for
adaptation in various real-world applications, from large-scale digital asset management to real-time
image search systems. Future improvements, particularly in model lightweighting and the use of
more advanced attention mechanisms, could further optimize the method for edge computing and
diverse, resource-constrained environments. Thus, UltraGlobal sets a new benchmark for efficient,
scalable, and accurate image retrieval systems.
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